NASA-TM-85668 19840005104

NASA Technical Memorandum 85668

Comparison of Low-Altitude Wind-Shear Statistics Derived From Measured and Proposed Standard Wind Profiles

FOR REFERENCE

J. W. Usry

NOT TO BE TAKEN FROM THIS BOOM

NOVEMBER 1983

LIBRARY COPY

UEU 1 - 1983

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

· · ·

Comparison of Low-Altitude Wind-Shear Statistics Derived From Measured and Proposed Standard Wind Profiles

J. W. Usry Langley Research Center Hampton, Virginia

National Aeronautics and Space Administration

Scientific and Technical Information Branch

1983

SUMMARY

In 1977 NASA Langley Research Center collected data onboard wide-body jet transports to determine the feasibility of measuring winds and wind shear during landings and takeoffs. From these data a measured set of wind profiles was determined and wind-shear statistical parameters were estimated for over 640 landings and takeoffs. Another set of wind profiles was simulated using a wind field data base proposed by the Federal Aviation Administration. Over 640 profiles were determined for ascent and descent trajectories through the proposed two-dimensional wind fields assuming a 3° glide slope on approach and a 6° climbout on takeoff. From these data sets, wind shears were calculated and grouped in 100-ft altitude bands from 100 to 1400 ft and in 0.025-knot/ft wind-shear intervals between ± 0.600 knot/ft. Frequency distributions, means, and standard deviations were derived for each altitude band and compared. Also, relative and cumulative frequency distributions were derived for the total sample (all altitudes) and compared. For the measured data set no wind-shear values existed outside ± 0.200 knot/ft.

Frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Distributions for both data sets, however, were practically symmetrical for all altitudes. Total sample frequency of occurrence for the two data sets was about equal for wind-shear values between ± 0.075 knot/ft, but the simulated data set had significantly higher frequency of occurrence values for all wind shears outside these boundaries. Normal distribution fits of both data sets showed that neither data set was normally distributed. Similar results were observed from the cumulative frequency distributions.

INTRODUCTION

Safe and reliable air transportation systems are essential to the United States economy and security. For this reason, a continuous, vigorous effort is maintained to improve these systems and to understand the environments in which they operate. For example, wind shear, defined as the local variation of the wind vector or its components in a given direction and distance (ref. 1), has been identified as being especially hazardous during the landing and takeoff of aircraft, and the Federal Aviation Administration (FAA) has instituted a major programmatic effort to study this problem (ref. 2). As part of this effort, a wind profile data base is being defined for use in flight simulation studies. These studies should improve the scientific understanding of the wind-shear hazard and should aid in definition of aircraft response requirements and in the design of systems to help the pilot cope with this hazard.

Since various government agencies and industrial interests are involved, the FAA has sponsored several studies to define standard wind profiles for use in simulation studies. In reference 2, 21 profiles selected for use in piloted simulator tests are presented, and 7 of the 21 are suggested for use in simulators to demonstrate methods and systems that will enable the pilot to cope successfully with wind shear. Reference 3 presents a comprehensive set of wind profiles and associated wind-shear

characteristics, which encompass many of the wind-shear environments that aircraft could potentially encounter in the terminal area. Some of these were used to formulate the models of reference 2. Reference 4 summarizes the development and testing of airborne displays, instrumentation, and procedures for aiding jettransport pilots in coping with wind-shear effects. These tests used the seven candidate standard wind-shear profiles suggested in reference 2. Finally, in reference 5, the reference 2 data base was used in real-time aircraft simulation studies of NASA's Terminal Configured Vehicle (TCV), and potential areas for improvement in the data base were pointed out. These references indicate that the profiles suggested in reference 2 provide a reasonable data base for studying the wind-shear hazard. Generally, however, further studies, both analytical and experimental, are recommended to improve the data base.

NASA has been collecting and analyzing data on the operating environment of aircraft for many years. In reference 6, for example, wind and wind-shear data were obtained from parameters recorded onboard wide-body jet transports during landing and takeoff. This study was made to determine the feasibility of measuring winds and wind shears during normal commercial aircraft operations. These parameters were recorded over a 2-week period during a total of 641 takeoffs and landings, from which 6300 wind samples were obtained. From these wind samples, wind-shear values were calculated and grouped in 100-ft altitude bands from 100 to 1400 ft. In addition, shear values in each altitude band were grouped and plotted as histograms. From these histograms, frequency distributions, means, and standard deviations of the wind shear were calculated. Finally, probability of occurrence of wind shear of a specific magnitude for any operation and altitude was presented.

The purpose of the present study was to compute statistical parameters from wind-shear data generated using the 21 proposed standard wind profiles of reference 2 and to compare these parameters with those of reference 6. Specifically, comparisons were made of frequency distributions, means, and standard deviations of wind shear in each altitude band and of relative and cumulative frequency distributions for the total sample. It should be noted, however, that the statistical distributions from the two data sources depended on the characteristics of each data set. For example, more than half of the 21 profiles of reference 2 represented thunderstorm environments, whereas the data of reference 6 were apparently collected during more moderate weather conditions. Also, wind shear due to changes in wind direction was not considered in the estimates of the total wind-shear distributions.

DESCRIPTION OF DATA SETS

Proposed Standard Wind Profiles

Standard wind profiles and associated turbulence parameters proposed by the FAA for use in piloted simulation tests and in training and system qualification tests are discussed in reference 2. Wind profiles are identified and listed in table I. For convenience, the profiles were numbered 1 to 21 for this study as listed in the first column. The last three columns list the profile numbers assigned in reference 2 and those used in aircraft simulation studies in reference 2 to determine relative wind profile severity. These numbers are not used in this report, but are listed here for continuity.

The 21 wind profiles of reference 2 were derived from measured data and from mathematical models representing a variety of atmospheric conditions. The FAA study used these data in an analytical simulation of an airplane with three rigid-body

degrees of freedom and with simplified pitch attitude and thrust control systems. These wind profiles were described as a function of altitude and range. Each profile was assigned a severity rank based on established performance criteria (see ref. 2). Profiles were compared, and potentially hazardous wind profiles were identified and designated as low, moderate, or high (see table I). As might be expected and as stated previously, 12 of the 21 wind profiles selected represent thunderstorm environments (profiles 7, 8, and 11 to 20), and the sources of wind data for 9 of these profiles were accident reconstruction reports. Wind data for the other three were obtained from tall meteorological tower measurements (profiles 7 and 8) and a mathematical model (profile 16). Accident reports were the source of profiles 5, 6, and 9, representing conditions preceding warm frontal systems. Profiles 10 and 21 represent conditions following cold fronts. (It is worth noting that in ref. 7, Goff concluded that air masses following strong cold fronts appear to rival thunderstorm outflows in terms of potential hazards to aviation.) The remaining four profiles (profiles 1 to 4) represent either neutral or stable atmospheric conditions (see ref. 2 for definitions). Profiles 1 to 16 were designed for studying the wind-shear hazard occurring during approach and landing, whereas profiles 17 to 21 were designed for takeoff and climbout.

Wind Profiles Measured During Commercial Aircraft Operations

In reference 6, information from digital flight data recorders interfaced with the aircraft integrated data system was used to derive 641 measured wind profiles. Data were collected for a 2-week period during the spring of 1977. Table II lists the location of 14 airports from which the operations were conducted and the number of profiles measured for each location. In reference 6 it was noted that the data set may be biased because 25 percent of the data were obtained during training flights at one airport and more than 60 percent of the data were obtained from operations at three airports. Also, no attempt was made to correlate the flight operations with existing meteorological conditions.

