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a b s t r a c t

The startle reaction (also known as the startle response, the startle reflex, or the alarm reaction) is the
psychological and physiological response to a sudden unexpected stimulus, such as a flash of light, a loud
noise (acoustic startle reflex), or a quick movement near the face. Abnormalities of startle response have
been observed in many stress-related mental disorders, such as schizophrenia and post-traumatic stress
disorder (PTSD). However, the molecular mechanisms of startle in stress-associated conditions – for
example, whether the startle reaction is associated with any gene variance – is still unknown. In this
paper, we will carry out a systematic review by retrieving, assessing, and combining, when applicable,
individual studies investigating association of the molecular variation of candidate gene with the startle
response. The systematic review is based on the search for numerous publications using the keywords
‘‘startle gene’’ on September 15, 2010 using PubMed, which comprises more than 20 million citations
for biomedical literature from MEDLINE and life science journals. A total of 486 publications regarding
genes associated with startle have been obtained and reviewed here. There are fewer than 20 publica-
tions associating genes with the startle response between 1979, when the first valuable paper was pub-
lished, and 1999. However, publications have dramatically increase from 2001 and reaches over 70 in
2009. We have characterized them into three categories: startle-associated gene studies in humans, in
animals, as well as in both human and animals. This review of research strategy may provide the infor-
mation for identifying a biomarker for startle response, with the objective of translating research into
clinical utility: diagnosis and treatment of stress-induced mental disorders.

Published by Elsevier Ltd.

Introduction

An exaggerated startle response, considered as a critical charac-
teristic in certain mental disorders, such as PTSD and schizophre-
nia, has been avidly studied in psychiatry. Research seeking the
molecular mechanism of the startle response has consistently in-
creased over last 10 years. One such area of research is the study
of genes associated with the startle response. The published arti-
cles about startle response associated genes have been signifi-
cantly increased yearly. As a phenotype, the startle response
exhibits a consistent physiological pattern including physical
movement away from a given stimulus, a contraction of the mus-
cles of the arms and legs, blinking, and changes of blood pressure,
respiration, and breathing rate. The muscle reactions generally re-
solve themselves in a matter of seconds, while other responses
may take longer. The pathway for this response was largely
elucidated in rats in the 1980s [1].

The basic neuroanatomy, which is demonstrated by experi-
ments with rats using a variety of lesion and electrical stimulation
procedures, is relatively simple for startle responses. The signals

are conducted to the central nervous system. The output end of
the startle circuitry goes through the reticulospinal tract and the
lower motor neurons of the spinal cord. For example, the pathway
for acoustic startle is from the ear up to the nucleus of the lateral
lemniscus (LLN) from where it then activates a motor center in
the reticular formation. LLN sends descending projections to lower
motor neurons of the limbs. The whole reflex takes place in less
than 10 ms [2]. Accordingly, the human startle response can be
measured reliably. For example, it can be measured by the ampli-
tude of eye blinking in response to a sudden abrupt auditory stim-
ulus [3]. Besides the above control circuitry, the startle circuit is
regulated by several brain regions, such as the prefrontal cortex
and amygdala, which influence the tone of startle and the process-
ing of information related to conditional fear [4], respectively.

There are two typical examples for regulation of the startle re-
sponse. First, is prepulse inhibition (PPI). PPI is a neurological phe-
nomenon in which a weaker pre-stimulus (prepulse) inhibits the
reaction of an organism to a subsequent strong startling stimulus
(pulse) [5]. The reduction of the amplitude of startle reflects that
the nervous system temporarily adapts to a strong sensory stimu-
lus when a preceding weaker warning signal is given. PPI deficits
are noted in patients with schizophrenia [6–9] and Alzheimer’s
disease, and in people under the influence of drugs, surgical
manipulations, or gene mutations.
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The second example for regulation of the startle response is
startle habituation. Startle response can be decremented by re-
peated presentation of the same, initially novel stimulus [10]. This
regulatory mechanism can be inhibited. Schizophrenia patients ex-
hibit impairment of startle habituation. In general, exaggerated
startle reactivity can become a chronic condition to lasting for
30, 40, or more years [11].

