311 research outputs found
Worldwide experience with biosimilar development
Limited access for high-quality biologics due to cost of treatment constitutes an unmet medical need in the US and other regions of the world. The term “biosimilar” is used to designate a follow-on biologic that meets extremely high standards for comparability or similarity to the originator biologic drug that is approved for use in the same indications. Use of biosimilar products has already decreased the cost of treatment in many regions of the world and now a regulatory pathway for approval of these products has been established in the US. The Food and Drug Administration (FDA) led the world with the regulatory concept of comparability and the European Medicines Agency (EMA) was the first to apply this to biosimilars. Patents on the more complex biologics, especially monoclonal antibodies, are now beginning to expire and biosimilar versions of these important medicines are in development. The new Biologics Price Competition and Innovation Act (BPCIA) allows the FDA to approve biosimilars and allows the FDA to lead on the formal designation of interchangeability of biosimilars with their reference products. The FDA's approval of biosimilars is critical to facilitating patient access to high-quality biologic medicines and will allow society to afford the truly innovative molecules currently in the global biopharmaceutical industry's pipeline
Household transmission of invasive group A Streptococcus infections in England: a population-based study, 2009, 2011 to 13
Invasive group A s treptococcal infection has a 15% case fatality rate and a risk of secondary transmission. This retrospective study us ed two national data sources from England ; enhanced surveillance ( 2009) and a case management system ( 2011 - 13) to identify clusters of sever e group A streptococcal disease . 2 4 household pairs were identified. The median onset interval between cases was 2 days (range 0 - 28) with simultaneous onset in 8 pairs . The attack rate during the 30 days after first exposure to a primary case was 4 52 0 per 100000 person - years at risk (95% CI 2 900 - 673 0 ) a 19 40 ( 12 40 - 28 80 ) fold elevation over the background incidence . The theoretical number needed to treat ( NNT ) to prevent one secondary case using antibiotic prophylaxis was 2 71 ( 194 - 454 ) overall, 50 for mother - neonate pairs ( 2 7 - 3 93 ) and 8 2 for couples aged 75 years and over ( 46 - 417 ). Whilst a dramatic increased risk of infection was noted in all household contacts, increased ris k was greatest for mother - neonate pairs and couples aged 75 and over , suggesting targeted prophylaxis c ould be considered. Offering prophylaxis is challenging due to the short time interval between cases emphasising the importance of immediate notification and assessment of contacts
Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues
<p>Abstract</p> <p>Background</p> <p>We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R) and its ligand the tuberoinfundibular peptide of 39 residues (TIP39) by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH) and parathyroid hormone related protein (PTHrP) are compared with the complex to examine their interactions.</p> <p>Findings</p> <p>In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation.</p> <p>Conclusions</p> <p>A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.</p
Predicting hospital cost in CKD patients through blood chemistry values
<p>Abstract</p> <p>Background</p> <p>Controversy exists in predicting costly hospitalization in patients with chronic kidney disease and co-morbid conditions. We therefore tested associations between serum chemistry values and the occurrence of in-patient hospital costs over a thirteen month study period. Secondarily, we derived a linear combination of variables to estimate probability of such occurrences in any patient.</p> <p>Method</p> <p>We calculated parsimonious values for select variables associated with in-patient hospitalization and compared sensitivity and specificity of these models to ordinal staging of renal disease.</p> <p>Data from 1104 de-identified patients which included 18 blood chemistry observations along with complete claims data for all medical expenses.</p> <p>We employed multivariable logistic regression for serum chemistry values significantly associated with in-patient hospital costs exceeding $3,000 in any single month and contrasted those results to other models by ROC area curves.</p> <p>Results</p> <p>The linear combination of weighted Z scores for parathyroid hormone, phosphorus, and albumin correlated with in-patient hospital care at p < 0.005. ROC curves derived from weighted variables of age, eGFR, hemoglobin, albumin, creatinine, and alanine aminotransferase demonstrated significance over models based on non-weighted Z scores for those same variables or CKD stage alone. In contrast, the linear combination of weighted PTH, PO4 and albumin demonstrated better prediction, but not significance over non-weighted Z scores for PTH alone.</p> <p>Conclusion</p> <p>Further study is justified to explore indices that predict costly hospitalization. Such metrics could assist Accountable Care Organizations in evaluating risk adjusted compensation for providers.</p
Regulation of GIP and GLP1 Receptor Cell Surface Expression by N-Glycosylation and Receptor Heteromerization
