31 research outputs found

    Comparison of low-altitude wind-shear statistics derived from measured and proposed standard wind profiles

    Get PDF
    Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions

    Data report of six free-drifting buoys tracked by the Eole satellite in the western North Atlantic Ocean in the autumn of 1972

    Get PDF
    The buoys were deployed on the Continental Shelf east of the Chesapeake Light and were tracked by the French EOLE satellite. Two buoys drifted for 11 days during the first mission and four buoys drifted for 14 days during the second mission. Trajectory and water temperature data are presented in tabular and graphical from with a discussion of the accuracy

    Data report of four free-drifting buoys tracked by the Eole satellite in the western North Atlantic Ocean in the winter of 1973

    Get PDF
    Data from four free-drifting buoys deployed near Chesapeake Light on February 20, 1973 is presented. Position and water temperature data are presented in tabular and graphic form

    Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    Get PDF
    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent

    National Aeronautics and Space Administration operations: Remote sensing experiments in the New York Bight, 7-17 April 1975

    Get PDF
    Results are given of remote sensing experiments conducted in the New York Bight between April 7-17, 1975, to evaluate the role of remote sensing technology to aid in monitoring ocean dumping. Remote sensors were flown on the C-54, U-2, and C-130 aircraft while the National Oceanic and Atmospheric Administration obtained concurrent in situ sea truth data using helicopters and surface platforms. The test site, aircraft platforms, experiments, and supporting sensors are described. The operation of each aircraft are discussed and aircraft flight lines, flight parameters, and data identification parameters are presented in figures and tables

    Comparison of wind velocity in thunderstorms determined from measurements by a ground-based Doppler radar and an F-106B airplane

    Get PDF
    As a part of the NASA Storm Hazards Program, the wind velocity in several thunderstorms was measured by an F-106B instrumented airplane and a ground-based Doppler radar. The results of five airplane penetrations of two storms in 1980 and six penetrations of one storm in 1981 are given. Comparisons were made between the radial wind velocity components measured by the radar and the airplane. The correlation coefficients for the 1980 data and part of the 1981 data were 0.88 and 0.78, respectively. It is suggested that larger values for these coefficients may be obtained by improving the experimental technique and in particular by slaving the radar to track the airplane during such tests

    Laboratory and field measurements of upwelled radiance and reflectance spectra of suspended James River sediments near Hopewell, Virginia

    Get PDF
    Spectral reflectance characteristics of suspended Bermuda Hundred and Bailey Bay bottom sediments taken from the Hopewell, Va., area were measured in the laboratory for water mixture total suspended solids concentrations between 4 and 173 parts per million. Field spectral reflectance measurements were made of the James River waters near Bermuda Hundred on two occasions. The results of these tests indicate that both Bermuda Hundred and Bailey Bay suspended sediments produce their strongest reflectance in the green and red regions of the spectrum

    Laboratory measurements of radiance and reflectance spectra of dilute secondary-treated sewage sludge

    Get PDF
    The National Aeronautics and Space Administration (NASA), in cooperation with the Environmental Protection Agency (EPA) and the National Oceanic and Atmospheric Administration (NOAA), conducted a research program to evaluate the feasibility of remotely monitoring ocean dumping of waste products such as acid and sewage sludge. One aspect of the research program involved the measurements of upwelled spectral signatures for sewage-sludge mixtures of different concentrations in an 11600-liter tank. This paper describes the laboratory arrangement and presents radiance and reflectance spectra in the visible and near-infrared ranges for concentrations ranging from 9.7 to 180 ppm of secondary-treated sewage sludge mixed with two types of base water. Results indicate that upwelled radiance varies in a near-linear manner with concentration and that the sludge has a practically flat signal response between 420 and 970 nm. Reflectance spectra were obtained for the sewage-sludge mixtures at all wavelengths and concentrations

    Laboratory measurements of radiance and reflectance spectra of dilute primary-treated sewage sludge

    Get PDF
    The feasibility of remotely monitoring ocean dumping of waste products such as acid and sewage sludge is evaluated. The laboratory arrangement, solar simulator, and test results from three experiments conducted in the laboratory are described. Radiance and reflectance spectra are presented for primary-treated sewage sludge mixed with two types of base water. Results indicate that upwelled reflectance varies in a near-linear manner with concentration and that the sludge has a practically flat signal response between 420 and 970 nm. Well-defined upwelled reflectance spectra were obtained for the sewage-sludge mixtures at all wavelengths and concentrations. The spectral-reflectance values appeared to be influenced by the type of base water, but this influence was small, especially for the mixtures with low concentrations of sewage sludge

    Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    Get PDF
    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude
    corecore