## One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.


# STRENGTH DIAGRAMS OF EIBROUS COMPOSITES WITH UNIDIRECTIONAL STRUCTURE 

$\sqrt{\text { V.S. Ivanova, L.M. Ustinov }}$


Translation of "Diagrammy prochnosti voloknistykh
kompozitsionnykh materjalov s odnonapravlennoy
strukturoy". Izvestiya Akademiya Nauk SSSR,
Metally,
(NASA-TM-76975) STRENGTH D $\perp A G G A M S$ OF N8.2-33433
FIBROUS COMPUSITES WITH UNADIRECTIONAL STRUCTURE (National Aerondstics and Space Administration) $10 \mathrm{p} \mathrm{HC} \mathrm{A} 2 / \mathrm{MF}$ AO1 CSCL 11 D Unclas

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 . SEPTEMBER 1982

ITAMOAMD TITLE Dace


## STRENGTH DIAGRAMS OF FIBROUS COMPOSITES WITH UNIDIRECTIONAL STRUCTURE

V. S. Ivanova, I. M. Ustinov

In order to solve many problems involved in the creation of reinforced metals it is necessary to establish the parameters of the reinforcement; the volume proportion of the fiber, the dimension (diameter and length) of the fibers, the mechanical properties of the fiber a.2d of the matrix and other properties consonant with a positive reinforcement effect. In this connection it is interesting to analyze the dependence of the strength of the composite $[1,2]$ on two parameters simultaneously: the volume proportion of fiber $\left(\mathrm{V}_{\mathrm{f}}\right)$ and the transfer factor $k=1_{*} / 1_{f}[3]$, where $l_{f}$ is the sought length of fiber and $1_{*}$ is the critical length of fiber as defined by [1]:

$$
\begin{equation*}
I_{*}=\frac{d_{f} \sigma_{f}}{2 \tau} \tag{1}
\end{equation*}
$$

where $d_{f}$ is the diameter of the fiber, $\sigma_{f}$ is the breaking strength of the fiber, and $\tau$ is the flow stress in the matrix.

Analysis and construction of diagrams. The familiar equations for the strength of composites of unidirectional structure have the following form [1,3]:

$$
\begin{align*}
& \sigma_{c 1}=\sigma_{m}\left(1-V_{1}\right)+k_{3} V_{l} \sigma_{1} \text { at } V_{0} \geqslant V_{1} \geqslant 0  \tag{2}\\
& \sigma_{c 2}=\sigma_{l} V_{1}[1-k(1-\beta)]+\sigma_{m}^{*}\left(1-V_{i}\right) \text { at } V_{0} \leqslant V_{1} \leqslant 1 \tag{3}
\end{align*}
$$

The "minimal" volume proportion of fiber $\left(V_{*}\right)$ and the

[^0]critical volume proportion of fiber $\left(\mathrm{V}_{* *}\right)$ are defined by the formulas:
\[

$$
\begin{align*}
& V_{\bullet}=\left[1+\frac{\sigma_{f}}{\sigma_{m}-\sigma_{m}^{*}}(1-k)\right]^{-1}  \tag{4}\\
& V_{. .}=\frac{\sigma_{m}-\sigma_{m}^{*}}{\sigma_{f}|1-k(1-\beta)|-\sigma_{m}^{*}} \tag{5}
\end{align*}
$$
\]

We shall use expressions (2) ans (3) hereafter in the interval of variation of the transfer factor $k$ from 0 to 1 inclusive, i.e. under those conditions when it is possible to achieve tensile stresses equaling $\sigma_{f}$ for the fibers introduced into the matrix upon loading of the composites, which corresponds to the most favorable case of reinforcement of the matrix.

The partial derivatives of the first and second order of expressions (2) and (3) with respect to $\mathrm{V}_{\mathrm{f}}$ have the form:

$$
\begin{align*}
& \frac{\partial\left(\sigma_{\sigma_{1}}\right)}{\partial V_{1}}=-\sigma_{m t}+k \beta \sigma_{1}  \tag{6}\\
& \frac{\partial\left(\sigma_{\sigma_{2}}\right)}{\partial V_{1}}=\sigma_{l}[1-k(1-\beta)]-\sigma_{m}^{*} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial^{2}\left(\sigma_{c c}\right)}{\partial V_{i}^{2}}=0  \tag{8}\\
& \frac{\partial^{2}\left(\sigma_{c 2}\right)}{\partial V_{i}^{2}}=0 \tag{9}
\end{align*}
$$

Since the strength of the matrix $\sigma_{m}$ is less than $\sigma_{f}$, we also have $\sigma_{\mathrm{m}}^{*} / \sigma_{f}<1$, since $\sigma_{\mathrm{m}}^{*}<\sigma_{\mathrm{m}}$; the coefficient $\beta \simeq 0.5$ [4].