Measurement systems onboard the aircraft were activated so that a wind sample data point was obtained every 3 or 4 seconds (see ref. 6). From these measurements, plots of resultant wind velocity as a function of altitude up to 1400 ft were constructed for each operation. Wind shears were calculated from these profiles as the first derivative of resultant wind velocity with respect to altitude. A data point was obtained on the average at altitude increments of 30 to 50 ft for altitudes below 800 ft. Above 800 ft, however, vertical spacing between data points was nearly uniformly distributed between 0 to 100 ft, since for some operations the aircraft leveled off and for others it continued to climb. This created a bias in the distribution; however, Dunham (ref. 6) concluded that the data do reasonably characterize the distribution of wind shear and that this distribution was independent of altitude.

METHOD OF ANALYSIS

To compare statistical properties calculated in reference 6 with those for the data derived from the wind profiles of reference 2, ascent and descent trajectories were simulated through these wind profiles (two-dimensional wind fields). Using this technique, 645 operations (takeoffs and landings) were generated compared with 641 for the data set in reference 6. The operations are listed in table III.

The wind profiles of reference 2 were referenced to the glide-path intercept point (GPIP) of the runway coordinate system shown in figure 1. For a specific operation in this study the wind profile was determined from unpublished tables of the data used in reference 2 and from calculations of the altitude and range from

$$z = z + (V \sin \gamma) \Delta t$$

and

$$x = x_0 + (V \cos \gamma) \Delta t$$

where the subscript o indicates initial value. The time interval Δt was selected so that the altitude increment between data points ranged from 26 ft for the slowest descent rate to 83 ft for the fastest ascent rate. Typical aircraft velocity values V of 130 and 140 knots, respectively, were assumed during descent and ascent. Also, nominal glide-path and climbout angles of $\gamma = 3^{\circ}$ and 6°, respectively, were assumed, and additional operations were obtained by varying these parameters and the GPIP as indicated in table III.

Wind profiles 1 to 6, 9, and 16 (see table I) were described as a function of altitude only. For this reason, the nominal glide-path angle was used for these simulations to produce the first eight operations listed in table III. Wind profiles 7, 8, and 10 to 15, however, were derived as functions of altitude and range, so that unique profiles could be generated by varying either the glide-path angle or GPIP. Using this method, 392 operations were generated. Similarly, 245 operations were generated for the takeoff wind fields (profiles 17 to 21 in table I). Total or resultant wind speed was calculated as the root sum square of the three wind components, whereas in reference 6 it was calculated as the root sum square of the two horizontal components. A separate study, however, showed that the statistical comparisons were unaffected by including the vertical wind component. Wind shear for both data sets was calculated as the change in total wind velocity with altitude.

Wind-shear values were calculated for each profile and sorted in altitude bands of 100 ft for altitudes between 100 and 1400 ft. For example, all shear values occurring between 100 \pm 50 ft comprised the 100-ft altitude band. In addition, in each altitude band, wind-shear values were grouped in constant class intervals of 0.025 knot/ft between \pm 0.600 knot/ft. These groupings are shown in table IV.

The number of wind-shear values within each wind-shear interval were summed for all altitude bands. These results are listed in table V. For the 14 altitude bands and 48 wind-shear intervals there were 21 216 wind-shear values calculated. These values were used to calculate frequency distributions, means, and standard deviations for comparison with the results of reference 6.

The method of moments for grouped data was used to calculate the means and standard deviations for the two data sets. For example, the rth moment is (see ref. 8)

$$\overline{w}^{r} = \frac{f_{1}w_{1}^{r} + f_{2}w_{2}^{r} + \dots + f_{k}w_{k}^{r}}{N} = \frac{1}{N}\sum_{j=1}^{k}f_{j}w_{j}^{r}$$

where $N = \sum_{j=1}^{k} f_{j}$. The first moment (r = 1) is the arithmetic mean \overline{w} . The rth moment about the mean is

$$m_{r} = \frac{\sum_{j=1}^{K} f_{j} (W_{j} - \overline{W})^{r}}{N} = (W - \overline{W})^{r}$$

When r = 1, $m_r = 0$; and when r = 2, $m_2 = \sigma^2$, the variance, and $\sqrt{\sigma^2}$ is the standard deviation. For the simulated data set listed in table IV, the variable W_j represents the wind-shear value at the interval midpoint, f_j is the number of occurrences in the interval, k = 48, the number of wind-shear intervals, and $N = 21\ 216$, the total sample size. For the simulated data set (table V), the mean and standard deviation of the frequency distribution were 0.0004 and 0.052, and for the measured data set, they were 0.0029 and 0.033.

RESULTS AND DISCUSSION

The number of occurrences in each wind-shear interval listed in table IV are plotted as histograms in figure 2 and compared with similar data from reference 6. Each histogram represents 1 of the 14 altitude bands, and the number of data points (wind-shear values calculated) in each altitude band are given on figure 2 for both data sets. Also, the number of data points in the wind-shear class interval with the maximum number of occurrences is listed for both data sets and each distribution. No wind-shear values existed outside ± 0.200 knot/ft for the measured data set.

The distributions for the 100- and 300-ft altitude bands for the simulated data show the maximum number of occurrences in the interval from ± 0.025 to ± 0.050 knot/ft. For all other altitude bands, the maximum number of occurrences was within ± 0.025 knot/ft. Maximum number of occurrences for the measured data set occurred within ± 0.025 knot/ft for all altitude bands. This implies that an aircraft encountering the simulated wind fields in the 100- and 300-ft altitude bands would experience larger shears, creating an apparently more hazardous environment. For wind-shear bands outside ± 0.050 knot/ft, the simulated data were more broadly distributed than the measured data for altitudes from 100 to 800 ft. Above the 800-ft band this trend reversed and the wind-shear values for the measured data were more broadly distributed for all wind-shear increments; however, the number of occurrences in most wind-shear intervals had decreased to below 5 percent of the maximum.

Figure 3 shows the variation of the mean and standard deviation of wind shear with altitude for both data sets. The variation of standard deviation with altitude shows that the simulated data set had greater dispersions about the mean between 100 and 800 ft than the measured data set, but less above 900 ft. Standard deviations for the measured data set were practically constant up to an altitude of 1100 ft and decreased above 1100 ft, whereas those for the simulated data set decreased continuously with altitude. These results show that the reference 2 wind fields would provide a more hazardous environment due to wind shear below 800 ft than the measured data set. This would be expected, however, because some of the wind profiles of reference 2 were designed to represent severe wind-shear encounters which pilots would normally avoid (see table I).

Table VI summarizes the total sample statistics calculated for both data sets. Values for the relative frequency distributions are listed in table VI(a) and for cumulative frequency distributions in table VI(b). Number of occurrences in each wind-shear interval for the simulated data set is from table V. Simulated values of frequency of occurrence are compared with the measured values in figure 4, in which the number of occurrences in a given wind-shear interval has been divided by sample size (21 216 for the simulated data set and 6277 for the measured data set). Since the statistical properties of the distributions for each altitude band did not vary greatly with altitude for the measured data set (see ref. 6 and fig. 3), the total sample distribution in figure 4 also represents the frequency of occurrence of a given shear in each altitude band. This is not true for the simulated data set, however, because the statistical properties did vary significantly with altitude, as shown in figure 3. Total sample frequency of occurrence for the two data sets was about the same for wind-shear values between ± 0.075 knot/ft, but the simulated data set had significantly larger values for all wind-shear values outside these boundaries. Calculations of normal distribution fits of both data sets showed that neither the measured nor the simulated data set was normally distributed.

Cumulative frequencies of occurrence from table VI(b) for both data sets are shown in figure 5. Similar to figure 4, this comparison shows a broader distribution for the simulated data set and generally greater probabilities for given shear values for the simulated data set. Both distributions appear to be nearly symmetrical about zero.

