87 research outputs found

    The influence of competing root symbionts on below-ground plant resource allocation

    Get PDF
    1. Plants typically interact with multiple above- and below-ground organisms simultaneously, with their symbiotic relationships spanning a continuum ranging from mutualism, such as with arbuscular mycorrhizal fungi (AMF), to parasitism, including symbioses with plant-parasitic nematodes (PPN). 2. Although research is revealing the patterns of plant resource allocation to mutualistic AMF partners under different host and environmental constraints, the root ecosystem, with multiple competing symbionts, is often ignored. Such competition is likely to heavily influence resource allocation to symbionts. 3. Here, we outline and discuss the competition between AMF and PPN for the finite supply of host plant resources, highlighting the need for a more holistic understanding of the influence of below-ground interactions on plant resource allocation. Based on recent developments in our understanding of other symbiotic systems such as legume–rhizobia and AMF-aphid-plant, we propose hypotheses for the distribution of plant resources between contrasting below-ground symbionts and how such competition may affect the host. 4. We identify relevant knowledge gaps at the physiological and molecular scales which, if resolved, will improve our understanding of the true ecological significance and potential future exploitation of AMF-PPN-plant interactions in order to optimize plant growth. To resolve these outstanding knowledge gaps, we propose the application of well-established methods in isotope tracing and nutrient budgeting to monitor the movement of nutrients between symbionts. By combining these approaches with novel time of arrival experiments and experimental systems involving multiple plant hosts interlinked by common mycelial networks, it may be possible to reveal the impact of multiple, simultaneous colonizations by competing symbionts on carbon and nutrient flows across ecologically important scales

    Next-generation sequencing of the soil nematode community enables the sustainability of banana plantations to be monitored

    Get PDF
    Uganda faces a considerable challenge to match its food production to an annual population growth rate of 3%. Cooking bananas are the country's most produced staple crop but the annual national harvest is not increasing. The crop grows on infertile soils that are normally fertilised organically and often susceptible to erosion. Soil nematodes are well-established as bioindicators of soil quality that can support environmental monitoring and assessment of the sustainability of agricultural systems. These invertebrates are a highly ranked indicator of biodiversity with molecular approaches available. Consequently, we have applied next-generation DNA sequencing of soil nematodes to evaluate soil quality of Ugandan banana plantations. The aim is to establish a method for constructing an aspect of an environmental biosafety dossier with the future aim of assessing the impact of transgenic crops and improving current cropping systems. The soil samples did not differ significantly in any of the measured soil chemistry factors, soil texture or percentage of organic matter. Thirty taxons of soil nematodes other than the plant parasites were recovered from soil supporting nine banana plantations plus three each from coffee and banana-coffee interplants from East and West Uganda. Cluster analysis correctly allocated each plantation to the crop/intercrop being grown when based on the abundance of taxa rather than taxa presence or absence. This indicates that the host has considerable effects on the abundance of specific nematode species within the soil. Overall, nematodes were more abundant in soil from coffee plantations than from banana-coffee interplants with the lowest values being from fields supporting just banana. Only the basal and trophic diversity indices and the percentage of nematodes that are rapid colonisers varied between the three plantation types. The soil of all fifteen plantations can be classified as having a mature soil web condition with low physical disturbance, limited chemical stressors, moderately high nutrient enrichment and balanced decomposition channels

    Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita

    Get PDF
    Root-knot nematodes (Meloidogyne spp.) are an important group of plant parasitic nematodes that induce within host plant roots unique feeding site structures, termed giant cells, which supply nutrient flow to the nematode. A comparative in situ analysis of cell wall polysaccharides in the giant cells of three host species (Arabidopsis, maize and aduki bean) infected with Meloidogyne incognita has been carried out. Features common to giant cell walls of all three species include the presence of high-esterified pectic homogalacturonan, xyloglucan and pectic arabinan. The species-specific presence of xylan and mixed-linkage glucan (MLG) epitopes in giant cell walls of maize reflected that host’s taxonomic group. The LM5 galactan and LM21 mannan epitopes were not detected in the giant cell walls of aduki bean but were detected in Arabidopsis and maize giant cell walls. The LM2 arabinogalactan-protein epitope was notable for its apparent global variations in root cell walls as a response to infection across the three host species. Additionally, a set of Arabidopsis cell wall mutants were used to determine any impacts of altered cell wall structures on M. incognita infection. Disruption of the arabinogalactan-protein 8 gene had the greatest impact and resulted in an increased infection rate

    Transgenic Potatoes for Potato Cyst Nematode Control Can Replace Pesticide Use without Impact on Soil Quality

    Get PDF
    Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode) for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community

    In Vitro Uptake of 140 kDa Bacillus thuringiensis Nematicidal Crystal Proteins by the Second Stage Juvenile of Meloidogyne hapla

