59 research outputs found

    Association of bovine papillomavirus type 2 (BPV-2) and urinary bladder tumours in cattle from the Azores archipelago

    Get PDF
    Copyright (c) 2010 Elsevier Ltd. All rights reserved.Urinary bladder tumours in cattle are caused by chronic ingestion of bracken fern and BPV-1/2 infection. The objective of the present study was to assess if BPV-2 was present in urinary bladder lesions from cattle with chronic enzootic haematuria (CEH) from the Azores archipelago (Portugal), in order to gain further information regarding the epidemiologic distribution of this virus. Samples were analysed using PCR specific primers for BPV-2 DNA and an immunohistochemistry for BPV E5 oncoprotein detection. We found a 28% incidence rate of BPV-2 DNA in different types of tumours and cystitis cases (13 out of 46 samples). Tested positive samples for PCR were also positive for the viral E5 oncoprotein; protein immunolabeling was mainly detected within the cytoplasm of urothelial cells, displaying a juxtanuclear distribution. This is the first report of BPV-2 detection in urinary bladder tumours associated with CEH in cattle from the Azores archipelago.Direcção Regional da Ciência e Tecnologia, Governo dos Açores, Portugal; Università degli Studi di Napoli Federico-II (Italia); CIRN (Centro de Investigação em Recursos Naturais, Universidade dos Açores) (Portugal)

    Bovine papillomavirus E5 oncoprotein expression and its association with an interactor network in aggresome-autophagy pathway.

    No full text
    E5 protein, the major oncoprotein of bovine Deltapapillomavirus (BPV), was found to be expressed in 18 of 21 examined urothelial cancers of cattle. E5 oncoprotein was found to interact with p62 which was degraded through the autophagosome-lysosome pathway as well as LC3-II and appeared to be involved in the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α). Autophagy was morphologically documented by transmission electron microscope (TEM) through the detection of double-membrane autophagosomes and autolysosomes. Overexpression of Bag3 known to mediate selective autophagy was also demonstrated. Furthermore, Bag3 and BPV E5 oncoprotein were seen to co-localize with dynein and 14-3-3γ, which suggested that Bag3 could be involved in inducing the retrograde transport of BPV E5 along microtubules to aggresomes, perinuclear sites with high autophagic flux. Electron dense perinuclear structures consistent with aggresomes were also documented by TEM in urothelial cancer cells. Finally, Bag3 was found to also interact with synaptopodin 2 (Synpo2), which would seem to contribute to cargo degradation as it has been shown to facilitate autophagosome formation. This study provides mechanistic insights into the potential role(s) of autophagy in BPV disease, which can help to develop future treatment and control measures for BPV infection. Activation of autophagy correlates positively with BPV infection and may play a role in biological behavior of bladder cancer as urothelial carcinomas of cattle are known to be characterized by a relatively low rate of metastasis

    ERas is constitutively expressed in full term placenta of pregnant cows

    No full text
    ERas is a new gene recently found in mouse embryonic stem (ES) cells and localized on the X chromosome. It plays a role in mouse ES cell survival and is constitutively active without any mutations. It was also found to be responsible for the maintenance of quiescence of the hepatic stellate cells (HSCs), liver-resident mesenchymal stem cells, the activation of which results in liver fibrosis. This gene was not present in human ES cells. ERas was found to be activated in a significant population of human gastric cancer, where ERAS may play a crucial role in gastric cancer cell survival and metastases to liver via down-regulation of E-cadherin. ERas gene has been found to be expressed both in ES cells and adult tissues of cynomolgus monkey. Cynomolgus ERAS did not promote cell proliferation or induce tumor formation. ERAS was also detected in normal and neoplastic urothelium of the urinary bladder in cattle, where bovine ERAS formed a constitutive complex with platelet derived growth factor β receptor (PDGFβR) resulting in the activation of AKT signaling. Here, molecular and morphological findings of ERAS in the full term placenta of pregnant cows have been investigated for the first time. ERAS was studied by reverse transcriptase PCR (RT-PCR). Alignment of the sequence detects a 100% identity with all transcript variant bovine ERas mRNAs, present in the GenBank database (http://www.ncbi.nlm.nih.gov). Furthermore, ERAS was detected by Western blot and investigated by real time PCR that revealed an amount of ERAS more than ERAS found in normal bovine urothelium but less than ERAS present in the liver. Immunohistochemical examination revealed the presence of ERAS protein both at the level of plasma membrane and in cytoplasm of epithelial cells lining caruncular crypts and in trophoblasts of villi. An evident ERAS immunoreactivity was also seen throughout the chorionic and uterine gland epithelium. Although this is not a functional study and further investigations will be warranted, it is conceivable that ERAS may have pleiotropic effects in the placenta, some of which, like normal urothelial cells, might lead to activation of AKT pathway. We speculate that ERAS may play a key role in cellular processes such as cell differentiation and movement. Accordingly, we believe it may be an important factor involved in trophoblast invasiveness via AKT signaling pathway. Therefore, ERas gene is a functional gene which contributes to homeostasis of bovine placenta