As mentioned previously, the measured data set did not contain wind-shear values outside $\pm 0.200 \text{ knot/ft}$. The simulated data set, however, had 168 points, or about 1 percent of the total number of points, outside these boundaries. Table VII lists the distribution of these 168 points in the altitude bands and wind-shear intervals. This distribution shows that these wind-shear values are concentrated in the lower altitude bands. For example, 47 points (28 percent) occurred in the 100-ft band, 15 points (9 percent) in the 500-ft band, and only 1 point (0.6 percent) in the 1000-ft band. Similarly, the simulated wind-shear values outside $\pm 0.200 \text{ knot/ft}$ occurred in the lower wind-shear intervals, 143 points (85 percent) being between $\pm 0.200 \text{ and } \pm 0.300 \text{ knot/ft}$.

CONCLUDING REMARKS

Wind-shear statistics derived from wind profiles generated from proposed standard wind fields have been compared with statistics derived from data measured onboard commercial aircraft. A large sample was used for each data set to calculate wind-shear values in 100-ft altitude bands from 100 to 1400 ft. Wind-shear values were grouped in increments of 0.025 knot/ft, and frequency distributions, means, and standard deviations were compared in each 100-ft altitude band. Similarly, windshear values were grouped for all altitude bands, and relative and cumulative frequency distributions were compared for the total sample.

Frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Distributions for both data sets, however, were practically symmetrical for all altitudes. Total sample frequency of occurrence for the two data sets was about the same for wind-shear values between ± 0.075 knot/ft, but the simulated data set had significantly larger values for all wind-shear values outside these boundaries. Normal distribution fits of both data sets showed that neither data set was normally distributed. Similar results were observed from the cumulative frequency distributions. It should be noted that the statistical properties as presented in this paper for both data sets may be biased by such factors as sample size, data sampling rate, methods used for calculating wind shear, and the data base from which the distributions were derived.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 September 12, 1983

REFERENCES

- Fujita, T. Theodore; and Caracena, Fernando: An Analysis of Three Weather-Related Aircraft Accidents. Bull. American Meteorol. Soc., vol. 58, no. 11, Nov. 1977, pp. 1164-1181.
- 2. Ellis, D. W.; and Keenan, M. G.: Development of Wind Shear Models and Determination of Wind Shear Hazards. Rep. No. FAA-RD-79-119, Jan. 1978. (Available from DTIC as AD A080 588.)
- 3. Frost, Walter; Camp, Dennis W.; and Wang, S. T.: Wind Shear Modeling for Aircraft Hazard Definition. Rep. No. FAA-RD-78-3, Feb. 1978. (Available from DTIC as AD A053 178; available as NASA TM-79523.)
- 4. Foy, W. H.: Airborne Aids for Coping With Low-Level Wind Shear. FAA-RD-79-117, July 1979. (Available from DTIC as AD A080 589.)
- 5. Dieudonne, James E.: Comments on a Proposed Standard Wind Hazard Environment and Its Use in Real-Time Aircraft Simulations. AIAA Paper 79-0324, Jan. 1979.
- Dunham, R. Earl, Jr.: Low-Altitude Wind Measurements From Wide-Body Jet Transports. NASA TM-84538, 1982.
- 7. Goff, R. Craig: Analysis of Wind Vector Components in the Lower Troposphere: Applications to Aircraft Operations at Terminals. AIAA-81-0387, Jan. 1981.
- Speigel, Murray R.: Schaum's Outline of Theory and Problems of Statistics. McGraw-Hill Book Co., c.1961.

