141 research outputs found

    Evidence of reinforcement of premating isolation between two species of the genus Ochthebius (Coleoptera : Hydraenidae)

    Get PDF
    The increase in premating reproductive isolation between recently diverged and potentially interbreeding taxa resulting from selection against hybridization (reinforcement) is one of the most contentious issues in evolutionary biology. After many years of debate, its plausibility under various conditions has been shown by theoretical studies and some cases have been documented. At present, interest is arising about the frequency and importance of reinforcement in nature. Ochthebius quadricollis and Ochthebius sp. A are two hydraenid beetles inhabiting marine rock pools in the Mediterranean basin. By molecular analysis of a contact zone between the two species along the Italian Tyrrhenian coast, full reproductive isolation between the two species was evidenced. However, the finding of introgressed specimens at some diagnostic loci suggested that gene flow occurred in the past but then ceased. In this article, by analyzing species composition of mating couples collected in sympatric localities, we show the existence of strong assortative mating between the two species in nature. In laboratory multiple-choice mating trials, sympatric populations showed greater assortative mating than allopatric populations. Reinforcement is suggested as the most parsimonious hypothesis to explain the evolution of discriminative mate recognition systems occurring among O. quadricollis and Ochthebius sp. A under sympatric, but not allopatric, populations

    Dynamics of mtDNA introgression during species range expansion. Insights from an experimental longitudinal study

    Get PDF
    Introgressive hybridization represents one of the long-lasting debated genetic consequences of species range expansion. Mitochondrial DNA has been shown to heavily introgress between interbreeding animal species that meet in new sympatric areas and, often, asymmetric introgression from local to the colonizing populations has been observed. Disentangling among the evolutionary and ecological processes that might shape this pattern remains difficult, because they continuously act across time and space. In this context, long-term studies can be of paramount importance. Here, we investigated the dynamics of mitochondrial introgression between two mosquito species (Aedes mariae and Ae. zammitii ) during a colonization event that started in 1986 after a translocation experiment. By analyzing 1,659 individuals across 25 years, we showed that introgression occurred earlier and at a higher frequency in the introduced than in the local species, showing a pattern of asymmetric introgression. Throughout time, introgression increased slowly in the local species, becoming reciprocal at most sites. The rare opportunity to investigate the pattern of introgression across time during a range expansion along with the characteristics of our study-system allowed us to support a role of demographic dynamics in determining the observed introgression pattern

    Cannibalism in temporary waters. Simulations and laboratory experiments revealed the role of spatial shape in the mosquito Aedes albopictus

    Get PDF
    Cannibalism is a commonly observed phenomenon in arthropod species having relevant consequences for population dynamics and individual fitness. It is a context-dependent behaviour and an understanding of the factors affecting cannibalism rate is crucial to highlight its ecological relevance. In mosquitoes, cannibalism between larval stages has been widely documented, and the role of density, food availability and length of contact between individuals also ascertained. However, although mosquitoes can develop in temporary water habitats with very heterogeneous topologies, the role of the site shape where cannibals and victims co-occur has been instead overlooked. In this paper, we investigated this issue by using a simulation approach and laboratory cannibalism experiments between old (third- and fourth-instars) and young (first-instar) larvae of the tiger mosquito Aedes albopictus. Three virtual spaces with different shapes were simulated and the number of larval encounters was estimated in each one to assess whether the spatial shape affected the number of encounters between cannibal and victims. Then, experimental trials in containers with similar shapes to those used in the simulations were performed, and the cannibalism rate was estimated at 24 and 48h. Our results showed that the spatial shape plays a role on cannibalism interactions, affecting the number of encounters between individuals. Indeed, in the experimental trials performed, we observed the highest cannibalism rate in the container with the highest number of encounters predicted by the simulations. Interestingly, we found also that spatial shape can affect cannibalism not only by affecting the number of encounters, but also the number of encounters ªfavorableº for cannibalistic events. Temporary waters are inhabited by several species other than mosquitoes. Our results, showing an influence of the spatial shape on cannibalism in Ae. albopictus larvae, add a new critical factor to those affecting ecological interactions in these habitats