If human behavioral traits result from the interplay of genes and
environment, exaggerated startle response may have a complex
genetic basis. Although it is not necessarily inherited in strict
Mendelian fashion, the transmission of hereditary characteristics
does pass from parents to offspring. Factors such as incomplete
penetrance – (carriers of the disease allele not becoming ill or having
a later onset), pleiotropy (multiple effects of a single gene), hetero-
geneity (similar phenotype from different genotypes), epistasis
(interaction of multiple alleles in the same subject) and epigenetics
among others, must be accounted for. Since startle is a peculiar
behavioral response to stimuli, it represents an excellent model for
studying the mechanism of interaction of gene and environment.
We hypothesize that startle is an endophenotype (a concept which
divides behavioral symptoms into stable phenotypes with a clear
genetic connection – seen in mental disorders, such as schizophrenia
and PTSD). It is possible to identify a gene, which is associated with
startle response in a specific environment, for example, in subjects
who experiences the Iraq war and in a restrictive population, such
as military subjects. Those environmental factors, such as war
exposure and subjects, can be defined. The determination of which
genes are associated with startle response is a challenge.

There are 486 publications regarding gene and startle response.
Fewer than 20 of these were published between 1979 and 1999.
The total numbers of publications have increased markedly since
2001, reaching over 70 publications in 2009. Depending on the
research subjects, they can be categorized into: studies in human
subjects (Table 1), studies in animals (Table 2) and studies in both
human and animals. There are 13 genes which are associated with
startle response in human studies. Four genes have been studied in
both human and animals, including COMT, GLRA1, GlyT2, and
NRG1 dehydrogenase. Here we briefly discuss several genes which
are associated with startle response in both humans and animals,
and in psychiatric researches.

The 5-HT transporter (5-HTT) and startle response

There are studies regarding 5-HTTLPR (serotonin-transporter-
linked promoter region) and startle-related topics. 5-HTTLPR is a
degenerate repeat polymorphic region in SLC6A4, the gene that

codes for the serotonin transporter [30,31] and is associated with
many neuropsychiatric disorders [32]. The 5-HT transporter (5-
HTT) influences on neural circuits processing fear and anxiety are
discussed [33]. 5-HTTLPR, a functional polymorphism of the 50-
flanking region of the 5-HTT gene is involved in several neuropsy-
chiatric phenotypes [34]). 5-HTTLPR is an insertion/deletion poly-
morphism with a long (L) variant comprising 16 copies of a 20–
23 bp repeat sequence and a short (S) variant comprising 14 copies.
Among Caucasians, the frequencies of the L and S alleles are about
0.60, and 0.40, respectively [35]. An association study regarding 5-
HTT, especially the S allele with anxiety, fear and startle response
has been studied in human subjects (Table 1). The S allele is asso-
ciated not only with increased scores in measures of negative emo-
tionality including anxiety [36–38], but also with lower
transcriptional efficiency of the 5-HTT gene and lower levels of
5-HT uptake [30,35]. S allele carriers show stronger amygdala
activity in response to fear stimuli than L/L homozygotes [33]
and increased anxiety [39,40]. The S allele is also specifically asso-
ciated with stronger overall startle responses than L/L homozy-
gotes [41]. S allele carriers were not only more sensitive to the
effects of stressful life events than L/L homozygotes, but also were
more likely to develop depressive symptoms [42–47]. S allele car-
riers with low social support had an increased risk for behavioral
inhibition, indicating that in the early years of life before matura-
tion of prefrontal regulatory circuits, stress could produce stronger
response to fearful stimuli. In addition, stressful life events may
have cumulative effects [42,45]. However, there is a negative result
in the study of the relation of 5-HTTLPR with fear and anxiety [45].
No interaction of 5-HTTLPR and stressful life events was found on
the risk for generalized anxiety disorder in adults, although the
positive results demonstrated an interaction of 5-HTTLPR and envi-
ronment on fear and anxiety in children.

COMT genetic variation and startle response

One of the promising, well-studied candidates for the association
of gene with startle is the gene for catechol-O-methyltransferase
(COMT), the catabolic enzyme for dopamine, norepinephrine, and
epinephrine. COMT is the major clearing step for dopamine in the
prefrontal cortex [48,49] and expressed in many brain regions syn-
aptically [50,51] and subcortically [52]. The COMT gene contains a
common functional polymorphism resulting from a non synony-
mous G to A base pair substitution in the coding sequence of the
gene, producing a valine to methionine substitution at position
158 of the membrane bound allozyme that predominates in the
brain (MB-COMT); soluble allozyme S-COMT [53]. Since the

Table 1
Startle associated gene studies in human subjects.