Profile wind profile severityBource of wind dataMeteorological wind typeFAA derived wind profile no.B-727 piloted simulator tests, wind profile no.DC-10 simulator tests wind profile no.1LowMeteorological math model Meteorological math modelNeutral StableN2AB1D12Meteorological math model Meteorological math modelStable StableSTA StableB2D13Meteorological math model Meteorological math modelStable StableSCA SCAB3D15ModerateLogan accident reconstruction Tower measurementsWarm front ThunderstormF1A TOA TOAB5 B6D56Tower measurements Tower measurementsThunderstorm ThunderstormT2A TOA TOAB6D210HighTower measurements ThunderstormCold front ThunderstormF3A TOBB9D911Tower measurements reconstruction Nennedy accident reconstruction Nennedy accident reconstruction Nennedy accident reconstruction Nennedy accident reconstruction Nennedy accident reconstruction Nennedy accident reconstruction ThunderstormT0D T2SAB1113Kennedy accident reconstruction Piladelphia accident reconstructionThunderstorm T0AT2SA D10D114HighKennedy accident reconstruction Piladelphia accident reconstructionThunderstorm T0AT0D T3AD1114Kennedy accident reconstruction Piladelphia accident reconstructionThunderstorm<							
Approach1LowMeteorological math model Meteorological math model Tower measurementsNeutral StableN2A StableB1 B1D13Meteorological math model Tower measurementsStable StableStable S6AB4D15ModerateLogan accident reconstruction Same as 5, rotated 40° Tower measurementsWarm front Warm front ThunderstormP1A P5AB5 P6D57Tower measurements Tower measurementsThunderstorm ThunderstormTGA P7AB7 P7D7 P7A P7A9HighTower measurements Tower measurementsCold front ThunderstormP3A P3AB9 P9D911P1A P5AB10P1A P3A P3AB9 P3AD210HighTower measurements P4A P4ACold front P3A P3AP3A P3AB9 P3A12Kennedy accident reconstruction Kennedy accident reconstruction P4A P4AP3AB11 P3AP413Kennedy accident reconstruction Math modelThunderstorm P4AP3AP316Kennedy accident reconstruction P4A P4AP4P3AP317HighKennedy accident reconstruction P4AP4AP3AP318P4P4P3AP3P419P4P4P3AP3AP3A19P4P4P3AP3AP3A19P4P4P3AP3AP3A19P4<	Profile no.	Relative wind profile severity	Source of wind data	Meteorological wind type	FAA derived wind profile no.	B-727 piloted simulator tests, wind profile no.	DC-10 simulator tests, wind profile no.
1LowMeteorological math model Meteorological math model Meteorological math model StableNeutral StableN2AB1D123Meteorological math model Meteorological math model Tower measurementsStableS1AB23ModerateLogan accident reconstruction Same as 5, rotated 40° Tower measurementsWarm front ThunderstormF1AB5D56ModerateLogan accident reconstruction Tower measurementsWarm front ThunderstormF2AB6D77Tower measurements Tokyo accident reconstructionWarm front Warm frontF2AB6D210HighTower measurements Philadelphia accident Rennedy accident reconstructionCold front ThunderstormF3AB9D911Meteory accident reconstruction Rennedy accident reconstruction Rennedy accident reconstruction Rennedy accident reconstruction Hiladelphia accident reconstructionThunderstorm TOC ThunderstormD0B1113Kennedy accident reconstruction Rennedy accident reconstruction Rennedy accident reconstruction Rennedy accident reconstruction Rennedy accident reconstruction ThunderstormT0D TOC TOC 				Approach			
2Image Networldgical math model Meteorological math model Tower measurementsStable StableS1A StableB234Tower measurementsStableStableS2AB344Logan accident reconstruction Same as 5, rotated 40° Tower measurementsWarm front ThunderstormF1A F2AB67Fower measurements Tower measurements Tower measurementsThunderstorm T6AT6A B7B79Fower measurements Tower measurementsCold front ThunderstormF3A T24AB9 D210High Philadelphia accident reconstructionCold front ThunderstormF3A T0AB9 D211Filadelphia accident reconstructionThunderstorm T0AT0A B11B11 D613Kennedy accident reconstruction reconstructionThunderstorm T0CT0A D10B12 D614Kennedy accident reconstruction reconstructionThunderstorm T25AT0D D1016Math modelThunderstorm T25AT0D D1117High Philadelphia accident reconstructionThunderstorm T23AT0D D1119Philadelphia accident reconstructionThunderstorm T24BD13 D1320Philadelphia accident reconstructionThunderstorm T25BD1421Prover measurements Philadelphia accident reconstructionThunderstorm T25BD14	1	Low	Meteorological math model	Neutral	N2A	B1	D1
1InterformationDefensionDefension3Meteorological math model Tower measurementsStableStableStable5ModerateLogan accident reconstruction Same as 5, rotated 40° Tower measurementsWarm front ThunderstormF1AB5D56Same as 5, rotated 40° Tower measurementsThunderstorm ThunderstormF2AB6D77Tower measurements Tokyo accident reconstructionThunderstorm ThunderstormT6AB7D78Tower measurements Tokyo accident reconstructionCold front ThunderstormF3AB9D910HighTower measurements reconstruction Kennedy accident reconstruction Kennedy accident reconstructionThunderstorm T0AB11 B1112Kennedy accident reconstruction reconstruction Math modelThunderstorm T0CT0AB11 D1014Kennedy accident reconstruction reconstruction Math modelThunderstorm T10BD12D616Math modelThunderstorm T25AD1D1118Kennedy accident reconstruction reconstruction Philadelphia accident reconstructionThunderstorm T23AD1219Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T25BD1420Philadelphia accident reconstructionThunderstorm T25BD1421Tower measurementsCold front T02F3BD15	2		Meteorological math model	Stable	S1A	B2	
4House measurementsStableStableStableStable5ModerateLogan accident reconstruction Same as 5, rotated 40°Warm frontF1AB5D56Tower measurementsThunderstormT9AB6D77Tower measurementsThunderstormT9AB8D89Noter measurementsCold frontF3AB9D210HighTower measurementsCold frontF3AB9D911Philadelphia accidentThunderstormT24AB10D112Kennedy accident reconstruction Kennedy accident reconstruction Math modelThunderstormT0AB1113Kennedy accident reconstruction reconstruction Math modelThunderstormT0AB12D616Math modelThunderstormT0CD10D1017HighKennedy accident reconstruction reconstruction Philadelphia accident reconstructionThunderstormT0D T25AD1119Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstormT23AD1220Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstormT23AD1320Philadelphia accident reconstructionThunderstormT25BD1421Philadelphia accident reconstructionThunderstormT25BD14	3		Meteorological math model	Stable	52A	B3	
5ModerateLogan accident reconstruction Same as 5, rotated 40° Tower measurements Tower measurements Tokyo accident reconstructionWarm front Warm frontF1A F2A F2A F3A F5AB5 B6 B7 D7	4		Tower measurements	Stable	S6A	B4	
5ModerateLogan accident reconstruction Same as 5, rotated 40°Warm front Warm frontF1AB5D56Same as 5, rotated 40°Warm frontF2AB6D77Tower measurements Tower measurements Toky accident reconstructionThunderstorm Warm frontT8AB7D78Tower measurements Thus accident reconstructionThunderstorm Warm frontT9AB8D89HighTower measurements Philadelphia accident reconstructionCold front ThunderstormF3AB9D911Kennedy accident reconstruction Kennedy accident reconstruction ThunderstormT0AB11D612Kennedy accident reconstruction reconstruction Math modelThunderstorm ThunderstormT0BB12D616Math modelThunderstorm ThunderstormT0BB12D417HighKennedy accident reconstruction reconstruction Math modelThunderstorm ThunderstormT0DD1118Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T23AD12D1220Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T24BD13D1421Tower measurements reconstructionCold front T23BF3BD14	-						
6 7 7 8Same as 5, rotated 40° Tower measurementsWarm front ThunderstormF2A TRA B7B6 B7 B7 B8D7 D7 D7 D8 D210 11HighTower measurements Tokyo accident reconstructionThunderstorm Warm frontT8A T9A F5AB7 B8 D2D7 D7 D7 D7 D210 11HighTower measurements Philadelphia accident reconstructionCold front Thunderstorm T0AF3A B9 B10D912 12 13 14 14 15Kennedy accident reconstruction Kennedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0A ThunderstormT0A B11 B11 D6 D1014 15Kennedy accident reconstruction reconstruction Philadelphia accident reconstructionThunderstorm T0C ThunderstormT0D T0C D10 D1016Kennedy accident reconstruction reconstruction Philadelphia accident reconstructionThunderstorm T0D ThunderstormT0D T0D T1D17 18High Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T23AT0D T11 D11 D1220 20 21Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T24BD13 D1321Philadelphia accident reconstructionThunderstorm PAT25BD14 PA21Philadelphia accident reconstructionThunderstorm T25BP15	5	Moderate	Logan accident reconstruction	Warm front	F1A	в5	D5
7 8 9Tower measurements Towyo accident reconstructionThunderstorm ThunderstormT8A T9A F5AB7 B8D7 D7 D8 D210HighTower measurements There measurements Philadelphia accident reconstructionCold front ThunderstormF3A T24AB9 B10D911Tower measurements reconstructionCold front ThunderstormF3A T24AB9 B10D912Kennedy accident reconstruction Kennedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0A ThunderstormT0A B11 ThunderstormB1013Kennedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0C ThunderstormD6 D1016Kennedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0D ThunderstormT0D T0D D1117HighKennedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0D ThunderstormT0D T0D T23AD11 D1119Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T24BD1320Philadelphia accident reconstructionThunderstorm T25BD1421Thurderstorm Philadelphia accident reconstructionThunderstorm T25BD14	6		Same as 5, rotated 40°	Warm front	F2A	в6	
8 9Tower measurements Tokyo accident reconstructionThunderstorm Warm frontT9A F5AB8D8 D210HighTower measurements Philadelphia accident reconstructionCold front ThunderstormF3A T24AB9 B10D911Nenedy accident reconstruction Kennedy accident reconstruction Kennedy accident reconstruction ThunderstormToA T0AB11 B12D6 D1013 14 15Kennedy accident reconstruction Renedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0AT0A B12D6 D416Math modelThunderstorm ThunderstormT25AD417 19HighKennedy accident reconstruction Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T0D ThunderstormT0D T0DD11 D1119 20 20Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T23AT23AD12 D1220 21Philadelphia accident reconstructionThunderstorm T25BD14 D1321Philadelphia accident reconstructionThunderstorm T25BD14 D14	7		Tower measurements	Thunderstorm	T8A	в7	7ס
9Tokyo accident reconstructionWarm frontF5AD210HighTower measurements Philadelphia accident reconstructionCold front ThunderstormF3A T24AB9 B10D912Mannedy accident reconstruction Kennedy accident reconstruction Kennedy accident reconstruction Mannedy accident reconstruction ThunderstormT0A T0B ThunderstormB11 T0BD612Mannedy accident reconstruction ThunderstormT0A T0BB11 B12D614Kennedy accident reconstruction ThunderstormT0C ThunderstormD1015Philadelphia accident reconstruction Math modelThunderstorm T1T0D T1D316Math modelThunderstorm T1T0D T1D11 D1117HighKennedy accident reconstruction reconstruction Philadelphia accident reconstructionThunderstorm T1 ThunderstormT0D T23AD11 D1119Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T24BD1320Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T25BD1421Tower measurementsCold frontF3BD15	8		Tower measurements	Thunderstorm	T9A	B8	D8
10HighTower measurements Philadelphia accident reconstructionCold front ThunderstormF3A T24AB9 B10D91111Kennedy accident reconstruction Kennedy accident reconstruction Kennedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0AT0A B11 ThunderstormB1012Kennedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0BT0A B12B11 D614Kennedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0CT0D D10D1016Math modelThunderstorm ThunderstormT0D T1 T1 D3D317HighKennedy accident reconstruction Philadelphia accident reconstructionThunderstorm T0D ThunderstormT0D T0D T123AD11 D319Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T24BT23AD1320Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T25BD1421Thunderstorm Philadelphia accident reconstructionThunderstorm PAT24BD1320Philadelphia accident reconstructionThunderstorm Philadelphia accident reconstructionT00 PAD1421Thunderstorm PAT25BD14	9		Tokyo accident reconstruction	Warm front	F5A		D2
10HighTower measurementsCold frontF3AB9D911Philadelphia accidentThunderstormT24AB1012Kennedy accident reconstructionThunderstormT0AB1113Kennedy accident reconstructionThunderstormT0BB12D614Kennedy accident reconstructionThunderstormT0CD1015Philadelphia accidentThunderstormT0CD1016Math modelThunderstormM1AD3Takeoff17HighKennedy accident reconstruction18Philadelphia accidentThunderstormT23AD1119Philadelphia accidentThunderstormT24BD1320Philadelphia accidentThunderstormT25BD1421Twee measurementsCold frontF3BD15			_				
11Philadelphia accident reconstructionThunderstormT24AB1012Kennedy accident reconstruction Kennedy accident reconstructionThunderstormT0AB1113Kennedy accident reconstruction ThunderstormT0BB12D614Kennedy accident reconstruction Philadelphia accident reconstructionThunderstormT0CD1015Philadelphia accident reconstructionThunderstormT25AD416Math modelThunderstormM1AD3Takeoff17High Philadelphia accident reconstructionThunderstormT0D T1D11 D1219Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstormT24BD1320Philadelphia accident reconstructionThunderstormT24BD1320Philadelphia accident reconstructionThunderstormT25BD1421Torger measurementsCold frontF3BD15	10	High	Tower measurements	Cold front	F3A	в9	D9
12 13 13 14Kennedy accident reconstruction Kennedy accident reconstruction Philadelphia accident reconstructionThunderstorm ThunderstormTOA TOBB11 B12D6 D1015Philadelphia accident reconstructionThunderstorm ThunderstormTOC ThunderstormD10 D1016Math modelThunderstorm ThunderstormTOD ThunderstormD3Takeoff17High Philadelphia accident reconstructionThunderstorm ThunderstormTOD ThunderstormD11 D2 D1219Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T23AD12 D1320Philadelphia accident reconstructionThunderstorm T25BD14 D1421Tower measurementsCold frontF3BD15	11		Philadelphia accident reconstruction	Thunderstorm	T2 4A	B10	
13 14 14 15Kennedy accident reconstruction 	12		Kennedy accident reconstruction	Thunderstorm	TOA	B11	
14 15Kennedy accident reconstruction Philadelphia accident reconstruction Math modelThunderstorm TunderstormTOC T25AD10 D416Math modelThunderstormT0C T25AD3Takeoff17High Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T0D ThunderstormT0D T0DD11 D318Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T23AT0D D1219Philadelphia accident reconstruction Philadelphia accident reconstructionThunderstorm T24BD13 D1320Philadelphia accident reconstructionThunderstorm T25BD14 P3B21Tower measurements T0DCold frontF3BD15	13		Kennedy accident reconstruction	Thunderstorm	TOB	B12	D6
15Philadelphia accident reconstruction Math modelThunderstormT25AD416Math modelThunderstormM1AD3Takeoff17HighKennedy accident reconstruction Philadelphia accident reconstructionThunderstormT0DD1118Philadelphia accident reconstructionThunderstormT23AD1219Philadelphia accident reconstructionThunderstormT24BD1320Philadelphia accident reconstructionThunderstormT25BD1421Tower measurementsCold frontF3BD15	14		Kennedy accident reconstruction	Thunderstorm	TOC		D10
16reconstruction Math modelThunderstormM1AD3Takeoff17HighKennedy accident reconstruction Philadelphia accident reconstructionThunderstorm ThunderstormT0D T23AD11 D1219Philadelphia accident reconstructionThunderstorm T24BD13 D1320Philadelphia accident reconstructionThunderstorm T25BD1421Tower measurementsCold frontF3BD15	15		Philadelphia accident	Thunderstorm	T25A		D4
16Math modelThunderstormM1AD3Takeoff17HighKennedy accident reconstruction Philadelphia accident reconstructionThunderstormT0D T23AD11 D1219Philadelphia accident reconstructionThunderstormT24BD1320Philadelphia accident reconstructionThunderstormT25BD1421Tower measurementsCold frontF3BD15			reconstruction				
Takeoff17HighKennedy accident reconstructionThunderstormTODD1118Philadelphia accidentThunderstormT23AD1219Philadelphia accidentThunderstormT24BD1320Philadelphia accidentThunderstormT25BD1420Philadelphia accidentThunderstormT25BD1421Tower measurementsCold frontF3BD15	16		Math model	Thunderstorm	M1A		D3
17HighKennedy accident reconstructionThunderstormT0DD1118Philadelphia accidentThunderstormT23AD1219Philadelphia accidentThunderstormT24BD1320Philadelphia accidentThunderstormT25BD1420Philadelphia accidentThunderstormT25BD1421Tower measurementsCold frontF3BD15	Takeoff						
1/ High Kennedy accident reconstruction Thunderstorm TUD D11 18 Philadelphia accident Thunderstorm T23A D12 19 Philadelphia accident Thunderstorm T24B D13 20 Philadelphia accident Thunderstorm T25B D14 21 Tower measurements Cold front F3B D15	4.7	,					
18 Philadelphia accident Thunderstorm T23A D12 19 Philadelphia accident Thunderstorm T24B D13 20 Philadelphia accident Thunderstorm T25B D14 21 Tower measurements Cold front F3B D15	17	High	Kennedy accident reconstruction	Thunderstorm	TUD		D11
19 Philadelphia accident Thunderstorm T24B D13 20 Philadelphia accident Thunderstorm T25B D14 21 Tower measurements Cold front F3B D15	18	1	Philadelphia accident	Thunderstorm	T2 3A		D12
19 Philadelphia accident Thunderstorm T24B D13 20 Philadelphia accident Thunderstorm T25B D14 reconstruction Tower measurements Cold front F3B D15	10		reconstruction	mhun Janahaun	MO 4 D		543
20 Philadelphia accident Thunderstorm T25B D14 reconstruction Cold front F3B D15	19		Philadelphia accident	munderstorm	TZ4B		נוע 13
20 Philadelphia accident Inunderstorm 1255 D14 reconstruction Cold front F3B D15	20		reconstruction	Thunderstorm	M 2 E D		D14
21 Tower measurements Cold front F3B D15	20		reconstruction	munderscorm	1208		U14
	21		Tower measurements	Cold front	F3B		D15