    The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using RNA-Seq

    Get PDF
    Animals respond to chemical stress with an array of gene families and pathways termed "chemical defensome". In arthropods, despite many defensome genes have been detected, how their activation is arranged during toxic exposure remains poorly understood. Here, we sequenced the transcriptome of Anopheles stephensi larvae exposed for six, 24 and 48 hours to the LD50 dose of the insecticide permethrin to monitor transcriptional changes of defensome genes across time. A total of 177 genes involved in insecticide defense were differentially expressed (DE) in at least one time-point, including genes encoding for Phase 0, I, II, III and antioxidant enzymes and for Heat Shock and Cuticular Proteins. Three major patterns emerged throughout time. First, most of DE genes were down-regulated at all time-points, suggesting a reallocation of energetic resources during insecticide stress. Second, single genes and clusters of genes turn off and on from six to 48 hours of treatment, showing a modulated response across time. Third, the number of up-regulated genes peaked at six hours and then decreased during exposure. Our results give a first picture of how defensome gene families respond against toxicants and provide a valuable resource for understanding how defensome genes work together during insecticide stress

    Identification and Detection of a Novel Point Mutation in the Chitin Synthase Gene of Culex Pipiens Associated With Diflubenzuron Resistance

    Get PDF
    Diflubenzuron (DFB) is one of the most used insecticides in mosquito larval control including that of Culex pipiens, the proven vector of the recent West Nile Virus epidemics in Europe. Two mutations (I1043L and I1043M) in the chitin synthase (CHS) putative binding site of DFB have been previously reported in Cx. pipiens from Italy and associated with high levels of resistance against this larvicide

    Integrated de novo transcriptome of Culex pipiens mosquito larvae as a resource for genetic control strategies

    Get PDF
    We present a de novo transcriptome of the mosquito vector Culex pipiens, assembled by sequences of susceptible and insecticide resistant larvae. The high quality of the assembly was confirmed by TransRate and BUSCO. A mapping percentage until 94.8% was obtained by aligning contigs to Nr, SwissProt, and TrEMBL, with 27,281 sequences that simultaneously mapped on the three databases. A total of 14,966 ORFs were also functionally annotated by using the eggNOG database. Among them, we identified ORF sequences of the main gene families involved in insecticide resistance. Therefore, this resource stands as a valuable reference for further studies of differential gene expression as well as to identify genes of interest for genetic-based control tools

    Genetic divergence and reproductive isolation in the Ochthebius (Calobius) complex (Coleoptera: Hydraenidae)

    No full text
    The reproductive isolation in hydrenid beetles of the Ochthebius complex was studied by analysing gene exchange in natural populations of O. quadricollis, Ochthebius sp. A and O. brevicollis steinbuehleri collected along the Mediterranean coasts. The ranges of these three species are largely allopatric, but sympatric areas were detected between contiguous taxa, ie, O. quadricollis and Ochthebius sp. A; Ochthebius sp. A and O. b. steinbuehleri. Three levels of reproductive isolation and genetic divergence were observed. One level involves extensive intraspecific genetic divergence within the biological species O. quadricollis, Ochthebius sp. A and O. brevicollis, associated with both physical barriers (eg, sea and sand stretches) and the low dispersal capacity of larvae and adults. The finding of transitional samples between the most differentiated population groups should indicate, however, that there is still some gene flow between the populations of the three taxa. Another level is found between Ochthebius sp. A and O. b. steinbuehleri, whose gene pools appear to be fairly distinct in spite of the fact that reproductive isolation is still incomplete: in their few syntopic sites, some F, hybrids appeared indeed to have lower fitness, since backcrosses or recombinant genotypes were never observed. The final level in the evolution of reproductive isolation (full reproductive isolation) has been achieved by the species O. quadricollis and Ochthebius sp. A. No F, or F, hybrids, nor backcrosses were found in their sympatric areas. The relative importance of ecological factors and evolutionary forces in the prevention of gene exchange between taxa are discussed
    • …
    corecore