115 research outputs found

    Genome-wide association mapping of iron homeostasis in the maize association population

    Get PDF
    BACKGROUND: Iron (Fe) deficiency in plants is the result of low Fe soil availability affecting 30% of cultivated soils worldwide. To improve our understanding on Fe-efficiency this study aimed to (i) evaluate the influence of two different Fe regimes on morphological and physiological trait formation, (ii) identify polymorphisms statistically associated with morphological and physiological traits, and (iii) dissect the correlation between morphological and physiological traits using an association mapping population. RESULTS: The fine-mapping analyses on quantitative trait loci (QTL) confidence intervals of the intermated B73 Ă— Mo17 (IBM) population provided a total of 13 and 2 single nucleotide polymorphisms (SNPs) under limited and adequate Fe regimes, respectively, which were significantly (FDR = 0.05) associated with cytochrome P450 94A1, invertase beta-fructofuranosidase insoluble isoenzyme 6, and a low-temperature-induced 65 kDa protein. The genome-wide association (GWA) analyses under limited and adequate Fe regimes provided in total 18 and 17 significant SNPs, respectively. CONCLUSIONS: Significantly associated SNPs on a genome-wide level under both Fe regimes for the traits leaf necrosis (NEC), root weight (RW), shoot dry weight (SDW), water (H (2)O), and SPAD value of leaf 3 (SP3) were located in genes or recognition sites of transcriptional regulators, which indicates a direct impact on the phenotype. SNPs which were significantly associated on a genome-wide level under both Fe regimes with the traits NEC, RW, SDW, H (2)O, and SP3 might be attractive targets for marker assisted selection as well as interesting objects for future functional analyses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-014-0153-0) contains supplementary material, which is available to authorized users

    Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress

    Get PDF
    BACKGROUND: Climate change will lead in the future to an occurrence of heat waves with a higher frequency and duration than observed today, which has the potential to cause severe damage to seedlings of temperate maize genotypes. In this study, we aimed to (I) assess phenotypic variation for heat tolerance of temperate European Flint and Dent maize inbred lines, (II) investigate the transcriptomic response of temperate maize to linearly increasing heat levels and, (III) identify genes associated with heat tolerance in a set of genotypes with contrasting heat tolerance behaviour. RESULTS: Strong phenotypic differences with respect to heat tolerance were observed between the examined maize inbred lines on a multi-trait level. We identified 607 heat responsive genes as well as 39 heat tolerance genes. CONCLUSION: Our findings indicate that individual inbred lines developed different genetic mechanisms in response to heat stress. We applied a novel statistical approach enabling the integration of multiple genotypes and stress levels in the analysis of abiotic stress expression studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1282-1) contains supplementary material, which is available to authorized users

    The genetic basis of natural variation for iron homeostasis in the maize IBM population

    Get PDF
    BACKGROUND: Iron (Fe) deficiency symptoms in maize (Zea mays subsp. mays) express as leaf chlorosis, growth retardation, as well as yield reduction and are typically observed when plants grow in calcareous soils at alkaline pH. To improve our understanding of genotypical variability in the tolerance to Fe deficiency-induced chlorosis, the objectives of this study were to (i) determine the natural genetic variation of traits related to Fe homeostasis in the maize intermated B73 × Mo17 (IBM) population, (ii) to identify quantitative trait loci (QTLs) for these traits, and (iii) to analyze expression levels of genes known to be involved in Fe homeostasis as well as of candidate genes obtained from the QTL analysis. RESULTS: In hydroponically-grown maize, a total of 47 and 39 QTLs were detected for the traits recorded under limited and adequate supply of Fe, respectively. CONCLUSIONS: From the QTL results, we were able to identify new putative candidate genes involved in Fe homeostasis under a deficient or adequate Fe nutritional status, like Ferredoxin class gene, putative ferredoxin PETF, metal tolerance protein MTP4, and MTP8. Furthermore, our expression analysis of candidate genes suggested the importance of trans-acting regulation for 2’-deoxymugineic acid synthase 1 (DMAS1), nicotianamine synthase (NAS3, NAS1), formate dehydrogenase 1 (FDH1), methylthioribose-1-phosphate isomerase (IDI2), aspartate/tyrosine/aromatic aminotransferase (IDI4), and methylthioribose kinase (MTK)

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    The effects of customer equity drivers on loyalty across services industries and firms

    Get PDF
    Customer equity drivers (CEDs)—value equity, brand equity, and relationship equity—positively affect loyalty intentions, but this effect varies across industries and firms. We empirically examine potential industry and firm characteristics that explain why the CEDs–loyalty link varies across services industries and firms in the Netherlands. The results show that (1) some previously assumed industry and firm characteristics have moderating effects while others do not and (2) firm-level advertising expenditures constitute the most crucial moderator because they influence all three loyalty strategies (significant for value equity and brand equity; marginally significant for relationship equity), while three industry contexts (i.e., innovative markets, visibility to others, and complexity of purchase decisions) each influence two of the three loyalty strategies. Our results clearly show that specific industry and firm characteristics affect the effectiveness of specific loyalty strategies
    • …
    corecore