TABLE I.- SUMMARY OF WIND PROFILES SUGGESTED FOR USE IN PILOTED SIMULATIONS (REF. 2)

TABLE II.- AIRPORTS AND NUMBER OF WIND PROFILES MEASURED AT EACH AIRPORT

Airport	Number of profiles	Percent of total
Atlantic City, New Jersey	160	25.0
New York, New York	122	19.0
London, England	109	17.0
Madrid, Spain	48	7.5
Paris, France	45	7.0
Boston, Massachusetts	35	5.5
Rome, Italy	28	4.3
Chicago, Illinois	26	4.0
Los Angeles, California	17	2.6
Barcelona, Spain	13	2.0
Philadelphia, Pennsylvania	13	2.0
Milano, Italy	12	1.9
Algiers	11	1.7
Monaco	2	<1.0

[From ref. 6]

TABLE III.- OPERATIONS DERIVED FROM SIMULATED FLIGHTS THROUGH THE WIND PROFILES OF REFERENCE 2

Operations	Profile numbers	Flight-path angle, γ, deg	Glide-path intercept point, x _o , ft	Inertial velocity, V _O , knots
1 to 8 (approach)	1 to 6, 9, 16	3	0	130
9 to 400 (approach)	7, 8, 10 to 15	3, 3 ± 0.25 , 3 ± 0.50 , 3 ± 0.75	0, ±3937, ±7874, ±11800	130
401 to 645 (takeoff)	17 to 21	6, 6 ± 0.25, 6 ± 0.50, 6 ± 0.75	0, ±3937, ±7874, ±11800	140

.