In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer
DMSO and Betaine Greatly Improve Amplification of GC-Rich Constructs in De Novo Synthesis
In Synthetic Biology, de novo synthesis of GC-rich constructs poses a major challenge because of secondary structure formation and mispriming. While there are many web-based tools for codon optimizing difficult regions, no method currently exists that allows for potentially phenotypically important sequence conservation. Therefore, to overcome these limitations in researching GC-rich genes and their non-coding elements, we explored the use of DMSO and betaine in two conventional methods of assembly and amplification. For this study, we compared the polymerase (PCA) and ligase-based (LCR) methods for construction of two GC-rich gene fragments implicated in tumorigenesis, IGF2R and BRAF. Though we found no benefit in employing either DMSO or betaine during the assembly steps, both additives greatly improved target product specificity and yield during PCR amplification. Of the methods tested, LCR assembly proved far superior to PCA, generating a much more stable template to amplify from. We further report that DMSO and betaine are highly compatible with all other reaction components of gene synthesis and do not require any additional protocol modifications. Furthermore, we believe either additive will allow for the production of a wide variety of GC-rich gene constructs without the need for expensive and time-consuming sample extraction and purification prior to downstream application
The reach and impact of social marketing and reproductive health communication campaigns in Zambia
Background: Like many sub-Saharan African countries, Zambia is dealing with major health issues, including HIV/AIDS, family planning, and reproductive health. To address reproductive health problems and the HIV/AIDS epidemic in Zambia, several social marketing and health communication programs focusing on reproductive and HIV/AIDS prevention programs are being implemented. This paper describes the reach of these programs and assesses their impact on condom use. Methods: This paper assesses the reach of selected radio and television programs about family planning and HIV/AIDS and of communications about the socially marketed Maximum condoms in Zambia, as well as their impact on condom use, using data from the 2001-2002 Zambia Demographic and Health Survey. To control for self-selection and endogeneity, we use a two-stage regression model to estimate the effect of program exposure on the behavioural outcomes. Results: Those who were exposed to radio and television programs about family planning and HIV/AIDS were more likely to have ever used a condom (OR = 1.16 for men and 1.06 for women). Men highly exposed to Maximum condoms social marketing communication were more likely than those with low exposure to the program to have ever used a condom (OR = 1.48), and to have used a condom at their last sexual intercourse (OR = 1.23). Conclusion: Findings suggest that the reproductive health and social marketing campaigns in Zambia reached a large portion of the population and had a significant impact on condom use. The results suggest that future reproductive health communication campaigns that invest in radio programming may be more effective than those investing in television programming, and that future campaigns should seek to increase their impact among women, perhaps by focusing on the specific constrains that prevent females from using condoms
Disruption of PTH Receptor 1 in T Cells Protects against PTH-Induced Bone Loss
Hyperparathyroidism in humans and continuous parathyroid hormone (cPTH) treatment in mice cause bone loss by regulating the production of RANKL and OPG by stromal cells (SCs) and osteoblasts (OBs). Recently, it has been reported that T cells are required for cPTH to induce bone loss as the binding of the T cell costimulatory molecule CD40L to SC receptor CD40 augments SC sensitivity to cPTH. However it is unknown whether direct PTH stimulation of T cells is required for cPTH to induce bone loss, and whether T cells contribute to the bone catabolic activity of PTH with mechanisms other than induction of CD40 signaling in SCs.Here we show that silencing of PTH receptor 1 (PPR) in T cells blocks the bone loss and the osteoclastic expansion induced by cPTH, thus demonstrating that PPR signaling in T cells is central for PTH-induced reduction of bone mass. Mechanistic studies revealed that PTH activation of the T cell PPR stimulates T cell production of the osteoclastogenic cytokine tumor necrosis factor alpha (TNF). Attesting to the relevance of this effect, disruption of T cell TNF production prevents PTH-induced bone loss. We also show that a novel mechanism by which TNF mediates PTH induced osteoclast formation is upregulation of CD40 expression in SCs, which increases their RANKL/OPG production ratio.These findings demonstrate that PPR signaling in T cells plays an essential role in PTH induced bone loss by promoting T cell production of TNF. A previously unknown effect of TNF is to increase SC expression of CD40, which in turn increases SC osteoclastogenic activity by upregulating their RANKL/OPG production ratio. PPR-dependent stimulation of TNF production by T cells and the resulting TNF regulation of CD40 signaling in SCs are potential new therapeutic targets for the bone loss of hyperparathyroidism
- …