Gene Location Polymorphism Phenotype References

5-HT(2A)R 13q14-q21 A-1438 G and T102C PPI [12,13]
T102C PPI [14]

AVPR1a 12q14-15 VNTR (RS1 and RS3) PPI [15]
AADC 7p12.2 1303 C > T

1367ins A
Startle [16,17]

COMT* 22q11.21 Val158Met PPI [18]
CSF1-R* 5q32 D5S209, and D5S119 Hyperekplexia [19,20]
DRD3 3q13.3 Ser9Gly PPI [21]
DRD4 11p15.5 7-folds repeat Startle [22]
GLRA1* 5q32 Arginine271proline Hyperekplexia [23]
GlyT2* 11p15.1 Arg271Pro Hyperekplexia [20]

910A>C/Lys304Gln Hyperekplexia [24]
HTTLPR 17q11.2 S/L Startle [25,26]
NRG1* 8p12 rs3924999/rs10503929 PPI [27]
PRODH 22q11.21 1945T/C, 1766A/G, 1852G/A PPI [28]
TPH2 11p15.3-p14 �703G/T Startle [29]

* Study in both human and animals. COMT, catechol-O-methyl-transferase; HTTLPR, serotonin-transporter-linked promoter region;
TPH2, tryptophan hydroxylase 2.
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158Met form is less thermo-stable than the Val158 form, it has
lower activity at physiologically relevant temperatures in the
brain [54]. Met158 homozygotes have an approximate one-third
diminution in activity compared with Val158 homozygotes [55].
Lowered COMT activity, resulting in higher concentrations of
dopamine [49], may have a salutary effect on cortical function.
For instance, the Val158 (higher activity) allele is associated with
prefrontal inefficiency during working memory and cognitive
control [56–59], with relatively poorer performance on prefron-
tally mediated tasks [60–62]. Furthermore, the Val158 allele is
associated with schizophrenia – particularly in interaction with
other schizophrenia risk genes [53,63]. However, as both alleles
are maintained at high levels in populations worldwide, it has
been proposed that each confers an environment-specific selec-
tive advantage – representing a trade-off between cognitive effi-
ciency and emotional resiliency [64]. The Met158 allele is linked
to poor emotion regulation, anxiety disorders [65–70], anxiety-
related traits including high neuroticism and low sensation seek-
ing and extraversion [71–74], obsessive–compulsive disorder
[75], and increased pain sensitivity [76]. However, the results
of such associations are not entirely consistent.

COMT Val158Met genotype affects functional activation and
connectivity within critical neural circuits for affective arousal
and regulation. Smolka et al. [77] found that the Met158 allele
was associated in an allele dose-dependent manner with exagger-
ated limbic and prefrontal engagement in response to aversively
valenced pictures. An additive interaction was also found between
genotypes at the COMT Val158Met locus [78]. The Met158 allele is
also associated with increased hippocampal and ventrolateral
prefrontal activation while viewing angry and fearful facial
expressions; these brain regions showed augmented functional
connectivity in Met158 homozygotes, the magnitude of which neg-
atively predicted scores on a temperamental measure of flexibility
[79]. Study of COMT in relation to the startle response demon-
strated that COMT genotype significantly affected startle reflex
modulation by aversive stimuli. Met158 homozygotes show a
markedly potentiated startle reflex compared with Val158 carriers.
A trait measure of anxiety [80] was also associated with acoustic
affective startle reflex modulation.

Glycine receptor subunit alpha 1(GLRA1) mutation associated
with startle response in an atypical hyperekplexia?

Individuals with hyperekplexia have an excessive startle reac-
tion to sudden unexpected noise, movement, or touch, suggesting

defects in glycinergic neurotransmission. A GLRA1 mutation asso-
ciated with startle response was discovered in subjects with hyper-
ekplexia, a rare neurological disorder characterized by an
exaggerated startle response, infantile hypertonia and hyperre-
flexia without spasticity, a hesitant gait that usually improves by
3 years of age, and nocturnal myoclonus. Familial hyperekplexia
is usually autosomal dominant, with the mutated inhibitory GLRA1
gene being on chromosome 5q. Three generations of a family have
been identified with progressively more severe phenotypes of
hyperekplexia. All affected family members were found to be het-
erozygous for a novel arginine 271proline mutation in GLRA1. Af-
fected members of the third generation, now aged 6 and 7 years,
exhibited enhanced startle responses [26].