Derivative (6) can be:
a) $<0$
b) $=0$
when
c) $>0$
when

$$
\begin{align*}
& k \Leftrightarrow \sigma_{m} / \beta \sigma_{l}  \tag{10}\\
& k=\sigma_{m} / \beta \sigma_{l}  \tag{11}\\
& k \Rightarrow \sigma_{m} / \beta \sigma_{l} \tag{12}
\end{align*}
$$

while derivative (7) can be:
a) $<0$
when
$k>\left(1-\sigma_{m}^{*} / \sigma_{1}\right) /(1-\beta)$
b) $=0$
when
$k=\left(1-\sigma_{m}^{*} / \sigma_{1}\right) /(1-\beta)$
c) $>0$
when
${ }^{\prime} k<\left(1-\sigma_{m}^{*} / \sigma_{0}\right) /(1-\beta)$

In its turn, $\sigma_{m} / \beta c_{f}$ can be:
a) < 1
b) $=1$
when

$$
\begin{align*}
& I_{\sigma_{m} / \sigma_{l}}<\beta  \tag{16}\\
& \sigma_{m} / \sigma_{l}=\beta \tag{17}
\end{align*}
$$

c) $>1$
when
while the expression $\left(1-\sigma_{m}^{*} / \sigma_{\theta}\right) /(1-\beta)$ can be:
a) $<1$
when
b) $=1$
when

$$
\begin{align*}
& \sigma_{\sigma_{m}^{*} / \sigma_{1}}>\beta  \tag{19}\\
& \sigma_{m /}^{*} / \sigma_{1}=\beta  \tag{20}\\
& \sigma_{m}^{*} / \sigma_{1}<\beta \tag{21}
\end{align*}
$$

The conjuncture of conditions (16) - (21) produces five possible paired combinations of these, to each of which there should correspond, as will be shown below, its own diagram of $\sigma_{c}$ as a function of $V_{f}$ and $k$, different in principle from the other four. These are the followisg combinations:
a)
$\sigma_{m} / \sigma_{l}<\beta$
and
$\sigma_{m}^{*} / \sigma_{j}<\beta$
under conditions (8) - (12), 15;
b) $\quad \sigma_{m} / \sigma_{l}=\beta \quad$ and $\quad \sigma_{m}^{*} / \sigma_{f}<\beta$
under conditions (8) - (11), 15;
c) $\quad \sigma_{m} / \sigma_{j}>\beta$ and $\dot{\sigma_{m}} / \sigma_{j}>\beta$
under conditions (8) - (10), (13) - (15);
d)
$\sigma_{m} / \sigma_{l}>\beta \quad$ and

$$
\begin{equation*}
\dot{\sigma}_{m}^{*} / \sigma_{l}=\beta \tag{25}
\end{equation*}
$$

under conditions (8) - (10), (14) - (15);
e)
$\sigma_{m} / \sigma_{1}>\beta$,
and
$\sigma_{n=2} / \sigma_{1}<\beta$
under conditions (8) - (10), (25).

Figure 1 shows three-dimensional diagrams of the strength of composites as a function of the volume proportion of fibers and the transfer factor $k$, corresponding to conditions (22) (25).


Fig. 1. Diagrams of the strength of composites $\left(\sigma_{c}\right)$ as a function of the volume proportion of fibers $\left(V_{f}\right)$ and the transfer factor $k=I_{*} / I_{f}$.

For a more clear representation we can use the method of cross sections of the diagrams by a plane perpendicular to the
axis of variation of the transfer factor $k$. In this ease each diagram has a set of characteristic cross sections intrinsic only to jtself, repesenting a series of two-dimensional composite strength diagrams as functions of the volume proportion of fibers for various constant vaiues of the transfer factor $k$ (Fig. 2).


Fig. 2. Characteristic eross sections of strength diagrams (Fig. 1) for various values of $k=$ const.

The diagram of Fig. la has four characteristic sections (Fig. 2): $1 . k<\sigma_{m} / 3 \sigma$ (Fig. 2a); k $\therefore \sigma_{m}\left(\beta \sigma_{1}\right.$ (Fig. 2b); $\ddot{\sigma}_{m}, \mid 3 \sigma_{l} \ll k<j$ (Fig. 2c) and $k=1$ (Fig. 2d).

The diagram of Fig. Ib has two characteristic sections: 0 skel (Fig. 2a) and $k=1$ (Fig. 2e).

The diagram of $\operatorname{Fig}$. Ic has six characteristic sections: $0 \leqslant k<\left(1-\dot{\sigma}_{m}:\left(\sigma_{f}\right)(1-\beta) \quad\right.$ (Fig. 2a); $k \dot{\therefore}\left(1-\sigma_{m} / \sigma_{t}\right) /(1-\beta)$. (Fig. 2f); $\left(1-\sigma_{m}^{*} / \sigma_{n}(1-\beta)=\beta \quad\right.$ (Fig. $\left.2 g\right) ; \quad\left(1-\sigma_{m} / \sigma_{l}\right) /(1-\beta)<k<\left(1-\sigma_{m} / \sigma_{l}\right) /(1-\beta)$ (Fig. 2h) ; (1- $\left.\sigma_{m}^{\prime \prime} \sigma_{f}\right)(1-\beta)<\bar{k}<1 \quad$ (Fig. 2i) and $k=1$ (Fig. 2j).

