21 research outputs found

    ATM mediated phosphorylation of CHD4 contributes to genome maintenance

    Get PDF
    Background: In order to maintain cellular viability and genetic integrity cells must respond quickly following the\ud induction of cytotoxic double strand DNA breaks (DSB). This response requires a number of processes including\ud stabilisation of the DSB, signalling of the break and repair. It is becoming increasingly apparent that one key step\ud in this process is chromatin remodelling.\ud Results: Here we describe the chromodomain helicase DNA-binding protein (CHD4) as a target of ATM kinase. We\ud show that ionising radiation (IR)-induced phosphorylation of CHD4 affects its intranuclear organization resulting in\ud increased chromatin binding/retention. We also show assembly of phosphorylated CHD4 foci at sites of DNA\ud damage, which might be required to fulfil its function in the regulation of DNA repair. Consistent with this, cells\ud overexpressing a phospho-mutant version of CHD4 that cannot be phosphorylated by ATM fail to show enhanced\ud chromatin retention after DSBs and display high rates of spontaneous damage.\ud Conclusion: These results provide insight into how CHD4 phosphorylation might be required to remodel\ud chromatin around DNA breaks allowing efficient DNA repair to occur

    hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double-strand breaks and its endo-nuclease activity

    Get PDF
    hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.Publisher PDFPeer reviewe

    Nestor-Guillermo Progeria Syndrome: a biochemical insight into Barrier-to-Autointegration Factor 1, alanine 12 threonine mutation

    Get PDF
    Background - Premature aging syndromes recapitulate many aspects of natural aging and provide an insight into this phenomenon at a molecular and cellular level. The progeria syndromes appear to cause rapid aging through disruption of normal nuclear structure. Recently, a coding mutation (c.34G > A [p.A12T]) in the Barrier to Autointegration Factor 1 (BANF1) gene was identified as the genetic basis of Néstor-Guillermo Progeria syndrome (NGPS). This mutation was described to cause instability in the BANF1 protein, causing a disruption of the nuclear envelope structure. Results - Here we demonstrate that the BANF1 A12T protein is indeed correctly folded, stable and that the observed phenotype, is likely due to the disruption of the DNA binding surface of the A12T mutant. We demonstrate, using biochemical assays, that the BANF1 A12T protein is impaired in its ability to bind DNA while its interaction with nuclear envelope proteins is unperturbed. Consistent with this, we demonstrate that ectopic expression of the mutant protein induces the NGPS cellular phenotype, while the protein localizes normally to the nuclear envelope. Conclusions - Our study clarifies the role of the A12T mutation in NGPS patients, which will be of importance for understanding the development of the disease

    hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double-strand breaks and its endo-nuclease activity

    Get PDF
    hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism

    Centrobin regulates the assembly of functional mitotic spindles

    No full text
    The proper function of the spindle is crucial to the high fidelity of chromosome segregation and is indispensable for tumor suppression in humans. Centrobin is a recently identified centrosomal protein that has a role in stabilizing the microtubule structure. Here we functionally characterize the defects in centrosome integrity and spindle assembly in Centrobin-depleted cells. Centrobin-depleted cells show a range of spindle abnormalities including unfocused poles that are not associated with centrosomes, S-shaped spindles and mini spindles. These cells undergo mitotic arrest and subsequently often die by apoptosis, as determined by live cell imaging. Co-depletion of Mad2 relieves the mitotic arrest, indicating that cells arrest due to a failure to silence the spindle checkpoint in metaphase. Consistent with this, Centrobin-depleted metaphase cells stained positive for BubR1 and BubR1 S676. Staining with a panel of centrosome markers showed a loss of centrosome anchoring to the mitotic spindle. Furthermore, these cells show less cold-stable microtubules and a shorter distance between kinetochore pairs. These results show a requirement of Centrobin in maintaining centrosome integrity, which in turn promotes anchoring of mitotic spindle to the centrosomes. Furthermore, this anchoring is required for the stability of microtubule–kinetochore attachments and biogenesis of tension-ridden and properly functioning mitotic spindle

    Metabolomics for the identification of early biomarkers of nephrotoxicity in a mouse model of cisplatin-induced acute kidney injury

    No full text
    Background and purpose: Cisplatin-induced nephrotoxicity manifests as acute kidney injury (AKI) in approximately one third of patients receiving cisplatin therapy. Current measures of AKI are inadequate in detecting AKI prior to significant renal injury, and better biomarkers are needed for early diagnosis of cisplatin-induced AKI. Experimental approach: C57BL/6 and FVB/N mice were treated with a single intraperitoneal injection of cisplatin (15 mg kg−1) or saline. Plasma, urine, and kidney samples were collected prior to cisplatin injection and 24-, 48-, 72-, and 96-hours following cisplatin injection. Untargeted metabolomics was employed using liquid chromatography-mass spectrometry to identify early diagnostic biomarkers for cisplatin nephrotoxicity. Principal results: There was clear metabolic discrimination between saline and cisplatin-treated mice at all timepoints (day 1 to day 4). In total, 26 plasma, urine, and kidney metabolites were identified as exhibiting early alterations following cisplatin treatment. Several of the metabolites showing early alterations were associated with mitochondrial function and energetics, including intermediates of the tricarboxylic acid cycle, regulators of mitochondrial function and indicators of fatty acid β-oxidation dysfunction. Furthermore, several metabolites were derived from the gut microbiome. Major conclusions: Our results highlight the detrimental effects of cisplatin on mitochondrial function and demonstrate potential involvement of the gut microbiome in the pathophysiology of cisplatin-induced AKI. We provide a panel of metabolites to guide future clinical studies of cisplatin-induced AKI and provide insight into potential mechanisms behind cisplatin nephrotoxicity
    corecore