TABLE IV.- SIMULATED WIND-SHEAR VALUES GROUPED IN 100-FT ALTITUDE BANDS AND WIND-SHEAR INTERVALS OF 0.025 KNOT/FT

Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
interval,	of	of
knot/ft	occurrences	maximum
-0.600 to -0.275	0	0
275 to250	1	.32
250 to225	4	1.28
225 to200	5	1.60
200 to175	11	3.51
175 to150	10	3.19
150 to125	10	3.19
125 to100	24	7.67
100 to075	27	8.63
075 to050	41	13.10
050 to025	69	22.04
025 to .000	234	74.76
.000 to .025	268	85.62
.025 to .050	a313	100.00
.050 to .075	47	15.02
.075 to .100	74	23.64
.100 to .125	61	19.49
.125 to .150	50	15.97
.150 to .175	34	10.86
.175 to .200	20	6.39
.200 to .225	12	3.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 4 5 1 2 0 3 2 1 3 1 0 2 0 0 0 1	3.83 1.28 1.60 .32 .64 0 .96 .64 .32 .96 .32 0 .64 0 0 .64 0 0 .32
Total	1340	

(a) 100-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 to -0.575	0	0
575 to550	1	•19
550 to350	0	0
350 to325	1	•19
325 to300	2	•37
300 to275	1	•19
275 to250	2	•37
250 to225	3	•56
225 to200	7	1.31
200 to175	16	2.99
175 to150	17	3.17
150 to125	6	1.12
125 to100	21	3.92
100 to075	47	8.77
075 to050	91	16.98
050 to025	118	22.01
025 to .000	254	47.39
.000 to .025	^a 536	100.00
.025 to .050	138	25.75
.050 to .075	75	13.99
.075 to .100	54	10.07
.100 to .125	34	6.34
•125 to •150	14	2.61
•150 to •175	19	3.54
.175 to .200	19	3.54
.200 to .225	8	1.49
•225 to •250	3	•56
•250 to •275	1	•19
•275 to •300	2	•37
.300 to .325	1	•19
-325 to -350	3	•56
•350 to •600	0	0
Total	1494	

(b) 200-ft altitude band

.....

Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
$\begin{array}{c} -0.600 \text{ to } -0.325 \\325 \text{ to }300 \\300 \text{ to }275 \\275 \text{ to }250 \\250 \text{ to }225 \\225 \text{ to }200 \\200 \text{ to }175 \\175 \text{ to }150 \\150 \text{ to }125 \\125 \text{ to }100 \\100 \text{ to }075 \\075 \text{ to }050 \\050 \text{ to }025 \\025 \text{ to } .000 \\ .000 \text{ to } .025 \\ .025 \text{ to } .050 \\ .050 \text{ to } .075 \\ .075 \text{ to } .100 \\ .100 \text{ to } .125 \\ .125 \text{ to } .150 \\ .150 \text{ to } .175 \\ .175 \text{ to } .200 \\ .200 \text{ to } .225 \\ \end{array}$	0 0 1 1 0 2 5 17 28 32 22 35 75 144 253 381 a413 54 45 29 30 30 18 7	0 .24 .24 0 .48 1.21 4.12 6.78 7.75 5.33 8.47 18.16 34.87 61.26 92.25 100.00 13.08 10.90 7.02 7.26 7.26 4.36 1.69
.225 to .250	3	.73
.250 to .275	1	.24
.275 to .300	1	.24
.300 to .600	0	0
Total	1627	

(c) 300-ft altitude band

Wind-shear interval,	Number of	Percent of
KIIOC/1C	occurrences	
-0.600 to -0.275	0	0
275 to250	1	•23
250 to225	0	0
225 to200	12	2.72
200 to175	9	2.04
175 to150	22	4.99
150 to125	26	5.90
125 to100	19	4.31
100 to075	25	5.67
075 to050	49	11.11
050 to025	83	18.82
025 to .000	265	60.09
.000 to .025	^a 441	100.00
.025 to .050	311	70.52
.050 to .075	85	19.27
.075 to .100	50	11.34
.100 to .125	43	9.75
•125 to •150	42	9.52
.150 to .175	17	3.85
.175 to .200	7	1.59
.200 to .225	3	•68
.225 to .250	4	•91
•250 to •275	1	•23
.275 to .600	0	0
Total	1515	

(d) 400-ft altitude band

(c) Soo IC altitude balla

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 to -0.225	0	0
225 to200	4	1.04
200 to175	6	1.56
175 to150	19	4.94
150 to125	21	5.45
125 to100	30	7.79
100 to075	47	12.21
075 to050	190	49.35
050 to025	166	43.12
025 to .000	260	67.53
.000 to .025	^a 385	100.00
.025 to .050	90	23.38
.050 to .075	58	15.06
.075 to .100	65	16.88
.100 to .125	47	12.21
.125 to .150	16	4.16
.150 to .175	8	2.08
.175 to .200	7	1.82
.200 to .225	5	1.30
.225 to .250	3	•78
•250 to •275	2	•52
.275 to .300	0	0
.300 to .325	1	•26
.325 to .600	0	0
Total	1430	

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 to -0.275	0	0
275 to250	1	.22
250 to225	0	0
225 to200	1	•22
200 to175	2	.44
175 to150	16	3.52
150 to125	30	6.59
125 to100	56	12.31
100 to075	96	21.10
075 to050	110	24.18
050 to025	141	30.99
025 to .000	408	89.67
.000 to .025	^a 455	100.00
.025 to .050	93	20.44
.050 to .075	72	15.82
.075 to .100	60	13.19
.100 to .125	25	5.49
.125 to .150	12	2.64
•150 to •175	17	3.74
.175 to .200	4	•88
.200 to .225	7	1.54
.225 to .600	0	0
Total	1606	

(f) 600-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 ± 0.075	0	0
$-0.600 \ co -0.275$	0	10
275 to 250	2	-48
$230 \ to223$	2	•40
	יב ב	•72
200 to $1/5$	5	1.19
1/5 to150	11	2.03
150 to125	13	3.10
125 to100	37	8.83
100 to075	127	30.31
075 to050	130	31.03
050 to025	374	89.26
025 to .000	236	56.32
.000 to .025	^a 419	100.00
.025 to .050	66	15.75
.050 to .075	48	11.46
.075 to .100	46	10.98
.100 to .125	10	2.39
.125 to .150	7	1.67
.150 to .175	7	1.67
.175 to .200	3	•72
•200 to •225	3	•72
•225 to •250	1	•24
.250 to .600	0	0
Total	1550	