The diagram of Fig. Id has four characteristic sections:

$$
\begin{aligned}
& 0 \leqslant k \leqslant\left(1-\sigma_{m} / \sigma_{l}\right) /(1-\beta) \quad \text { (Fig. 2a) ; } k=\left(1-\sigma_{m} / \sigma_{l}\right) /(1-\beta) \quad \text { (Fig. 2f); } \\
& \left.\left.1 \because \sigma_{m} / \sigma_{1}\right) /(1-\beta)<k<1 \text { (Fig. 2h) and } k=1 \text { (Fig. } 2 j\right) .
\end{aligned}
$$

Combinations (25) and (26) in principle produce identical diagrams, as the latter have absolutely identical sets of characteristic sections. In the final analysis we obtain four basically different three-dimensional diagrams: $a, b, c$ and $d$ (Fig. 1).

An analysis of the diagrams and their characteristic sections reveals that each of these has regions of values $V_{f}$ and $k$ for which the strength of the composite $\sigma_{C}$ exceeds that of the matrix, i.e. all four diagrams have strengthening regions. The strengthening region is situated beyond the line $B D$, corresponding to the dependence of $V_{* *}$ on $k$, in the direction of increasing values of $V_{f}$. The only exception in this case is the diagram of Fig. la, according to which a strengthening is also possible for all values of $V_{f}$ from 0 to 1 under the condition that: $k=\sigma_{m} / 3 \sigma$.

In view of the diminishing effect of reinforcement all these diagrans can be arranged in the following sequence:

1) the diagram of Fig. Ia [3], according to which the inequality $\sigma_{C}>\sigma_{m}$ can be fulfilled when $V_{f}>V_{* *}$, if $k \leq \sigma_{m} / \beta \sigma_{f}$, and when $0<V_{f} \leq 1$, if $k>\sigma_{m} / \beta \sigma_{f}$;
2) the diagram of Fig. lb. Here $\sigma_{c}>\sigma_{m}$ is possijle when $\mathrm{V}_{\mathrm{f}}>\mathrm{V}_{* *}$ and $0<\mathrm{k} \leq \mathrm{I}_{\text {; }}$
3) the diagrams of Fig. lc and $d$, according to which $\sigma_{C}>\sigma_{\mathrm{rn}}$ is possible only in the relatively narrow region of values of $V_{f}$ and $k$, when $V_{f}>V_{* *}$ and $k<\left(1-\sigma_{m} / \sigma_{f}\right) /(1-\beta)$.

The limits of applicability of the diagrams. The constructed diagrams allow for the variation of $V_{f}$ in the closed interval from 0 to 1 . Howover we must realize that the fibers used in the composite as a rule have a cireular cross section. But this means that even for their greatest packing density $V_{f}$ cannol exceed 0.907 . Therefore we must consider the constructed diagrams in the intervals of $V_{f}$ values from 0 to 0.907 .

Moreover we must allow for the fact that at a high volume proportion the experimental strength values may differ considerably from the calculated, since formula (3) has been derived on the basis of the law of additivity and is valid oniy in a certain interval of $V_{f}$.

Conclusions. 1. On the basis of the existing expressions for the strength of composites of unidirectional structure of the system "soft metal matrix - strong and rigid fibers" by means of the combinatorial method four possible types of diagrams have been constructed for the strength of composites ( $G_{c}$ ) as a function of the volume propation of fibers $\left(V_{f}\right)$ and the transfer factor $k$.
2. Using the method of characteristic cross sections, conditions are established for positive reinforcement of a soft metal matrix by rigid fibers as a function of the mechanical properties of the matrix, the volume proportion of fibers, and the dimension of the fibers.

The authors are grateful to G. G. Mukhin for valuable comments during the writing of this work.

Submitted 24 September 1968

## References

1. Kelly, A. and Davies, G. I., "The Principles of the Fiber Reinforcement of Metals", Metal Rev., 10/37, 1965, p. 1.
2. Ivanova, V. S., Kop'yev, I. M., Usininov, I. M., Voloknistyye materialy (prochnost' i strukeura). Metallovedeniye i termicheskaya obrabotka. Itogi nauki i tekhniki 1965 g. [Fibrous Materials (Strength and Structure). Metallurgy and Heat mreatment. nccomplishments of Science and Technology in 2965], VINITI, 1966.
3. Tvanova, V. S., Ustinov, L. M., "Strength Diagrams of Fibrous Composite Materials with Unidirectional [iscrete Structure", Fizika i khimiya obrabotki materialov, 2, 1967, p. 138.
4. Kolly, A., "The Strengthening of Metals by Dispersed Particles", Proc. Roy. Soc., A282/1.388, $1964, \mathrm{p} .63$.

[^0]:    *Numbers in the margin indicate pagination in the foreign text.

