299 research outputs found

    Neuronal and glial prostaglandin D synthase isozymes in chick dorsal root ganglia: a light and electron microscopic immunocytochemical study.

    Get PDF
    Homogenates of chick dorsal root ganglia (DRG) and in vitro cultures of DRG neurons are known to synthesize prostaglandin (PG) D2. To specify the PGD synthase isozymes controlling PGD2 synthesis in DRG and to identify the DRG cells responsible for this synthesis, we applied polyclonal antibodies raised against rat brain or rat spleen PGD synthase isozymes to vibratome or cryostat slices of DRG previously fixed with a formaldehyde-lysine-periodate mixture and permeabilized with Triton X-100. The immunoreactivity indicating rat spleen PGD synthase, a glutathione (GSH)-requiring enzyme, was located in satellite cells encompassing particular large neurons of class A and in Schwann cells myelinating and enwrapping their initial axonal segments. In contrast, the immunoreactivity of rat brain PGD synthase, a GSH-independent enzyme, was restricted to particular ganglion cell perikarya: 33% of the DRG neurons were immunostained for rat brain PGD synthase, including 2% of large class A neurons and 40% of small class B neurons. Only 3.3% of rat brain PGD synthase-immunoreactive small B neurons coexpressed substance P, indicating that the immunoreactive neurons belong to the B1 subclass. By electron microscopy, 71 of 72 immunoreactive DRG cells were identified as small B neurons of the B1 subclass, and 71 of 77 B1 neurons were immunoreactive for rat brain PGD synthase. These results demonstrate that PGD2 formation in DRG is regulated by two isozymes: the GSH-requiring isozyme located in satellite and Schwann cells and the GSH-independent isozyme-confined to small B1 neurons

    Involvement of S-nitrosylation of actin in inhibition of neurotransmitter release by nitric oxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of the diffusible messenger nitric oxide (NO) in the regulation of pain transmission is still a debate of matter, pro-nociceptive and/or anti-nociceptive. <it>S</it>-Nitrosylation, the reversible post-translational modification of selective cysteine residues in proteins, has emerged as an important mechanism by which NO acts as a signaling molecule. The occurrence of <it>S</it>-nitrosylation in the spinal cord and its targets that may modulate pain transmission remain unclarified. The "biotin-switch" method and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were employed for identifying <it>S</it>-nitrosylated proteins.</p> <p>Results</p> <p>Here we show that actin was a major protein <it>S</it>-nitrosylated in the spinal cord by the NO donor, <it>S</it>-nitroso-<it>N</it>-acetyl-DL-penicillamine (SNAP). Interestingly, actin was <it>S</it>-nitrosylated, more in the S2 fraction than in the P2 fraction of the spinal homogenate. Treatment of PC12 cells with SNAP caused rapid <it>S</it>-nitrosylation of actin and inhibited dopamine release from the cells. Just like cytochalasin B, which depolymerizes actin, SNAP decreased the amount of filamentous actin cytoskeleton just beneath the membrane. The inhibition of dopamine release was not attenuated by inhibitors of soluble guanylyl cyclase and cGMP-dependent protein kinase.</p> <p>Conclusion</p> <p>The present study demonstrates that actin is a major <it>S</it>-nitrosylated protein in the spinal cord and suggests that NO directly regulates neurotransmitter release by <it>S</it>-nitrosylation in addition to the well-known phosphorylation by cGMP-dependent protein kinase.</p

    Lipocalin prostaglandin D synthase and PPARγ2 coordinate to regulate carbohydrate and lipid metabolism in vivo

    Get PDF
    Mice lacking Peroxisome Proliferator-Activated Receptor γ2 (PPARγ2) have unexpectedly normal glucose tolerance and mild insulin resistance. Mice lacking PPARγ2 were found to have elevated levels of Lipocalin prostaglandin D synthase (L-PGDS) expression in BAT and subcutaneous white adipose tissue (WAT). To determine if induction of L-PGDS was compensating for a lack of PPARγ2, we crossed L-PGDS KO mice to PPARγ2 KO mice to generate Double Knock Out mice (DKO). Using DKO mice we demonstrated a requirement of L-PGDS for maintenance of subcutaneous WAT (scWAT) function. In scWAT, DKO mice had reduced expression of thermogenic genes, the de novo lipogenic program and the lipases ATGL and HSL. Despite the reduction in markers of lipolysis in scWAT, DKO mice had a normal metabolic rate and elevated serum FFA levels compared to L-PGDS KO alone. Analysis of intra-abdominal white adipose tissue (epididymal WAT) showed elevated expression of mRNA and protein markers of lipolysis in DKO mice, suggesting that DKO mice may become more reliant on intra-abdominal WAT to supply lipid for oxidation. This switch in depot utilisation from subcutaneous to epididymal white adipose tissue was associated with a worsening of whole organism metabolic function, with DKO mice being glucose intolerant, and having elevated serum triglyceride levels compared to any other genotype. Overall, L-PGDS and PPARγ2 coordinate to regulate carbohydrate and lipid metabolism

    Meningothelial Cells React to Elevated Pressure and Oxidative Stress

    Get PDF
    BACKGROUND: Meningothelial cells (MECs) are the cellular components of the meninges enveloping the brain. Although MECs are not fully understood, several functions of these cells have been described. The presence of desmosomes and tight junctions between MECs hints towards a barrier function protecting the brain. In addition, MECs perform endocytosis and, by the secretion of cytokines, are involved in immunological processes in the brain. However, little is known about the influence of pathological conditions on MEC function; e.g., during diseases associated with elevated intracranial pressure, hypoxia or increased oxidative stress. METHODS: We studied the effect of elevated pressure, hypoxia, and oxidative stress on immortalized human as well as primary porcine MECs. We used MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) bioreduction assays to assess the proliferation of MECs in response to treatment and compared to untreated control cells. To assess endocytotic activity, the uptake of fluorescently labeled latex beads was analyzed by fluorescence microscopy. RESULTS: We found that exposure of MECs to elevated pressure caused significant cellular proliferation and a dramatic decrease in endocytotic activity. In addition, mild oxidative stress severely inhibited endocytosis. CONCLUSION: Elevated pressure and oxidative stress impact MEC physiology and might therefore influence the microenvironment of the subarachnoid space and thus the cerebrospinal fluid within this compartment with potential negative impact on neuronal function

    Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans.