Within the hyperekplexia, there are two clinical forms. The ma-
jor form exhibits continuous generalized stiffness in the first year
of life and an exaggerated startle reflex, accompanied by tempo-
rary generalized stiffness and falls, whereas the minor form only
shows excessive startle and hypnic jerks. The GLRA1 mutations
are responsible for the major form of hyperekplexia. However, ge-
netic analysis of the GLRA1 gene of two English families in which
both forms of hyperekplexia were present revealed no genetic de-
fect in the GLRA1 gene [81].

More recently, missense, nonsense and frame-shift mutations
have also been identified in the glycine transporter GlyT2 gene,
SLC6A5, demonstrating a presynaptic component to this disease.
Further mutations, albeit rare, have been identified in the genes
encoding the GlyR b subunit (GLRB), collybistin (ARHGEF9) and
gephyrin (GPHN) – all of which are postsynaptic proteins involved
in orchestrating glycinergic neurotransmission. Whether these
genes are also associated with exaggerated startle response in
stress-related disorders is still unknown.

Is p11 (S100A10) associated with startle response?

Previous studies have reported that p11 is associated with both
depression [82] and PTSD [83,84]. P11 mRNA was down-regulated
in the brain of patients with depression, but up-regulated in the
brain of those with PTSD. P11 is a member of the S100 family of
proteins containing two DF-hand calcium-binding motifs, which
are localized in the cytoplasm and/or nucleus in a wide range of cells
[85]. P11 regulates a number of cellular processes such as cell cycle
progression and differentiation, is implicated in exocytosis and
endocytosis by reorganization of F-actin, and interacts with and
transports the 5-HT1B receptor from the cytoplasm to the mem-
brane [82]. This suggests that p11’s regulation of the 5-HT1B

Table 2
Startle associated gene studies in animals.

Gene Phenotype Species References

5-HT(1A) receptor PPI/Acoustic startle Rats [88]
5-HT(1B) receptor PPI/Acoustic startle KO mice [89]
COMT⁄ PPI Transgenic mice [90]
D1/D2 Startle/PPI Rats [91,92]
FGFR-3 PPI/Acoustic startle Fgfr3�/� null mutant mice [93]
Glr-1 Startle Spasmodic recessive mouse [94]
GLP-1 Startle KO mice [95]
GLRA1⁄ Startle Mutant mice [96–99]
GlyT2⁄ Hyperekplexia GlyT2 deficient mice [100]
Histamine H1 PPI KO mice [101]
Huntington’s disease gene PPI Transgenic mice [102]
mGluR5 PPI KO mice [103]
Nicotinic receptors with beta3 subunit PPI Mice with null mutation [104]
NMDA receptor PPI/Acoustic startle Rearing rat in isolation [105]
NRG1⁄ PPI NRG1+/� mice [106]
NPY Acoustic startle/PPI KO mice [107,108]

PPI Male Wistar rat-pups
Oxytocin (Oxt) PPI Oxt KO mice [109]

* Animal + Human study
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receptor is critical to mental status. P11 knock-out mice showed
behavioral changes similar to depression. Because of dysregulation
of 5-HT1B receptor trafficking, p11 knock-out mice respond more
poorly to antidepressant medication than did wild type [82]. Antide-
pressant medication increased expression levels of p11 and reversed
the depressive behavior [82]. A recent study demonstrated that p11
mRNA expression levels are lower in the stress-related brain regions
of suicide subjects [86,87]. Peripheral blood mononucleocyte p11
mRNA levels were significantly lower in suicide attempters and
higher in suicide non-attempters, when compared to normal
controls [87]. This data suggest that p11 mRNA levels may be a
potential adjunctive biomarker for the assessment of suicide risk
in mental disorders. However, there is a study demonstrating no
association of p11 polymorphism with major depression. Therefore,
it would be worthwhile to examine the influence of the p11
polymorphism and the role of p11 on the overall startle response.

BDNF and startle

Brain-derived neurotrophic factor, also known as BDNF, is a
member of the ‘‘neurotrophin’’ family of growth factors, which
are related to the canonical ‘‘Nerve Growth Factor’’, NGF. Neurotro-
phic factors are found in the brain and the periphery [110]. The
BDNF gene is located on chromosome 11 [111,112]. BDNF protein
is synthesized as a glycosylated precursor (proBDNF) and is then
converted intracellulary to mature BDNF protein, which is released
upon cell stimulation [113]. Several studies demonstrated that
BDNF is associated with depression [110–112,114].

