96 research outputs found

    Numerical methods for construction reachability sets of dynamical systems

    Full text link
    The research is devoted to the problem of reachability sets construction and representation in a control problem of a dynamical system. The paper discusses two numerical methods for construction reachability sets of dynamical systems. These methods differ in the way of representations of the reachability sets. The first method is oriented on solution of the control problem on the plane and connected with a representation of sets in the form of polygons. The second one is connected with a pixel representation of sets in the m-dimensional Euclidian space and simplicial complexes. © 2012 American Institute of Physics

    CONTROL SYSTEM DEPENDING ON A PARAMETER

    Get PDF
    A nonlinear control system depending on a parameter is considered in a finite-dimensional Euclidean space and on a finite time interval. The dependence on the parameter of the reachable sets and integral funnels of the corresponding differential inclusion system is studied. Under certain conditions on the control system, the degree of this dependence on the parameter is estimated. Problems of targeting integral funnels to a target set in the presence of an obstacle in strict and soft settings are considered. An algorithm for the numerical solution of this problem in the soft setting has been developed. An estimate of the error of the developed algorithm is obtained. An example of solving a specific problem for a control system in a two-dimensional phase space is given

    Remission in schizophrenia: results of cross-sectional with 6-month follow-up period and 1-year observational therapeutic studies in an outpatient population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A standardized definition of remission criteria in schizophrenia was proposed by the International group of NC Andreasen in 2005 (low symptom threshold for the eight core Positive and Negative Syndrome Scale (PANSS) symptoms for at least 6 consecutive months).</p> <p>Methods</p> <p>A cross-sectional study of remission rate, using a 6-month follow-up to assess symptomatic stability, was conducted in two healthcare districts (first and second) of an outpatient psychiatric service in Moscow. The key inclusion criteria were outpatients with an <it>International Classification of Diseases</it>, 10th edition (ICD-10) diagnosis of schizophrenia or schizoaffective disorder. Remission was assessed using modern criteria (severity and time criteria), PANSS and Global Assessment of Functioning (GAF). Patients who were stable but did not satisfied the symptomatic criteria were included in a further 1-year observational study, with the first group (first district) receiving risperidone (long-acting, injectable) (RLAI) and the second group (second district) continuing to receiving routine treatment. Symptoms were assessed with PANSS, social functioning with the personal and social performance scale, compliance with rating of medication influences scale, and extrapyramidal side effects with the Simpson-Angus scale.</p> <p>Results</p> <p>Only 64 (31.5%) of 203 outpatients met the criteria for symptomatic remission in the cross-sectional study, but at the end of the 6-month follow-up period, 158 (77.8%) were stable (irrespective of remission status). Among these only 53 (26.1%) patients fulfilled the remission criteria. The observational study had 42 stable patients in the RLAI group and 35 in the routine treatment group: 19.0% in the RLAI group and 5.7% in the control group met remission criteria after 12 months of therapy. Furthermore, reduction of PANSS total and subscale scores, as well as improvement in social functioning, was more significant in the first group.</p> <p>Conclusions</p> <p>Only around one-quarter of our outpatient schizophrenic population met full remission criteria. Use of RLAI gave a better remission rate than achieved in standard care with routine treatment. Criteria for remission should take into account clinical course and functioning to support clinical care.</p

    Quantitative Estimate of the Macropsychological State of Modern Russian Society

    Get PDF
    The authors give the quantitative estimation of the macropsychological state of modern Russian society based on its political, social and economic characteristics. For these purposes the composite index of the macropsychological state of society is developed. It combines two secondary indexes such as a societal psychological stability index and a societal socio-psychological well-being index

    Cobalt-Based Pyroxenes: A New Playground for Kitaev Physics and Ising Model Realization

    Full text link
    Recent advances in the study of cobaltites have unveiled their potential as a promising platform for realizing Kitaev physics in honeycomb systems and the Ising model in weakly coupled chain materials. In this manuscript, we explore the magnetic properties of pyroxene SrCoGe2_2O6_6 using a combination of neutron scattering, {\it ab initio} methods, and linear spin-wave theory. Through careful examination of inelastic neutron scattering powder spectra, we propose a modified Kitaev model to accurately describe the twisted chains of edge-sharing octahedra surrounding Co2+^{2+} ions. The extended Kitaev-Heisenberg model, including a significant anisotropic bond-dependent exchange term with K/J=0.96K/|J|=0.96, is identified as the key descriptor of the magnetic interactions in SrCoGe2_2O6_6. Furthermore, our heat capacity measurements reveal an effect of an external magnetic field (approximately 13~T) which shifts the system from a fragile antiferromagnetic ordering with TN=9T_{\mathrm{N}}=9~K to a field-induced state. We argue that pyroxenes, particularly those modified by substituting Ge with Si and its less extended pp orbitals, emerge as a novel platform for the Kitaev model. This opens up possibilities for advancing our understanding of Kitaev physics.Comment: 11 + 2 pages, 7 + 3 figure

    Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization.

    Get PDF
    While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    corecore