1,270 research outputs found

    An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement

    Full text link
    This paper presents a modified grand canonical ensemble which provides a new simple and efficient scheme to study few-body fluid-like inhomogeneous systems under confinement. The new formalism is implemented to investigate the exact thermodynamic properties of a hard sphere (HS) fluid-like system with up to three particles confined in a spherical cavity. In addition, the partition function of this system was used to analyze the surface thermodynamic properties of the many-HS system and to derive the exact curvature dependence of both the surface tension and adsorption in powers of the density. The expressions for the surface tension and the adsorption were also obtained for the many- HS system outside of a fixed hard spherical object. We used these results to derive the dependence of the fluid-substrate Tolman length up to first order in density.Comment: 6 figures. The paper includes new exact results about hard spheres fluid-like system

    Fluids confined in wedges and by edges: Virial series for the line-thermodynamic properties of hard spheres

    Get PDF
    This work is devoted to analyze the relation between the thermodynamic properties of a confined fluid and the shape of its confining vessel. Recently, new insights in this topic were found through the study of cluster integrals for inhomogeneous fluids that revealed the dependence on the vessel shape of the low density behavior of the system. Here, the statistical mechanics and thermodynamics of fluids confined in wedges or by edges is revisited, focusing on their cluster integrals. In particular, the well known hard sphere fluid, which was not studied in this framework so far, is analyzed under confinement and its thermodynamic properties are analytically studied up to order two in the density. Furthermore, the analysis is extended to the confinement produced by a corrugated wall. These results rely on the obtained analytic expression for the second cluster integral of the confined hard sphere system as a function of the opening dihedral angle 0 < β < 2π. It enables a unified approach to both wedges and edges.Fil: Urrutia, Ignacio. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Mean properties and Free Energy of a few hard spheres confined in a spherical cavity

    Get PDF
    We use analytical calculations and event-driven molecular dynamics simulations to study a small number of hard sphere particles in a spherical cavity. The cavity is taken also as the thermal bath so that the system thermalizes by collisions with the wall. In that way, these systems of two, three and four particles, are considered in the canonical ensemble. We characterize various mean and thermal properties for a wide range of number densities. We study the density profiles, the components of the local pressure tensor, the interface tension, and the adsorption at the wall. This spans from the ideal gas limit at low densities to the high-packing limit in which there are significant regions of the cavity for which the particles have no access, due the conjunction of excluded volume and confinement. The contact density and the pressure on the wall are obtained by simulations and compared to exact analytical results. We also obtain the excess free energy for N=4, by using a simulated-assisted approach in which we combine simulation results with the knowledge of the exact partition function for two and three particles in a spherical cavity.Comment: 11 pages, 9 figures and two table

    Highly charged ions: optical clocks and applications in fundamental physics

    Full text link
    Recent developments in frequency metrology and optical clocks have been based on electronic transitions in atoms and singly charged ions as references. These systems have enabled relative frequency uncertainties at a level of a few parts in 101810^{-18}. This accomplishment not only allows for extremely accurate time and frequency measurements, but also to probe our understanding of fundamental physics, such as variation of fundamental constants, violation of the local Lorentz invariance, and forces beyond the Standard Model of Physics. In addition, novel clocks are driving the development of sophisticated technical applications. Crucial for applications of clocks in fundamental physics are a high sensitivity to effects beyond the Standard Model and Einstein's Theory of Relativity and a small frequency uncertainty of the clock. Highly charged ions offer both. They have been proposed as highly accurate clocks, since they possess optical transitions which can be extremely narrow and less sensitive to external perturbations compared to current atomic clock species. The selection of highly charged ions in different charge states offers narrow transitions that are among the most sensitive ones for a change in the fine-structure constant and the electron-to-proton mass ratio, as well as other new physics effects. Recent advances in trapping and sympathetic cooling of highly charged ions will in the future enable high accuracy optical spectroscopy. Progress in calculating the properties of selected highly charged ions has allowed the evaluation of systematic shifts and the prediction of the sensitivity to the "new physics" effects. This article reviews the current status of theory and experiment in the field.Comment: 53 pages, 16 figures, submitted to RM

    Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications

    Get PDF
    In-vacuo cryogenic environments are ideal for applications requiring both low temperatures and extremely low particle densities. This enables reaching long storage and coherence times for example in ion traps, essential requirements for experiments with highly charged ions, quantum computation, and optical clocks. We have developed a novel cryostat continuously refrigerated with a pulse-tube cryocooler and providing the lowest vibration level reported for such a closed-cycle system with 1 W cooling power for a <5 K experiment. A decoupling system suppresses vibrations from the cryocooler by three orders of magnitude down to a level of 10 nm peak amplitudes in the horizontal plane. Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an experimental chamber, mounted on an optical table, to the cryocooler through a vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long pendulum allows installation of the cryocooler in a separate, acoustically isolated machine room. In the laser laboratory, we measured the residual vibrations using an interferometric setup. The positioning of the 4 K elements is reproduced to better than a few micrometer after a full thermal cycle to room temperature. Extreme high vacuum on the 101510^{-15} mbar level is achieved. In collaboration with the Max-Planck-Intitut f\"ur Kernphysik (MPIK), such a setup is now in operation at the Physikalisch-Technische Bundesanstalt (PTB) for a next-generation optical clock experiment using highly charged ions

    Acute Malnutrition and Under-5 Mortality, Northeastern Part of India.

    Get PDF
    We assessed the prevalence of childhood acute malnutrition and under-five mortality rate (U5MR) in Darbhanga district, India, using a two-stage 49-cluster household survey. A total of 1379 households comprising 8473 people were interviewed. During a 90-day recall period, U5MR was 0.5 [95% confidence interval (CI), 0.2-1.4] per 10 000 per day. The prevalence of global acute malnutrition among 1405 children aged 6-59 months was 15.4% (NCHS) and 19.4% (2006 WHO references). This survey suggests that in Darbhanga district, the population is in a borderline food crisis with few food resources. Appropriate strategies should be developed to improve the overall nutritional and health status of children

    Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls

    Get PDF
    We formulate a straightforward scheme of statistical mechanics for inhomogeneous systems that includes the virial series in powers of the activity for the grand free energy and density distributions. There, cluster integrals formulated for inhomogeneous systems play a main role. We center on second order terms that were analyzed in the case of hard-wall confinement, focusing in planar, spherical and cylindrical walls. Further analysis was devoted to the Lennard-Jones system and its generalization the 2k-k potential. For this interaction potentials the second cluster integral was evaluated analytically. We obtained the fluid-substrate surface tension at second order for the planar, spherical and cylindrical confinement. Spherical and cylindrical cases were analyzed using a series expansion in the radius including higher order terms. We detected a lnR1/R2\ln R^{-1}/R^{2} dependence of the surface tension for the standard Lennard-Jones system confined by spherical and cylindrical walls, no matter if particles are inside or outside of the hard-walls. The analysis was extended to bending and Gaussian curvatures, where exact expressions were also obtained.Comment: 15 pages, 6 figure

    New Observational Bounds to Quantum Gravity Signals

    Get PDF
    We consider a new set of effects arising from the quantum gravity corrections to the propagation of fields, associated with fluctuations of the spacetime geometry. Using already existing experimental data, we can put bounds on these effects that are more stringent by several orders of magnitude than those expected to be obtained in astrophysical observations. In fact these results can be already interpreted as questioning the whole scenario of linear (in lPl_P) corrections to the dispersion relations for free fields in Lorentz violating theories.Comment: Latex, to be published in PR

    Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities

    Full text link
    The Partition function of two Hard Spheres in a Hard Wall Pore is studied appealing to a graph representation. The exact evaluation of the canonical partition function, and the one-body distribution function, in three different shaped pores are achieved. The analyzed simple geometries are the cuboidal, cylindrical and ellipsoidal cavities. Results have been compared with two previously studied geometries, the spherical pore and the spherical pore with a hard core. The search of common features in the analytic structure of the partition functions in terms of their length parameters and their volumes, surface area, edges length and curvatures is addressed too. A general framework for the exact thermodynamic analysis of systems with few and many particles in terms of a set of thermodynamic measures is discussed. We found that an exact thermodynamic description is feasible based in the adoption of an adequate set of measures and the search of the free energy dependence on the adopted measure set. A relation similar to the Laplace equation for the fluid-vapor interface is obtained which express the equilibrium between magnitudes that in extended systems are intensive variables. This exact description is applied to study the thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the analyzed different geometries. We obtain analytically the external work, the pressure on the wall, the pressure in the homogeneous zone, the wall-fluid surface tension, the line tension and other similar properties
    corecore