80 research outputs found

    High Trans-ethnic Replicability of GWAS Results Implies Common Causal Variants

    Get PDF
    Genome-wide association studies (GWAS) have detected many disease associations. However, the reported variants tend to explain small fractions of risk, and there are doubts about issues such as the portability of findings over different ethnic groups or the relative roles of rare versus common variants in the genetic architecture of complex disease. Studying the degree of sharing of disease-associated variants across populations can help in solving these issues. We present a comprehensive survey of GWAS replicability across 28 diseases. Most loci and SNPs discovered in Europeans for these conditions have been extensively replicated using peoples of European and East Asian ancestry, while the replication with individuals of African ancestry is much less common. We found a strong and significant correlation of Odds Ratios across Europeans and East Asians, indicating that underlying causal variants are common and shared between the two ancestries. Moreover, SNPs that failed to replicate in East Asians map into genomic regions where Linkage Disequilibrium patterns differ significantly between populations. Finally, we observed that GWAS with larger sample sizes have detected variants with weaker effects rather than with lower frequencies. Our results indicate that most GWAS results are due to common variants. In addition, the sharing of disease alleles and the high correlation in their effect sizes suggest that most of the underlying causal variants are shared between Europeans and East Asians and that they tend to map close to the associated marker SNPs. © 2013 Marigorta, Navarro.This work was supported by a PhD fellowship from the UPF to UMM and grants to AN from the Spanish Ministerio de Ciencia e Innovación (BFU2006-15413-C02-01, BFU2009-13409-C02-02; BFU2012-38236) and FEDER.Peer Reviewe

    Copy number variation analysis in the great apes reveals species-specific patterns of structural variation

    Get PDF
    Gazave, Elodie et al.Copy number variants (CNVs) are increasingly acknowledged as an important source of evolutionary novelties in the human lineage. However, our understanding of their significance is still hindered by the lack of primate CNV data. We performed intraspecific comparative genomic hybridizations to identify loci harboring copy number variants in each of the four great apes: bonobos, chimpanzees, gorillas, and orangutans. For the first time, we could analyze differences in CNV location and frequency in these four species, and compare them with human CNVs and primate segmental duplication (SD) maps. In addition, for bonobo and gorilla, patterns of CNV and nucleotide diversity were studied in the same individuals. We show that CNVs have been subject to different selective pressures in different lineages.Evidence for purifying selection is stronger in gorilla CNVs overlapping genes, while positive selection appears to have driven the fixation of structural variants in the orangutan lineage. In contrast, chimpanzees and bonobos present high levels of common structural polymorphism, which is indicative of relaxed purifying selection together with the higher mutation rates induced by the known burst of segmental duplication in the ancestor of the African apes. Indeed, the impact of the duplication burst is noticeable by the fact that bonobo and chimpanzee share more CNVs with gorilla than expected. Finally, we identified a number of interesting genomic regions that present high-frequency CNVs in all great apes, while containing only very rare or even pathogenic structural variants in humans.Financial support was provided by a Beatriu de Pinos postdoctoral Grant to E.G., the Spanish Ministry of Science and Innovation (Grant BFU2009-13409-02-02toA.N.),and the Spanish National Institute for Bioinformatics (INB, www.inab.org).Peer reviewe

    Recent human evolution has shaped geographical differences in susceptibility to disease

    Get PDF
    Background: Searching for associations between genetic variants and complex diseases has been a very active area of research for over two decades. More than 51,000 potential associations have been studied and published, a figure that keeps increasing, especially with the recent explosion of array-based Genome-Wide Association Studies. Even if the number of true associations described so far is high, many of the putative risk variants detected so far have failed to be consistently replicated and are widely considered false positives. Here, we focus on the world-wide patterns of replicability of published association studies.Results: We report three main findings. First, contrary to previous results, genes associated to complex diseases present lower degrees of genetic differentiation among human populations than average genome-wide levels. Second, also contrary to previous results, the differences in replicability of disease associated-loci between Europeans and East Asians are highly correlated with genetic differentiation between these populations. Finally, highly replicated genes present increased levels of high-frequency derived alleles in European and Asian populations when compared to African populations.Conclusions: Our findings highlight the heterogeneous nature of the genetic etiology of complex disease, confirm the importance of the recent evolutionary history of our species in current patterns of disease susceptibility and could cast doubts on the status as false positives of some associations that have failed to replicate across populations