    Get PDF
    Plant-parasitic nematodes (PPNs) are piercing/sucking pests, which cause severe damage to crops worldwide, and are difficult to control. The cyst and root-knot nematodes (RKN) are sedentary endoparasites that develop specialized multinucleate feeding structures from the plant cells called syncytia or giant cells respectively. Within these structures the nematodes produce feeding tubes, which act as molecular sieves with exclusion limits. For example, Heterodera schachtii is reportedly unable to ingest proteins larger than 28 kDa. However, it is unknown yet what is the molecular exclusion limit of the Meloidogyne hapla. Several types of Bacillus thuringiensis crystal proteins showed toxicity to M. hapla. To monitor the entry pathway of crystal proteins into M. hapla, second-stage juveniles (J2) were treated with NHS-rhodamine labeled nematicidal crystal proteins (Cry55Aa, Cry6Aa, and Cry5Ba). Confocal microscopic observation showed that these crystal proteins were initially detected in the stylet and esophageal lumen, and subsequently in the gut. Western blot analysis revealed that these crystal proteins were modified to different molecular sizes after being ingested. The uptake efficiency of the crystal proteins by the M. hapla J2 decreased with increasing of protein molecular mass, based on enzyme-linked immunosorbent assay analysis. Our discovery revealed 140 kDa nematicidal crystal proteins entered M. hapla J2 via the stylet, and it has important implications in designing a transgenic resistance approach to control RKN

    In Vitro Antibacterial Activity of Cysteine Protease Inhibitor from Kiwifruit (Actinidia deliciosa)

    Get PDF
    The need for replacing traditional pesticides with alternative agents for the management of agricultural pathogens is rising worldwide. In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. We examined the growth inhibition of three plant pathogenic Gram-negative bacterial strains by kiwi CPI and attempted to elucidate the potential mechanism of the growth inhibition. CPI influenced the growth of phytopathogenic bacteria Agrobacterium tumefaciens (76.2 % growth inhibition using 15 mu M CPI), Burkholderia cepacia (75.6 % growth inhibition) and, to a lesser extent, Erwinia carotovora (44.4 % growth inhibition) by inhibiting proteinases that are excreted by these bacteria. Identification and characterization of natural plant defense molecules is the first step toward creation of improved methods for pest control based on naturally occurring molecules

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    The feeding tube of cyst nematodes: characterisation of protein exclusion

    Get PDF
    Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins

    Peptidases compartmentalized to the Ascaris suum intestinal lumen and apical intestinal membrane

    Get PDF
    The nematode intestine is a tissue of interest for developing new methods of therapy and control of parasitic nematodes. However, biological details of intestinal cell functions remain obscure, as do the proteins and molecular functions located on the apical intestinal membrane (AIM), and within the intestinal lumen (IL) of nematodes. Accordingly, methods were developed to gain a comprehensive identification of peptidases that function in the intestinal tract of adult female Ascaris suum. Peptidase activity was detected in multiple fractions of the A. suum intestine under pH conditions ranging from 5.0 to 8.0. Peptidase class inhibitors were used to characterize these activities. The fractions included whole lysates, membrane enriched fractions, and physiological- and 4 molar urea-perfusates of the intestinal lumen. Concanavalin A (ConA) was confirmed to bind to the AIM, and intestinal proteins affinity isolated on ConA-beads were compared to proteins from membrane and perfusate fractions by mass spectrometry. Twenty-nine predicted peptidases were identified including aspartic, cysteine, and serine peptidases, and an unexpectedly high number (16) of metallopeptidases. Many of these proteins co-localized to multiple fractions, providing independent support for localization to specific intestinal compartments, including the IL and AIM. This unique perfusion model produced the most comprehensive view of likely digestive peptidases that function in these intestinal compartments of A. suum, or any nematode. This model offers a means to directly determine functions of these proteins in the A. suum intestine and, more generally, deduce the wide array functions that exist in these cellular compartments of the nematode intestine

    Surgical treatment for acromioclavicular joint osteoarthritis: patient selection, surgical options, complications, and outcome

    Get PDF
    Osteoarthritis is one of the most common causes of pain originating from the acromioclavicular (AC) joint. An awareness of appropriate diagnostic techniques is necessary in order to localize clinical symptoms to the AC joint. Initial treatments for AC joint osteoarthritis, which include non-steroidal anti-inflammatory drugs (NSAIDS) and corticosteroids, are recommended prior to surgical interventions. Distal clavicle excision, the main surgical treatment option, can be performed by various surgical approaches, such as open procedures, direct arthroscopic, and indirect arthroscopic techniques. When choosing the best surgical option, factors such as avoidance of AC ligament damage, clavicular instability, and post-operative pain must be considered. This article examines patient selection, complications, and outcomes of surgical treatment options for AC joint osteoarthritis
    corecore