    Get PDF
    BACKGROUND/OBJECTIVES: Obesity has been associated with both changes in adipose tissue lipid metabolism and inflammation. A key class of lipid-derived signalling molecules involved in inflammation are the prostaglandins. In this study, we aimed to determine how obesity affects the levels of prostaglandins within white adipose tissue (WAT) and determine which cells within adipose tissue produce them. To avoid the effects of cellular stress on prostaglandin levels, we developed a multivariate statistical approach in which metabolite concentrations and transcriptomic data were integrated, allowing the assignment of metabolites to cell types. SUBJECTS/METHODS: Eicosanoids were measured by liquid chromatography-tandem mass spectrometry and mRNA levels using real-time PCR. Eicosanoid levels and transcriptomic data were combined using principal component analysis and hierarchical clustering in order to associate metabolites with cell types. Samples were obtained from C57Bl/6 mice aged 16 weeks. We studied the ob/ob genetically obese mouse model and diet-induced obesity model. We extended our results in mice to a cohort of morbidly obese humans undergoing bariatric surgery. RESULTS: Using our modelling approach, we determined that prostglandin D₂ (PGD₂) in adipose tissue was predominantly produced in macrophages by the haematopoietic isoform of prostaglandin D synthase (H-Pgds). Analysis of sub-fractionated WAT confirmed that H-Pgds was expressed in adipose tissue macrophages (ATMs). Furthermore, H-Pgds expression in ATMs isolated from lean and obese mice was consistent with it affecting macrophage polarisation. Functionally, we demonstrated that H-PGDS-produced PGD₂ polarised macrophages toward an M2, anti-inflammatory state. In line with a potential anti-inflammatory role, we found that H-PGDS expression in ATMs was positively correlated with both peripheral insulin and adipose tissue insulin sensitivity in humans. CONCLUSIONS: In this study, we have developed a method to determine the cellular source of metabolites within an organ and used it to identify a new role for PGD₂ in the control of ATM polarisation.HQL-79 was a kind gift of Professor Yoshihiro Urade. Professor Vidal-Puig was funded by the BHF, MRC and BBSRC. Dr Virtue was funded by the BBSRC and the BHF. Dr Eiden, Dr Masoodi and Dr Griffin were funded by the MRC. Dr Mok was funded by the Wellcome Trust.This is the final published version. It first appeared at http://www.nature.com/ijo/journal/vaop/ncurrent/full/ijo201534a.htm

    DNA microarray data integration by ortholog gene analysis reveals potential molecular mechanisms of estrogen-dependent growth of human uterine fibroids

    Get PDF
    BACKGROUND: Uterine fibroids or leiomyoma are a common benign smooth muscle tumor. The tumor growth is well known to be estrogen-dependent. However, the molecular mechanisms of its estrogen-dependency is not well understood. METHODS: Differentially expressed genes in human uterine fibroids were either retrieved from published papers or from our own statistical analysis of downloaded array data. Probes for the same genes on different Affymetrix chips were mapped based on probe comparison information provided by Affymetrix. Genes identified by two or three array studies were submitted for ortholog analysis. Human and rat ortholog genes were identified by using ortholog gene databases, HomoloGene and TOGA and were confirmed by synteny analysis with MultiContigView tool in the Ensembl genome browser. RESULTS: By integrated analysis of three recently published DNA microarray studies with human tissue, thirty-eight genes were found to be differentially expressed in the same direction in fibroid compared to adjacent uterine myometrium by at least two research groups. Among these genes, twelve with rat orthologs were identified as estrogen-regulated from our array study investigating uterine expression in ovariectomized rats treated with estrogen. Functional and pathway analyses of the twelve genes suggested multiple molecular mechanisms for estrogen-dependent cell survival and tumor growth. Firstly, estrogen increased expression of the anti-apoptotic PCP4 gene and suppressed the expression of growth inhibitory receptors PTGER3 and TGFBR2. Secondly, estrogen may antagonize PPARγ signaling, thought to inhibit fibroid growth and survival, at two points in the PPAR pathway: 1) through increased ANXA1 gene expression which can inhibit phospholipase A2 activity and in turn decrease arachidonic acid synthesis, and 2) by decreasing L-PGDS expression which would reduce synthesis of PGJ2, an endogenous ligand for PPARγ. Lastly, estrogen affects retinoic acid (RA) synthesis and mobilization by regulating expression of CRABP2 and ALDH1A1. RA has been shown to play a significant role in the development of uterine fibroids in an animal model. CONCLUSION: Integrated analysis of multiple array datasets revealed twelve human and rat ortholog genes that were differentially expressed in human uterine fibroids and transcriptionally responsive to estrogen in the rat uterus. Functional and pathway analysis of these genes suggest multiple potential molecular mechanisms for the poorly understood estrogen-dependent growth of uterine fibroids. Fully understanding the exact molecular interactions among these gene products requires further study to validate their roles in uterine fibroids. This work provides new avenues of study which could influence the future direction of therapeutic intervention for the disease
    corecore