(g) 700-ft altitude band

Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
$\begin{array}{c} -0.600 \text{ to } -0.225 \\225 \text{ to }200 \\200 \text{ to }175 \\175 \text{ to }150 \\150 \text{ to }125 \\125 \text{ to }100 \\100 \text{ to }075 \\075 \text{ to }050 \\050 \text{ to }025 \\025 \text{ to } .000 \\ .000 \text{ to } .025 \\ .025 \text{ to } .050 \\ .050 \text{ to } .075 \\ .075 \text{ to } .100 \\ .100 \text{ to } .125 \\ .125 \text{ to } .150 \\ .150 \text{ to } .175 \\ .175 \text{ to } .200 \\ .200 \text{ to } .225 \\ .225 \text{ to } .250 \end{array}$	$\begin{array}{c} 0\\ 2\\ 3\\ 7\\ 6\\ 17\\ 41\\ 119\\ 270\\ 386\\ a416\\ 59\\ 50\\ 10\\ 5\\ 4\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\end{array}$	0 .48 .72 1.68 1.44 4.09 9.86 28.61 64.90 92.79 100.00 14.18 12.02 2.40 1.20 .96 .96 .24 .24 .24
•250 to •275	1	•24
•275 to •600	0	0
Total	1403	

(h) 800-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 2 2 7 22 30 67 601 ^a 773 53 14 3 7 3 2 1 1 1	0 .13 0 .26 .26 .91 2.85 3.88 8.67 77.75 100.00 6.86 1.81 .39 .91 .39 .91 .39 .39 .26 .13 .13
.250 to .600 Total	1592	0

(i) 900-ft altitude band

			·····	
Wind-shear		Number	Percent	
interval,		of	of	
knot/ft		occurrences	maximum	
-0.600 to -0	•200	0	0	
200 to -	• 175	2	•28	
175 to -	.150	0	0	
150 to -	• 125	0	0	
125 to -	.100	2	•28	
100 to -	.075	18	2.50	
075 to -	•050	22	3.06	
050 to -	•025	77	10.71	
025 to	.000	^a 719	100.00	
.000 to	.025	684	95 . 13	
.025 to	.050	45	6.26	
.050 to	.075	4	•56	
.075 to	.100	4	•56	
.100 to	. 125	0	0	
.125 to	. 150	3	•42	
.150 to	.17 5	3	.42	
.175 to	.200	1	.14	
.200 to	•225	1	.14	
.225 to	.600	0	0	
Total	••••	1585		

(j) 1000-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 1 9 23 58 ^a 682 613 29 3 0 1 1	0 .15 .15 1.32 3.37 8.50 100.00 89.88 4.25 .44 0 .15 .15 .15
•175 to •200 •200 to •600	2	•15 •29 0
Total	1424	

(k) 1100-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
$\begin{array}{c} -0.600 \text{ to } -0.125 \\125 \text{ to }100 \\100 \text{ to }075 \\075 \text{ to }050 \\050 \text{ to }025 \\025 \text{ to } .000 \\ .000 \text{ to } .025 \\ .025 \text{ to } .050 \\ .050 \text{ to } .075 \\ .075 \text{ to } .100 \\ .100 \text{ to } .125 \\ .125 \text{ to } .150 \\ .150 \text{ to } .175 \\ \end{array}$	0 1 5 30 49 ^a 761 751 34 4 2 2 0 2	$\begin{array}{c} 0 \\ .13 \\ .66 \\ 3.94 \\ 6.44 \\ 100.00 \\ 98.69 \\ 4.47 \\ .53 \\ .26 \\ .26 \\ 0 \\ .26 \end{array}$
Total	164 1	U

(1) 1200-ft altitude band

TABLE IV. - Concluded

Number	Percent
of	of
occurrences	maximum
0	0
1	•13
43	5.73
^a 751 26	100.00
3	•40
1	•13
0	0
1	•13
0	0
	Number of occurrences 0 1 1 3 43 676 ^a 751 26 3 1 0 1 0 1 0

(m) 1300-ft altitude band

^aNumber of occurrences of maximum.

Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
-0.600 to -0.100	0	0
100 to075	2	.24
075 to050	8	.97
050 to025	31	3.76
025 to .000	606	73.54
.000 to .025	^a 824	100.00
.025 to .050	19	2.31
.050 to .075	4	.49
.075 to .600	0	0
Total	1494	

Wind-shear	Number Percent	
interval,	of of	
knot/ft	occurrences maximum	
-0.600 to -0.575	0	0
575 to550	1	.005
550 to525	0	0
525 to500	0	0
500 to475	0	0
475 to450	0	0
450 to425	0	0
425 to400	0	0
400 to375	0	0
375 to350	0	0
350 to325	1	.005
325 to300	3	•014
300 to275	2	.009
275 to250	7	.033
250 to225	11	.052
225 to200	40	•189
200 to175	71	•335
175 to150	132	.622
150 to125	147	•693
125 to100	237	1.117
100 to075	502	2,366
075 to050	931	4.388
050 to025	1 690	7.966
025 to .000	6 341	29.882
.000 to .025	7 697	36.279
.025 to .050	1 689	7.961
.050 to .075	521	2.456
.075 to .100	414	1.951
.100 to .125	264	1.244
•125 to •150	183	.863
.150 to .175	145	•683
.175 to .200	84	.396
.200 to .225	48	.226
.225 to .250	20	.094
.250 to .275	11	.052
.275 to .300	4	.019
.300 to .325	4	.019
.325 to .350	3	.014
.350 to .375	3	.014
•375 to •400	2	.009
.400 to .425	1	.005
.425 to .450	3	.014
.450 to .475	1	•005
.475 to .500	0	0
.500 to .525	2	.009
.525 to .550	0	0
.550 to .575	0	0
.575 to .600	1	.005
Total	21 216	

TABLE V.- FREQUENCY DISTRIBUTION OF SIMULATED WIND-SHEAR DATA FOR ALL 14 ALTITUDE BANDS

TABLE VI.- SUMMARY OF THE TOTAL SAMPLE STATISTICS FOR BOTH DATA SETS

(a)	Frequency	distributions
-----	-----------	---------------

		Simulated data		Frequency of occurrence ^a	
Wind-shear interval, knot/ft	Interval midpoint, knot/ft	No. of occurrences, f	Σf	Simulated data	Measured data
$\begin{array}{r} -0.600 \text{ to } -0.575 \\575 \text{ to }550 \\550 \text{ to }525 \\525 \text{ to }500 \\500 \text{ to }475 \\475 \text{ to }450 \\450 \text{ to }425 \\425 \text{ to }400 \\400 \text{ to }375 \\375 \text{ to }350 \\350 \text{ to }325 \\325 \text{ to }300 \\300 \text{ to }275 \\275 \text{ to }250 \\250 \text{ to }225 \\225 \text{ to }200 \\175 \\175 \text{ to }150 \\125 \\125 \text{ to }100 \\100 \text{ to }075 \\ \end{array}$	$\begin{array}{c} -0.5875 \\5625 \\5375 \\5125 \\4875 \\4625 \\4375 \\4125 \\3875 \\3625 \\3375 \\3125 \\2875 \\2625 \\2375 \\2125 \\1875 \\1625 \\1375 \\1125 \\0875 \\ \end{array}$	f 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	2	0 .0000 0 0 0 0 0 0 0 0 0 0 0 0	0.00112 .00173 .00301 .00537
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0875 0625 0375 0125 .0125 .0375 .0625 .0875 .1125 .1375 .1625 .1875 .2125 .2375 .2625 .2875 .3125 .3755 .3625 .3875 .4125 .4375 .4625 .4875 .5125 .5375 .5625	931 1690 6341 7697 1689 521 414 264 183 145 84 48 20 11 4 4 3 3 2 1 3 1 0 2 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0237 .0439 .0797 .2989 .3628 .0796 .0246 .0195 .0124 .0086 .0068 .0040 .0023 .0009 .0005 .0002 .0001 .0001 .0001 .0001 .0001 .0001 0 .0001 0 .0001 0	.00968 .02830 .07138 .31484 .38370 .11188 .03741 .01391 .00554 .00206 .00190 .00190

^aFrequency of occurrence is obtained by dividing the number of occurrences in a given interval by total sample size.

