17 research outputs found

    Focused multidimensional scaling : interactive visualization for exploration of high-dimensional data

    Get PDF
    BackgroundVisualization is an important tool for generating meaning from scientific data, but the visualization of structures in high-dimensional data (such as from high-throughput assays) presents unique challenges. Dimension reduction methods are key in solving this challenge, but these methods can be misleading- especially when apparent clustering in the dimension-reducing representation is used as the basis for reasoning about relationships within the data.ResultsWe present two interactive visualization tools, distnet and focusedMDS, that help in assessing the validity of a dimension-reducing plot and in interactively exploring relationships between objects in the data. The distnet tool is used to examine discrepancies between the placement of points in a two dimensional visualization and the points' actual similarities in feature space. The focusedMDS tool is an intuitive, interactive multidimensional scaling tool that is useful for exploring the relationships of one particular data point to the others, that might be useful in a personalized medicine framework.ConclusionsWe introduce here two freely available tools for visually exploring and verifying the validity of dimension-reducing visualizations and biological information gained from these. The use of such tools can confirm that conclusions drawn from dimension-reducing visualizations are not simply artifacts of the visualization method, but are real biological insights.Peer reviewe

    The bradykinin system in stress and anxiety in humans and mice

    Get PDF
    Pharmacological research in mice and human genetic analyses suggest that the kallikrein-kinin system (KKS) may regulate anxiety. We examined the role of the KKS in anxiety and stress in both species. In human genetic association analysis, variants in genes for the bradykinin precursor (KNG1) and the bradykinin receptors (BDKRB1 and BDKRB2) were associated with anxiety disorders (p <0.05). In mice, however, neither acute nor chronic stress affected B1 receptor gene or protein expression, and B1 receptor antagonists had no effect on anxiety tests measuring approach-avoidance conflict. We thus focused on the B2 receptor and found that mice injected with the B2 antagonist WIN 64338 had lowered levels of a physiological anxiety measure, the stress-induced hyperthermia (SIH), vs controls. In the brown adipose tissue, a major thermoregulator, WIN 64338 increased expression of the mitochondrial regulator Pgc1 alpha and the bradykinin precursor gene Kng2 was upregulated after cold stress. Our data suggests that the bradykinin system modulates a variety of stress responses through B2 receptor-mediated effects, but systemic antagonists of the B2 receptor were not anxiolytic in mice. Genetic variants in the bradykinin receptor genes may predispose to anxiety disorders in humans by affecting their function.Peer reviewe

    A novel variant in SMG9 causes intellectual disability, confirming a role for nonsense-mediated decay components in neurocognitive development

    Get PDF
    Biallelic loss-of-function variants in the SMG9 gene, encoding a regulatory subunit of the mRNA nonsense-mediated decay (NMD) machinery, are reported to cause heart and brain malformation syndrome. Here we report five patients from three unrelated families with intellectual disability (ID) and a novel pathogenic SMG9 c.551 T > C p.(Val184Ala) homozygous missense variant, identified using exome sequencing. Sanger sequencing confirmed recessive segregation in each family. SMG9 c.551T > C p.(Val184Ala) is most likely an autozygous variant identical by descent. Characteristic clinical findings in patients were mild to moderate ID, intention tremor, pyramidal signs, dyspraxia, and ocular manifestations. We used RNA sequencing of patients and age- and sex-matched healthy controls to assess the effect of the variant. RNA sequencing revealed that the SMG9 c.551T > C variant did not affect the splicing or expression level of SMG9 gene products, and allele-specific expression analysis did not provide evidence that the nonsense mRNA-induced NMD was affected. Differential gene expression analysis identified prevalent upregulation of genes in patients, including the genes SMOX, OSBP2, GPX3, and ZNF155. These findings suggest that normal SMG9 function may be involved in transcriptional regulation without affecting nonsense mRNA-induced NMD. In conclusion, we demonstrate that the SMG9 c.551T > C missense variant causes a neurodevelopmental disorder and impacts gene expression. NMD components have roles beyond aberrant mRNA degradation that are crucial for neurocognitive development.Peer reviewe

    Polygenic burden has broader impact on health, cognition, and socioeconomic outcomes than most rare and high-risk copy number variants

