775 research outputs found

    Exposure to War as a Risk Factor for Mental Disorders

    Get PDF
    The authors discuss a new study on the prevalence of mental disorders in Lebanon

    PTSD and Current Translational Research

    Get PDF

    Analysis of Kinase Gene Expression in the Frontal Cortex of Suicide Victims: Implications of Fear and Stress†

    Get PDF
    Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database1 and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK), the cyclin-dependent kinase, the mitogen-activated protein kinase (MAPK), and the protein kinase C (PKC) in the prefrontal cortex (PFC) of mood disorder patients died with suicide (N = 45) and without suicide (N = 38). We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (N = 46). The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (false discovery rate, FDR-adjusted p < 0.05, fold change >1.1). Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05). These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress associated neural plasticity, and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide

    Biomimicry as a Sustainable Design Methodology—Introducing the ‘Biomimicry for Sustainability’ Framework

    Get PDF
    Biomimicry is an interdisciplinary approach to study and transfer principles or mechanisms from nature to solve design challenges, frequently differentiated from other design disciplines by its particular focus on and promise of sustainability. However, in the biomimicry and biologically inspired design literature, there are varying interpretations of how and whether biomimetic designs lead to sustainable outcomes and how sustainability, nature, and mimesis are conceptualised and engaged in practice. This paper takes a particular focus on the built environment and presents a theoretical overview of biomimicry literature spanning across specific fields, namely architecture, philosophy, sustainability and design. We develop upon conceptual considerations in an effort to contribute to the growing calls in the literature for more reflective discussions about the nuanced relationship between biomimicry and sustainability. We further develop a ‘Biomimicry for Sustainability’ framework that synthesises recent reflective deliberations, as a possible direction for further theorisation of biomimicry, aiming to elaborate on the role of biomimicry as a sustainable design methodology and its potential to cultivate more sustainable human–nature relations. The framework is used as a tool for retrospective analysis, based on literature of completed designs, and as a catalyst for biomimetic design thinking. The objective of this paper is to serve as a point of departure for more active and deeper discussions regarding future biomimetic practice in the context of sustainability and transformational change, particularly within the built environment

    Startle response related genes

    Get PDF
    The startle reaction (also known as the startle response, the startle reflex, or the alarm reaction) is the psychological and physiological response to a sudden unexpected stimulus, such as a flash of light, a loud noise (acoustic startle reflex), or a quick movement near the face. Abnormalities of startle response have been observed in many stress-related mental disorders, such as schizophrenia and post-traumatic stress disorder (PTSD). However, the molecular mechanisms of startle in stress-associated conditions – for example, whether the startle reaction is associated with any gene variance – is still unknown. In this paper, we will carry out a systematic review by retrieving, assessing, and combining, when applicable, individual studies investigating association of the molecular variation of candidate gene with the startle response. The systematic review is based on the search for numerous publications using the keywords ‘‘startle gene’’ on September 15, 2010 using PubMed, which comprises more than 20 million citations for biomedical literature from MEDLINE and life science journals. A total of 486 publications regarding genes associated with startle have been obtained and reviewed here. There are fewer than 20 publications associating genes with the startle response between 1979, when the first valuable paper was published, and 1999. However, publications have dramatically increase from 2001 and reaches over 70 in 2009. We have characterized them into three categories: startle-associated gene studies in humans, in animals, as well as in both human and animals. This review of research strategy may provide the information for identifying a biomarker for startle response, with the objective of translating research into clinical utility: diagnosis and treatment of stress-induced mental disorders

    Startle response related genes

    Get PDF
    The startle reaction (also known as the startle response, the startle reflex, or the alarm reaction) is the psychological and physiological response to a sudden unexpected stimulus, such as a flash of light, a loud noise (acoustic startle reflex), or a quick movement near the face. Abnormalities of startle response have been observed in many stress-related mental disorders, such as schizophrenia and post-traumatic stress disorder (PTSD). However, the molecular mechanisms of startle in stress-associated conditions – for example, whether the startle reaction is associated with any gene variance – is still unknown. In this paper, we will carry out a systematic review by retrieving, assessing, and combining, when applicable, individual studies investigating association of the molecular variation of candidate gene with the startle response. The systematic review is based on the search for numerous publications using the keywords ‘‘startle gene’’ on September 15, 2010 using PubMed, which comprises more than 20 million citations for biomedical literature from MEDLINE and life science journals. A total of 486 publications regarding genes associated with startle have been obtained and reviewed here. There are fewer than 20 publications associating genes with the startle response between 1979, when the first valuable paper was published, and 1999. However, publications have dramatically increase from 2001 and reaches over 70 in 2009. We have characterized them into three categories: startle-associated gene studies in humans, in animals, as well as in both human and animals. This review of research strategy may provide the information for identifying a biomarker for startle response, with the objective of translating research into clinical utility: diagnosis and treatment of stress-induced mental disorders
    • …
    corecore