TABLE VI.- Concluded

(b) cumulative frequency distribution	(b)	Cumulative	frequency	distributions
---------------------------------------	-----	------------	-----------	---------------

Wind-shear	Interval	Cumulat of occur	ive no. rrences	Cumulative frequency of occurrence ^a	
knot/ft	knot/ft	Negative wind shear	Positive wind shear	Simulated data	Measured data
$\begin{array}{c} -0.600 \ to \ -0.575 \\575 \ to \550 \\550 \ to \525 \\525 \ to \500 \\500 \ to \475 \\475 \ to \425 \\425 \ to \425 \\425 \ to \425 \\425 \ to \400 \\400 \ to \375 \\375 \ to \350 \\350 \ to \325 \\325 \ to \300 \\300 \ to \275 \\275 \ to \250 \\250 \ to \225 \\225 \ to \200 \\200 \ to \175 \\175 \ to \150 \\150 \ to \125 \\125 \ to \100 \\100 \ to \075 \\075 \ to \050 \\050 \ to \025 \\025 \ to \ .050 \\ .050 \ to \ .075 \\ .075 \ to \ .100 \\ .100 \ to \ .125 \\ .025 \ to \ .050 \\ .050 \ to \ .175 \\ .075 \ to \ .100 \\ .100 \ to \ .125 \\ .025 \ to \ .050 \\ .050 \ to \ .175 \\ .075 \ to \ .100 \\ .100 \ to \ .125 \\ .125 \ to \ .150 \\ .150 \ to \ .175 \\ .175 \ to \ .100 \\ .100 \ to \ .125 \\ .125 \ to \ .150 \\ .150 \ to \ .175 \\ .175 \ to \ .250 \\ .250 \ to \ .275 \\ .275 \ to \ .300 \\ .300 \ to \ .325 \\ .350 \ to \ .375 \\ .375 \ to \ .400 \\ .400 \ to \ .425 \\ .425 \ to \ .475 \\ .475 \ to \ .500 \\ .500 \ to \ .525 \\ .525 \ to \ .550 \end{array}$	$\begin{array}{c} -0.5875 \\5625 \\5375 \\5125 \\4875 \\4625 \\4375 \\4125 \\3875 \\3625 \\3375 \\3125 \\2625 \\2375 \\2625 \\2375 \\2125 \\1625 \\1375 \\1625 \\1375 \\1625 \\0375 \\0625 \\00$	0 1 1 1 1 1 1 1 1 1 1 2 5 7 14 25 65 136 268 415 652 136 268 415 652 1154 2085 3775 10116	11 100 3 403 1 714 1 193 779 515 332 187 103 55 35 24 20 16 13 10 8 7 4 3 1	0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0007 .0012 .0031 .0064 .0126 .0196 .0307 .0544 .0983 .1779 .4768 .5232 .1604 .0808 .0562 .0367 .0243 .0156 .0088 .0049 .0026 .0011 .0009 .0008 .0005 .0004 .0005 .0004 .0002 .0001 .0002	0.00112 .00285 .00585 .01123 .02091 .04921 .12060 .43544 .55830 .17459 .06271 .02530 .01139 .00585 .00379 .00190
.575 to .600	.5875		1	.0000	

^aCumulative frequency of occurrence is obtained by dividing the cumulative number of occurrences in a given interval by the total sample size.

TABLE VII.- DISTRIBUTION OF WIND-SHEAR OCCURRENCES OUTSIDE ±0.200 KNOT/FT FOR SIMULATED DATA SET

Altitude band, ft	Number of occurrences in wind-shear interval, knot/ft, of -						
	±0.200 to ±0.300	± 0.300 to ± 0.400	±0.400 to ±0.500	±0.500 to ±0.600	Total		
100	32	7,	5	3	47		
200	27	7	0	1	35		
300	20	1	1	0	21		
400	21	0		1 1	21		
500	14	1			15		
600	9	0			9		
700	11				11		
800	5				5		
900	3				3		
^a 1000	1	+	+	*	1		
Total	143	16	5	4	168		

^aNo wind shears outside ±0.200 knot/ft occurred above 1000 ft.

Approach side

Figure 1.- Runway coordinate system and sign convention.

(a) 100-ft altitude band.

Figure 2.- Distribution of wind shears in 100-ft altitude bands.

Figure 2. - Continued.

Figure 2.- Continued.

Figure 2.- Continued.

(e) 500-ft altitude band.

Figure 2.- Continued.

Figure 2.- Continued.

(g) 700-ft altitude band.

Figure 2.- Continued.

(h) 800-ft altitude band.

Figure 2.- Continued.

Figure 2. - Continued.

Figure 2. - Continued.

Figure 2.- Continued.

Figure 2.- Continued.

Figure 2.- Concluded.

Figure 3.- Variation of mean and standard deviation with altitude.

Figure 4.- Frequency of occurrence of wind shear (table VI(a)) based on total sample size.

Figure 5.- Cumulative frequency of occurrence of wind shear (table VI(b)).

1. Report No.	2. Government Access	ion No.	3. Recip	ient's Catalog No.				
A Title and Subtitle	<u> </u>	5. Repor	rt Date					
COMPARISON OF LOW-ALTITUD	E WIND-SHEAR STAT	ISTICS November 1983						
DERIVED FROM MEASURED AND	D WIND	6. Perfo	rming Organization Code					
PROFILES	·····		505-	-43-03-01				
7. Author(s)			8. Perfo	rming Organization Report No.				
J. W. Usry			L-15	5619				
	<u> </u>		10. Work	Unit No.				
9. Performing Organization Name and Addre	22							
NASA Langley Research Cen	ter		11. Contr	act or Grant No.				
Hampton, VA 23665								
		13. Type of Report and Period Covered						
12. Sponsoring Agency Name and Address		Tech	nnical Memorandum					
National Aeronautics and	Space Administrat	ion	14. Spons	oring Agency Code				
washington, DC 20546								
15. Supplementary Notes								
16 Abstract								
Wind-shear statistics wer	e calculated for	a simulat	ed set of wind	l profiles based on				
a proposed standard wind	field data base.	These st	atistics were	compared with				
statistics derived from w	ind profiles meas	ured by N 400 ft an	NASA. Wind she	ears were grouped in				
0.025 knot/ft. The wind-	altitude bands of 100 ft between 100 and 1400 ft and in wind-snear increments of 0.025 knot/ft The wind-shear limits were +0.600 knot/ft for the simulated data set							
and ±0.200 knot/ft for th	e measured data s	et. Freq	uency distribu	tions, means, and				
standard deviations for e	ach altitude band	were der	rived for both	data sets and				
compared. Relative and c	umulative frequen	cy distri	butions for th	e total sample were				
for the simulated data se	t compared. Frequ	ency aist rsed belo	e^{10000} sin e 800 ft and 1	ess dispersed above				
900 ft than those for the	e measured data se	t. Dist	ributions for h	both data sets were				
practically symmetrical f	or all altitudes.	Total s	sample frequend	cy of occurrence for				
the two data sets was about equal for wind-shear values between ± 0.075 knot/ft, but								
the simulated data set had significantly larger values for all wind shears outside								
data set was normally distributed. Similar results were observed from the cumulative								
frequency distributions.								
17 Key Words (Suggested by Author(s))		18 Distribut	ion Statement					
Wind shear	Inclassified - Inlimited							
Measured and simulated								
Statistics								
			~	ubject Catagory 05				
		[5	Los Din				
19. Security Classif, (of this report)	20. Security Classif. (of this	page)	21, No. of Pages	22. Price				
Unclassified	Unclassified		45	A0 3				

.

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

NASA

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return