    Local genetic variation of inflammatory bowel disease in Basque population and its effect in risk prediction

    Get PDF
    [EN] Inflammatory bowel disease (IBD) is characterised by chronic inflammation of the gastrointestinal tract. Although its aetiology remains unknown, environmental and genetic factors are involved in its development. Regarding genetics, more than 200 loci have been associated with IBD but the transferability of those signals to the Basque population living in Northern Spain, a population with distinctive genetic background, remains unknown. We have analysed 5,411,568 SNPs in 498 IBD cases and 935 controls from the Basque population. We found 33 suggestive loci (p 0.68. In conclusion, we report on the genetic architecture of IBD in the Basque population, and explore the performance of European-descent genetic risk scores in this population.Samples and data used in the present work were provided by the Basque Biobank (http://www.biobancovasco.org).We want to thank Miguel Angel Vesga from the Basque Centre of Transfusion and Human Tissues for providing the access to control samples. This work was founded to MD by Gipuzkoako Foru Aldundia/Diputacion Foral de Gipuzkoa. The project that gave rise to these results rece

    microRNA-based signatures obtained from endometrial fluid identify implantative endometrium

    Get PDF
    STUDY QUESTION Is it possible to use free and extracellular vesicle-associated microRNAs (miRNAs) from human endometrial fluid (EF) samples as non-invasive biomarkers for implantative endometrium? SUMMARY ANSWER The free and extracellular vesicle-associated miRNAs can be used to detect implantative endometrium in a non-invasive manner. WHAT IS KNOWN ALREADY miRNAs and extracellular vesicles (EVs) from EF have been described as mediators of the embryo-endometrium crosstalk. Therefore, the analysis of miRNA from this fluid could become a non-invasive technique for recognizing implantative endometrium. This analysis could potentially help improve the implantation rates in ART. STUDY DESIGN, SIZE, DURATION In this prospective study, we first optimized different protocols for EVs and miRNA analyses using the EF of a setup cohort (n = 72). Then, we examined differentially expressed miRNAs in the EF of women with successful embryo implantation (discovery cohort n = 15/validation cohort n = 30) in comparison with those for whom the implantation had failed (discovery cohort n = 15/validation cohort n = 30). Successful embryo implantation was considered when pregnancy was confirmed by vaginal ultrasound showing a gestational sac 4 weeks after embryo transfer (ET). PARTICIPANTS/MATERIALS, SETTING, METHODS The EF of the setup cohort was obtained before starting fertility treatment during the natural cycle, 16-21 days after the beginning of menstruation. For the discovery and validation cohorts, the EF was collected from women undergoing frozen ET on Day 5, and the samples were collected immediately before ET. In this study, we compared five different methods; two of them based on direct extraction of RNA and the other three with an EV enrichment step before the RNA extraction. Small RNA sequencing was performed to determine the most efficient method and find a predictive model differentiating between implantative and non-implantative endometrium. The models were confirmed using quantitative PCR in two sets of samples (discovery and validation cohorts) with different implantation outcomes. MAIN RESULTS AND THE ROLE OF CHANCE The protocols using EV enrichment detected more miRNAs than the methods based on direct RNA extraction. The two most efficient protocols (using polymer-based precipitation (PBP): PBP-M and PBP-N) were used to obtain two predictive models (based on three miRNAs) allowing us to distinguish between an implantative and non-implantative endometrium. The first Model 1 (PBP-M) (discovery: AUC = 0.93; P-value = 0.003; validation: AUC = 0.69; P-value = 0.019) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-148b-3p. Model 2 (PBP-N) (discovery: AUC = 0.92; P-value = 0.0002; validation: AUC = 0.78; P-value = 0.0002) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-99b-5p. Functional analysis of these miRNAs showed strong association with key implantation processes such as in utero embryonic development or transforming growth factor-beta signaling. LARGE SCALE DATA The FASTQ data are available in the GEO database (access number GSE178917). LIMITATIONS, REASONS FOR CAUTION One important factor to consider is the inherent variability among the women involved in the trial and among the transferred embryos. The embryos were pre-selected based on morphology, but neither genetic nor molecular studies were conducted, which would have improved the accuracy of our tests. In addition, a limitation in miRNA library construction is the low amount of input RNA. WIDER IMPLICATIONS OF THE FINDINGS We describe new non-invasive protocols to analyze miRNAs from small volumes of EF. These protocols could be implemented in clinical practice to assess the status of the endometrium before attempting ET. Such evaluation could help to avoid the loss of embryos transferred to a non-implantative endometrium. STUDY FUNDING/COMPETING INTEREST(S) J.I.-P. was supported by a predoctoral grant from the Basque Government (PRE_2017_0204). This study was partially funded by the Grant for Fertility Innovation (GFI, 2011) from Merck (Darmstadt, Germany). It was also supported by the Spanish Ministry of Economy and Competitiveness MINECO within the National Plan RTI2018-094969-B-I00, the European Union's Horizon 2020 research and innovation program (860303), the Severo Ochoa Centre of Excellence Innovative Research Grant (SEV-2016-0644) and the Instituto de Salud Carlos III (PI20/01131). The funding entities did not play any role in the study design, collection, analysis and interpretation of data, writing of the report or the decision to submit the article for publication. The authors declare no competing interests.J.I.-P. was supported by a predoctoral grant from the Basque Government (PRE_2017_0204). This study was partially funded by the Grant for Fertility Innovation (GFI, 2011) from Merck (Darmstadt, Germany). The project was also supported by the Spanish Ministry of Economy and Competitiveness MINECO within the national plan RTI2018-094969-B-I00, the European Union's Horizon 2020 research and innovation program (860303), the Severo Ochoa Centre of Excellence Innovative Research Grant (SEV-2016-0644) and the Instituto de Salud Carlos III (PI20/01131). The funding entities did not have any role in study design, sample collection, analysis and interpretation of data, report writing or decision to submit the article for publication

    Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes

    Get PDF
    Type 2 diabetes (T2D) is a very common disease in humans. Here we conduct a meta-analysis of genome-wide association studies (GWAS) with ~16 million genetic variants in 62,892 T2D cases and 596,424 controls of European ancestry. We identify 139 common and 4 rare variants associated with T2D, 42 of which (39 common and 3 rare variants) are independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2765) with the GWAS results identifies 33 putative functional genes for T2D, 3 of which were targeted by approved drugs. A further integration of DNA methylation (n = 1980) and epigenomic annotation data highlight 3 genes (CAMK1D, TP53INP1, and ATP5G1) with plausible regulatory mechanisms, whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. Our study uncovers additional loci, proposes putative genetic regulatory mechanisms for T2D, and provides evidence of purifying selection for T2D-associated variants

    Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits

    Refining Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Genetic Loci by Integrating Summary Data From Genome-wide Association, Gene Expression, and DNA Methylation Studies

    Get PDF
    Background: Recent genome-wide association studies (GWASs) identified the first genetic loci associated with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The next step is to use these results to increase our understanding of the biological mechanisms involved. Most of the identified variants likely influence gene regulation. The aim of the current study is to shed light on the mechanisms underlying the genetic signals and prioritize genes by integrating GWAS results with gene expression and DNA methylation (DNAm) levels. Methods: We applied summary-data–based Mendelian randomization to integrate ADHD and ASD GWAS data with fetal brain expression and methylation quantitative trait loci, given the early onset of these disorders. We also analyzed expression and methylation quantitative trait loci datasets of adult brain and blood, as these provide increased statistical power. We subsequently used summary-data–based Mendelian randomization to investigate if the same variant influences both DNAm and gene expression levels. Results: We identified multiple gene expression and DNAm levels in fetal brain at chromosomes 1 and 17 that were associated with ADHD and ASD, respectively, through pleiotropy at shared genetic variants. The analyses in brain and blood showed additional associated gene expression and DNAm levels at the same and additional loci, likely because of increased statistical power. Several of the associated genes have not been identified in ADHD and ASD GWASs before. Conclusions: Our findings identified the genetic variants associated with ADHD and ASD that likely act through gene regulation. This facilitates prioritization of candidate genes for functional follow-up studies
    • 

    corecore