200 research outputs found

    Renormalization group approach to the normal phase of 2D Fermi gases

    Get PDF
    We present results on the effect of short-range, attractive interactions on the properties of balanced 2D Fermi gases in the non-superfluid (normal) phase. Our approach combines the renormalization group (RG) with perturbation theory, yielding observables such as the equation of state and compressibility. We find good agreement with recent experiments that measured the equation of state in trapped gases in the balanced regime, showing that these results are consistent with logarithmic corrections in the equation of state.Comment: 7 pages, 4 figure

    ASSESSMENT OF THE NUTRITIONAL BEHAVIOUR AMONG COLLEGE STUDENTS-A SURVEY

    Get PDF
    Objective: To assess the nutritional behaviour among college students.Methods: A prospective observational survey was conducted randomly among college students in Guntur. A self-administered data collection form was designed to understand the nutritional behaviour of the subjects.Results: A total of 300 subjects were included in the study, among them 225(75%) were females and 75(25%) were males. The survey revealed that most of them skipped their meals. A majority of 184(61.33%) students opted for high-fat diet and 268(89.33%) opted for starch-rich foods. A total of 222(74%) students usually eat four different varieties of vegetables but only 71(23.66%) of them eat fruits in each week.Conclusion: From this study, it was evident that majority of students have poor dietary habits. Lack of awareness on balanced diet and due to their busy schedules, teenagers were not maintaining a proper diet. This could be reduced by bringing minimum awareness on dietary habits to them. Taking proper diet is very essential to reduce the risk of diseases in future and to improve nourishment

    Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency

    Get PDF
    Citation: Serba, D. D., Uppalapati, S. R., Krom, N., Mukherjee, S., Tang, Y. H., Mysore, K. S., & Saha, M. C. (2016). Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. Bmc Genomics, 17, 14. doi:10.1186/s12864-016-3377-8Background: Switchgrass, a warm-season perennial grass studied as a potential dedicated biofuel feedstock, is classified into two main taxa - lowland and upland ecotypes - that differ in morphology and habitat of adaptation. But there is limited information on their inherent molecular variations. Results: Transcriptome analysis by RNA-sequencing (RNA-Seq) was conducted for lowland and upland ecotypes to document their gene expression variations. Mapping of transcriptome to the reference genome (Panicum virgatum v1. 1) revealed that the lowland and upland ecotypes differ substantially in sets of genes transcribed as well as levels of expression. Differential gene expression analysis exhibited that transcripts related to photosynthesis efficiency and development and photosystem reaction center subunits were upregulated in lowlands compared to upland genotype. On the other hand, catalase isozymes, helix-loop-helix, late embryogenesis abundant group I, photosulfokinases, and S-adenosyl methionine synthase gene transcripts were upregulated in the upland compared to the lowlands. At >= 100x coverage and >= 5% minor allele frequency, a total of 25,894 and 16,979 single nucleotide polymorphism (SNP) markers were discovered for VS16 (upland ecotype) and K5 (lowland ecotype) against the reference genome. The allele combination of the SNPs revealed that the transition mutations are more prevalent than the transversion mutations. Conclusions: The gene ontology (GO) analysis of the transcriptome indicated lowland ecotype had significantly higher representation for cellular components associated with photosynthesis machinery controlling carbon fixation. In addition, using the transcriptome data, SNP markers were detected, which were distributed throughout the genome. The differentially expressed genes and SNP markers detected in this study would be useful resources for traits mapping and gene transfer across ecotypes in switchgrass breeding for increased biomass yield for biofuel conversion

    Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes

    Get PDF
    Citation: Ohta, N., Ishiguro, S., Kawabata, A., Uppalapati, D., Pyle, M., Troyer, D., . . . Tamura, M. (2015). Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes. Plos One, 10(5), 17. doi:10.1371/journal.pone.0123756Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naive UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression

    Exopolysaccharides extracted from Parachlorella kessleri inhibit colon carcinoma growth in mice via stimulation of host antitumor immune responses

    Get PDF
    Citation: Ishiguro, S., Uppalapati, D., Goldsmith, Z., Robertson, D., Hodge, J., Holt, H., . . . Tamura, M. (2017). Exopolysaccharides extracted from Parachlorella kessleri inhibit colon carcinoma growth in mice via stimulation of host antitumor immune responses. Plos One, 12(4), 21. https://doi.org/10.1371/journal.pone.0175064The newly purified extracellular polysaccharides (exopolysaccharides) from Parachlorella kessleri (PCEPS) were evaluated on their antitumor and immunomodulatory effects in cell culture and mouse colon carcinoma peritoneal dissemination model. In two-dimensional cell culture, the PCEPS treatment inhibited cell growth of both murine and human colon carcinoma cells in a dose- and time-dependent manner. In contrast, the growth of mouse splenocytes (SPLs) and bone marrow cells (BMCs) were stimulated by the treatment with PCEPS. The treatment with PCEPS also increased specific subpopulations of the cells in BMCs: antigen presenting cells (CD19(+) B cells, 33D1(+) dendritic cells and CD68(+) macrophage) and CD8(+) cytotoxic T cells. In three-dimensional spheroid culture, spheroid growth of CT26 cells co-cultured with HL-60 human neutrophilic promyeloblasts and Jurkat cells (human lymphoblasts), but not THP1 human monocyte/macrophage was significantly attenuated by PCEPS treatment. In a mouse CT26 colon carcinoma peritoneal dissemination model, intraperitoneal injection of PCEPS (10 mg/kg, twice per week) significantly attenuated the growth of CT26 colon carcinoma in syngeneic mice. The present study suggests that PCEPS inhibits colon carcinoma growth via direct cell growth inhibition and a stimulation of the host antitumor immune responses. Taken together, the current study suggests that exopolysaccharides derived from Parachlorella kessleri contain significant bioactive materials that inhibit colon carcinoma growth

    Is there a positive effect of participation on a clinical trial for patients with advanced non-small cell lung cancer?

    Get PDF
    Background: There is general belief that patients who enrolled on a clinical trial have better outcomes compared to those who are treated outside of a trial. We analyzed if there was a \u2032trial effect\u2032 for patients with advanced non-small cell lung cancer (NSCLC) treated with chemotherapy. Materials and methods: A retrospective analysis of cohorts of patients with advanced NSCLC who received chemotherapy inside and outside of a clinical trial were analyzed for response rates (RR), progression free survival (PFS), overall survival (OS), 1 and 2 year survival. Results: There were 194 patients who received chemotherapy of which, 54 were on a clinical trial and 140 outside of it. For the whole group, the RR, median PFS, OS, one and two-year survivals were 35.4%, six months (range, 2-70), seven months (range, 2-72), 29.8% and 9.7% respectively. The differences in RR and PFS of patients who were treated inside and outside of a clinical trial were not significant (P=0.6164, 0.0881). The differences in median OS and one-year survivals between the groups were significant (P=0.0052, 0.022). For the whole group, patients who received II line chemotherapy had better OS (P\ua30.0001). More patients in the trial group received II line chemotherapy (P=0.0004).The difference in the median OS between the groups continued to be significant even after patients who received II line chemotherapy were censored (P=0.0437). Conclusion: Patients with advanced NSCLC who were treated inside of a clinical trial had better OS compared to those who were treated outside of it

    A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000

    Get PDF
    Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection
    • …
    corecore