    Expression of hepcidin and ferroportin in full term placenta of pregnant cows

    No full text
    Hepcidin (HEP) and ferroportin (FPN) play a central role in systemic iron homeostasis. The HEP/FPN axis controls both extracellular iron concentration and total body iron levels. HEP is synthesized mainly by hepatocytes and controls the absorption of dietary iron and the distribution of iron to the various cell types; its synthesis is regulated by both iron and innate immunity. FPN is a membrane protein and the major exporter of iron from mammalian cells, including iron recycling macrophages, iron absorbing duodenal enterocytes, and iron storing hepatocytes. HEP limits the pool of extracellular iron by binding FPN and mediating its degradation, thus preventing its release from intracellular sources. Here we investigated, for the first time, the molecular and morphological expression of HEP and FPN in placenta of pregnant cows at term. Their expression has been evaluated investigating their mRNAs by reverse transcriptase PCR (RT-PCR). Sequencing of related amplicons revealed a 100% identity with HEP and FPN sequences from Bos taurus as reported in the GeneBank (mRNASequence ID: NM_001114508.2 and ID: NM_001077970.1, respectively). HEP and FPN proteins have also been revealed by Western blot analysis and immunohistochemistry. The strongest immunoreactivity for both proteins was observed in the cytoplasm of the trophoblastic cells of the villi and the caruncular crypts of the placentome. Hep mRNA was more representative in caruncular rather cotyledonar areas; on the contrary, Fpn mRNA was more expressed in cotyledonar rather than in caruncular areas. Transcripts of ferritin, transferrin and its receptor have been also documented by real time RT-PCR. HEP and FPN placental proteins may play a dual role. HEP/FPN axis seems to have a central role in infections, with microorganisms within macrophages or that survive in the bloodstream or other cellular spaces. In addition, HEP may be responsible for iron flux regulation as a molecular bridge for iron trafficking and response to infection. FPN may also have a significant role for embryonic development, growth and organogenesis

    An overview of the irreversible electroporation for the treatment of liver metastases: When to use it

    No full text
    Tumour ablation is an established therapy for local treatment of liver metastases and hepatocellular carcinoma. Most commonly two different kind of thermic ablation, radiofrequency ablation and microwave ablation, are used in clinical practice. The aim of both is to induce thermic damage to the malignant cells in order to obtain coagulative necrosis of the neoplastic lesions. Our main concerns about these procedures are the collateral thermic damage to adjacent structures and heat-sink effect. Irreversible electroporation (IRE) is a recently developed, non-thermal ablation procedure which works applying short pulses of direct current that generate an electric field in the lesion area. The electric field increase the transmembrane potential, changing its permeability to ions.Irreversible electroporation does not generate heat, giving the chance to avoid the heat-sink effect and opening the path to a better treatment of all the lesions located in close proximity to big vessels and bile ducts. Electric fields produced by the IRE may affect endothelial cells and cholangiocytes but they spare the collagen matrix, preserving re-epithelization process as well as the function of the damaged structures. Purpose of the authors is to identify the different scenarios where CT-guided percutaneous IRE of the liver should be preferred to other ablative techniques and why
    • …
    corecore