    Get PDF
    Copy number variants (CNVs) are associated with syndromic and severe neurological and psychiatric disorders (SNPDs), such as intellectual disability, epilepsy, schizophrenia, and bipolar disorder. Although considered high-impact, CNVs are also observed in the general population. This presents a diagnostic challenge in evaluating their clinical significance. To estimate the phenotypic differences between CNV carriers and non-carriers regarding general health and well-being, we compared the impact of SNPD-associated CNVs on health, cognition, and socioeconomic phenotypes to the impact of three genome-wide polygenic risk score (PRS) in two Finnish cohorts (FINRISK, n = 23,053 and NFBC1966, n = 4895). The focus was on CNV carriers and PRS extremes who do not have an SNPD diagnosis. We identified high-risk CNVs (DECIPHER CNVs, risk gene deletions, or large [>1 Mb] CNVs) in 744 study participants (2.66%), 36 (4.8%) of whom had a diagnosed SNPD. In the remaining 708 unaffected carriers, we observed lower educational attainment (EA; OR = 0.77 [95% CI 0.66-0.89]) and lower household income (OR = 0.77 [0.66-0.89]). Income-associated CNVs also lowered household income (OR = 0.50 [0.38-0.66]), and CNVs with medical consequences lowered subjective health (OR = 0.48 [0.32-0.72]). The impact of PRSs was broader. At the lowest extreme of PRS for EA, we observed lower EA (OR = 0.31 [0.26-0.37]), lower-income (OR = 0.66 [0.57-0.77]), lower subjective health (OR = 0.72 [0.61-0.83]), and increased mortality (Cox's HR = 1.55 [1.21-1.98]). PRS for intelligence had a similar impact, whereas PRS for schizophrenia did not affect these traits. We conclude that the majority of working-age individuals carrying high-risk CNVs without SNPD diagnosis have a modest impact on morbidity and mortality, as well as the limited impact on income and educational attainment, compared to individuals at the extreme end of common genetic variation. Our findings highlight that the contribution of traditional high-risk variants such as CNVs should be analyzed in a broader genetic context, rather than evaluated in isolation.Peer reviewe

    Mouse strain-specific differences in transposable element expression following psychosocial stress

    No full text
    Anxiety disorders are the most frequently reported mental health disorder in Europe and treatment outcomes for approximately 30% of patients remains poor. Development of new therapies has been hindered by the fact that neural mechanisms of anxiety disorders are poorly understood. Anxiety is known to be heritable but genetic studies have failed to identify significant gene variants, and it appears that it may not be fully explained by common genetic variation. Recent work has suggested that this 'missing heritability' may in part be explained by epigenetic mechanisms, which include the regulation of transposable elements (TEs). Transposable elements are mobile genetic elements that possess the capability to move their location within a genome. TEs have been found to be specifically repressed in the rodent brain following stress, and also have been found to be overexpressed in human brain tissues and animal models of several neuropsychiatric disorders including schizophrenia and post-traumatic stress disorder. Given the evidence of transposable element overexpression in human patients and animal models of psychiatric disorders, we hypothesized that rodents who underwent psychosocial stress would have differential expression of TEs corresponding to their resilience or susceptibility to anxiety-like behaviors. In this study we examined the expression of transposable elements in C57BL/6Crl and DBA/2Crl inbred mouse strains following chronic social defeat stress. We also examined the baseline levels of six inbred strains (DBA/2J, A/J, 129S/SvImJ, C3H/HeJ, C57BL/6J, and FVB/NJ) that were previously characterized for innate anxiety levels. Overall expression of transposable elements was examined with RNA sequencing, while the expression of Long Interspered Element 1 (LINE-1) family TEs was evaluated with quantitative real-time PCR. We found that following psychosocial defeat, C57BL/6 and DBA/2 animals had strain-specific differences in transposable element expression in the ventral hippocampus but not the medial prefrontal cortex. In the ventral hippocampus, C57BL/6Crl animals resilient to anxiety-like behaviors appeared to have distinctly different transposable element expression profiles compared to control and resilient C57BL/6Crl animals. Conversely, DBA/2Crl animals susceptible to anxiety-like behaviors appeared to have distinctly different transposable element expression profiles from DBA/2Crl controls. We also observed innate strain differences between C57BL/6Crl and DBA/2Crl animals in both the medial prefrontal cortex and the ventral hippocampus and some differences between the six inbred strains in LINE-1 family TE expression. Our findings of differential transposable element expression in the hippocampus following psychosocial stress fits in with the current work on TE activity in the adult brain, which indicates that TE activity in the hippocampus may contribute to adult somatic neural diversity and plasticity. We suggest that a mechanistic effect of variable TE expression may exist that contributes to an individual's susceptibility or resilience to anxiety-like behaviors. Further work identifying de novo TE insertions at the genomic level needs to be done to identify the specific role that differential TE expression may be playing in the neural response to psychosocial stress

    Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD

    No full text
    Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stressor exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops. SPS resulted in acute increases in REM sleep and transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. Reductions in theta (4-10 Hz) and sigma (10-15 Hz) band power during transition to REM sleep also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure

    Functional characterization of six SLCO1B1 (OATP1B1) variants observed in Finnish individuals with a psychotic disorder