Exposure to stress and the stress hormone corticosterone has
been shown to decrease the expression of BDNF in rats [115]. In
addition, rats bred to be heterozygous for BDNF, therefore reducing
its expression, have been observed to exhibit hippocampal atro-
phy, suggesting that an etiological link exists between the develop-
ment of depression and BDNF. Supporting this link, the excitatory
neurotransmitter glutamate, voluntary exercise [116], caloric
restriction, intellectual stimulation, curcumin [117], antidepres-
sants [118], electroconvulsive therapy [119], and sleep deprivation
[120] increase expression of BDNF in the brain. Some of these
treatments, such as drugs and electroconvulsive therapy [121],
have been shown to protect or reverse hippocampal atrophy,
which is seen in PTSD.

Although the results are not always in the same direction, a
common single-nucleotide polymorphism in the BDNF gene – a
methionine (Met) substitution for valine (Val) at codon 66 (Val66-
Met) – is associated with alterations in brain anatomy and mem-
ory. Positive associations of the BDNF Val66Met have been
reported with specific symptoms of depressive disorders [122].
Egan and co-workers found a functional relevance of this substitu-
tion and of the lower activity-dependent secretion of BDNF which
is associated with the Met allele as compared to the Val allele
[123,124]. There is an effect of genotype on memory and cognitive
performances [123] and an effect of the Val66Met polymorphism
of BDNF gene on brain morphology, with Met carriers having a re-
duced volume of different brain structures, including hippocam-
pus, parahippocampal gyrus and prefrontal cortex [125,126].

A variant BDNF mouse (BDNFMet/Met) reproduces the pheno-
typic hallmarks in humans with the variant allele. In the mouse,
BDNFMet was expressed in brain at normal levels. However, when
mouse were exposed to stressful conditions, BDNFMet/Met mice
exhibited increased anxiety-related behaviors that were not nor-
malized by the antidepressant and fluoxetine. That suggests that
a variant BDNF may play a key role in genetic predispositions to
anxiety and depressive disorders [127]. As of 2008, Val66Met is
probably the most investigated SNP of the BDNF gene [123,128].
But there are other SNPs in the gene, including C270T,

rs7103411, rs2030324, rs2203877, rs2049045, and rs7124442. Re-
cently, it was reported that the BDNFMet polymorphism contrib-
utes to abnormalities in memory extinction. This abnormality in
extinction learning may be explained by alterations in neuronal
morphology, as well as decreased neural activity in the specific
brain region, the ventromedial prefrontal cortex [129].

Furthermore, the Val66Met polymorphism has also been widely
investigated as a genetic susceptibility risk factor for a large spec-
trum of neuropsychiatric disorders, in particular those with a neuro-
developmental origin [130–132]. For example, Met carriers (Val/
Met and Met/Met) had a significant BDNF protein level reduction
in Amniotic Fluid (AF) comparing to non-carriers (Val/Val), suggest-
ing that AF BDNF levels could be indicative of fetal CNS development
[133] and supporting the involvement of this polymorphism in
behavioral and functional brain individual differences in adulthood.
Since BDNF and its receptor TrkB mRNA increased in the paraven-
tricular nucleus after acoustic challenge and prelimbic BDNF is crit-
ical for consolidation of learned fear memories [134], the role of
BDNF in startle is suggested. Gatt et al. [135] demonstrated a signif-
icant interaction of BDNF with early life stress; BDNF Met carriers
exposed to stress early in life have smaller hippocampal and amyg-
dala volumes, heart rate elevations and a decline in working mem-
ory. The interaction of BDNF Met–stress in early life also predicted
elevated neuroticism and higher depression and anxiety by eleva-
tions in body arousal. In contrast, the combination of BDNF Val/Val
genotype and early life stress predicted increases in gray matter of
the amygdala and associated medial prefrontal cortex, which in turn
predicted startle-elicited heart rate variability and higher anxiety.
Overall, these findings may aid establishing an evidence base for
BDNF and startle research.

Conclusions

There are studies with human subjects demonstrating the asso-
ciation between a list of candidate genes, including COMT, GLRA1,
GlyT2, and 5HTTLPR and startle response. These association studies
in humans were at least partially supported by results of animal
studies. In addition, the information from the animal studies indi-
cates a list of candidate genes that warrant human studies. This re-
view provides a framework for identifying a biomarker for
exaggerated startle response. Despite some issues that remain to
be resolved, the startle response and genotyping appear to provide
a valuable endophenotype for underlying gene and environment
interaction in startle, a hallmark of PTSD.
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