    Get PDF
    Variants in the SLCO1B1 (solute carrier organic anion transporter family member 1B1) gene encoding the OATP1B1 (organic anion transporting polypeptide 1B1) protein are associated with altered transporter function that can predispose patients to adverse drug effects with statin treatment. We explored the effect of six rare SLCO1B1 single nucleotide variants (SNVs) occurring in Finnish individuals with a psychotic disorder on expression and functionality of the OATP1B1 protein. The SUPER-Finland study has performed exome sequencing on 9381 individuals with at least one psychotic episode during their lifetime. SLCO1B1 SNVs were annotated with PHRED-scaled combined annotation-dependent (CADD) scores and the Ensembl variant effect predictor. In vitro functionality studies were conducted for the SNVs with a PHRED-scaled CADD score of &gt;10 and predicted to be missense. To estimate possible changes in transport activity caused by the variants, transport of 2′,7′-dichlorofluorescein (DCF) in OATP1B1-expressing HEK293 cells was measured. According to the findings, additional tests with rosuvastatin and estrone sulfate were conducted. The amount of OATP1B1 in crude membrane fractions was quantified using a liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomics analysis. Six rare missense variants of SLCO1B1 were identified in the study population, located in transmembrane helix 3: c.317T&gt;C (p.106I&gt;T), intracellular loop 2: c.629G&gt;T (p.210G&gt;V), c.633A&gt;G (p.211I&gt;M), c.639T&gt;A (p.213N&gt;L), transmembrane helix 6: 820A&gt;G (p.274I&gt;V), and the C-terminal end: 2005A&gt;C (p.669N&gt;H). Of these variants, SLCO1B1 c.629G&gt;T (p.210G&gt;V) resulted in the loss of in vitro function, abolishing the uptake of DCF, estrone sulfate, and rosuvastatin and reducing the membrane protein expression to 31% of reference OATP1B1. Of the six rare missense variants, SLCO1B1 c.629G&gt;T (p.210G&gt;V) causes a loss of function of OATP1B1 transport in vitro and severely decreases membrane protein abundance. Carriers of SLCO1B1 c.629G&gt;T might be susceptible to altered pharmacokinetics of OATP1B1 substrate drugs and might have increased likelihood of adverse drug effects such as statin-associated musculoskeletal symptoms

    Functional Characterization of Six SLCO1B1 (OATP1B1) Variants Observed in Finnish Individuals with a Psychotic Disorder

    No full text
    Variants in the SLCO1B1 (solute carrier organic anion transporter family member 1B1) gene encoding the OATP1B1 (organic anion transporting polypeptide 1B1) protein are associated with altered transporter function that can predispose patients to adverse drug effects with statin treatment. We explored the effect of six rare SLCO1B1 single nucleotide variants (SNVs) occurring in Finnish individuals with a psychotic disorder on expression and functionality of the OATP1B1 protein. The SUPER-Finland study has performed exome sequencing on 9381 individuals with at least one psychotic episode during their lifetime. SLCO1B1 SNVs were annotated with PHRED-scaled combined annotation-dependent (CADD) scores and the Ensembl variant effect predictor. In vitro functionality studies were conducted for the SNVs with a PHRED-scaled CADD score of >10 and predicted to be missense. To estimate possible changes in transport activity caused by the variants, transport of 2 ',7 '-dichlorofluorescein (DCF) in OATP1B1-expressing HEK293 cells was measured. According to the findings, additional tests with rosuvastatin and estrone sulfate were conducted. The amount of OATP1B1 in crude membrane fractions was quantified using a liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomics analysis. Six rare missense variants of SLCO1B1 were identified in the study population, located in transmembrane helix 3: c.317T>C (p.106I>T), intracellular loop 2: c.629G>T (p.210G>V), c.633A>G (p.211I>M), c.639T>A (p.213N>L), transmembrane helix 6: 820A>G (p.274I>V), and the C-terminal end: 2005A>C (p.669N>H). Of these variants, SLCO1B1 c.629G>T (p.210G>V) resulted in the loss of in vitro function, abolishing the uptake of DCF, estrone sulfate, and rosuvastatin and reducing the membrane protein expression to 31% of reference OATP1B1. Of the six rare missense variants, SLCO1B1 c.629G>T (p.210G>V) causes a loss of function of OATP1B1 transport in vitro and severely decreases membrane protein abundance. Carriers of SLCO1B1 c.629G>T might be susceptible to altered pharmacokinetics of OATP1B1 substrate drugs and might have increased likelihood of adverse drug effects such as statin-associated musculoskeletal symptoms.Peer reviewe

    The impact of rare protein coding genetic variation on adult cognitive function

    No full text
    Compelling evidence suggests that human cognitive function is strongly influenced by genetics. Here, we conduct a large-scale exome study to examine whether rare protein-coding variants impact cognitive function in the adult population (n = 485,930). We identify eight genes (ADGRB2, KDM5B, GIGYF1, ANKRD12, SLC8A1, RC3H2, CACNA1A and BCAS3) that are associated with adult cognitive function through rare coding variants with large effects. Rare genetic architecture for cognitive function partially overlaps with that of neurodevelopmental disorders. In the case of KDM5B we show how the genetic dosage of one of these genes may determine the variability of cognitive, behavioral and molecular traits in mice and humans. We further provide evidence that rare and common variants overlap in association signals and contribute additively to cognitive function. Our study introduces the relevance of rare coding variants for cognitive function and unveils high-impact monogenic contributions to how cognitive function is distributed in the normal adult population.Analysis of rare coding variants in the UK Biobank identifies eight genes associated with adult cognitive function, including KDM5B. Rare and common variant signals overlap and contribute additively to the phenotype.Peer reviewe
    corecore