13 research outputs found

    Regional climate projections in two alpine river basins: Upper Danube and Upper Brahmaputra

    Get PDF
    Projections from coarse-grid global circulation models are not suitable for regional estimates of water balance or trends of extreme precipitation and temperature, especially not in complex terrain. Thus, downscaling of global to regionally resolved projections is necessary to provide input to integrated water resources management approaches for river basins like the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB). This paper discusses the application of the regional climate model COSMO-CLM as a dynamical downscaling tool. To provide accurate data the COSMO-CLM model output was post-processed by statistical means. This downscaling chain performs well in the baseline period 1971 to 2000. However, COSMO-CLM performs better in the UDRB than in the UBRB because of a longer application experience and a less complex climate in Europe. Different climate change scenarios were downscaled for the time period 1960–2100. The projections show an increase of temperature in both basins and for all seasons. The values are generally higher in the UBRB with the highest values occurring in the region of the Tibetan Plateau. Annual precipitation shows no substantial change. However, seasonal amounts show clear trends, for instance an increasing amount of spring precipitation in the UDRB. Again, the largest trends for different precipitation statistics are projected in the region of the Tibetan Plateau. Here, the projections show up to 50% longer dry periods in the months June to September with a simultaneous increase of about 10% for the maximum amount of precipitation on five consecutive days. For the Assam region in India, the projections also show an increase of 25% in the number of consecutive dry days during the monsoon season leading to prolonged monsoon breaks

    Distance in spatial interpolation of daily rain gauge data

    Get PDF
    Spatial interpolation of rain gauge data is important in forcing of hydrological simulations or evaluation of weather predictions, for example. The spatial density of available data sites is often changing with time. This paper investigates the application of statistical distance, like one minus common variance of time series, between data sites instead of geographical distance in interpolation. Here, as a typical representative of interpolation methods the inverse distance weighting interpolation is applied and the test data is daily precipitation observed in Austria. Choosing statistical distance instead of geographical distance in interpolation of an actually available coarse observation network yields more robust interpolation results at sites of a denser network with actually lacking observations. The performance enhancement is in or close to mountainous terrain. This has the potential to parsimoniously densify the currently available observation network. Additionally, the success further motivates search for conceptual rain-orography interaction models as components of spatial rain interpolation algorithms in mountainous terrain

    Spatial patterns of North Atlantic Oscillation influence on mass balance variability of European glaciers

    Get PDF
    We present and validate a set of minimal models of glacier mass balance variability. The most skillful model is then applied to reconstruct 7735 individual time series of mass balance variability for all glaciers in the European Alps and Scandinavia. Subsequently, we investigate the influence of atmospheric variability associated with the North Atlantic Oscillation (NAO) on the glaciers' mass balances. <br><br> We find a spatial coherence in the glaciers' sensitivity to NAO forcing which is caused by regionally similar mechanisms relating the NAO forcing to the mass balance: in southwestern Scandinavia, winter precipitation causes a correlation of mass balances with the NAO. In northern Scandinavia, temperature anomalies outside the core winter season cause an anti-correlation between NAO and mass balances. In the western Alps, both temperature and winter precipitation anomalies lead to a weak anti-correlation of mass balances with the NAO, while in the eastern Alps, the influences of winter precipitation and temperature anomalies tend to cancel each other, and only on the southern side a slight anti-correlation of mass balances with the NAO prevails

    Long-term summer sunshine/moisture stress reconstruction from tree-ring widths from Bosnia and Herzegovina

    Get PDF
    We present the first summer sunshine reconstruction from tree-ring data for the western part of the Balkan Peninsula. Summer sunshine is tightly connected with moisture stress in trees, because the moisture stress and therefore the width of annual tree-rings is under the influence of the direct and interactive effects of sunshine duration (temperature, precipitation, cloud cover and evapotranspiration). The reconstruction is based on a calibrated z-scored mean chronology, calculated from tree-ring width measurements from 7 representative black pine (<i>Pinus nigra</i> Arnold) sites in Bosnia and Herzegovina (BiH). A combined regression and scaling approach was used for the reconstruction of the summer sunshine. We found a significant negative correlation (<i>r</i> = &minus;0.54, <i>p</i> < 0.0001) with mean June–July sunshine hours from Osijek meteorological station (Croatia). The developed model was used for reconstruction of summer sunshine for the time period 1660–2010. We identified extreme summer events and compared them to available documentary historical sources of drought, volcanic eruptions and other reconstructions from the broader region. All extreme summers with low sunshine hours (1712, 1810, 1815, 1843, 1899 and 1966) are connected with volcanic eruptions

    The growing and vital role of botanical gardens in climate change research.

    Full text link
    Botanical gardens make unique contributions to climate change research, conservation, and public engagement. They host unique resources, including diverse collections of plant species growing in natural conditions, historical records, and expert staff, and attract large numbers of visitors and volunteers. Networks of botanical gardens spanning biomes and continents can expand the value of these resources. Over the past decade, research at botanical gardens has advanced our understanding of climate change impacts on plant phenology, physiology, anatomy, and conservation. For example, researchers have utilized botanical garden networks to assess anatomical and functional traits associated with phenological responses to climate change. New methods have enhanced the pace and impact of this research, including phylogenetic and comparative methods, and online databases of herbarium specimens and photographs that allow studies to expand geographically, temporally, and taxonomically in scope. Botanical gardens have grown their community and citizen science programs, informing the public about climate change and monitoring plants more intensively than is possible with garden staff alone. Despite these advances, botanical gardens are still underutilized in climate change research. To address this, we review recent progress and describe promising future directions for research and public engagement at botanical gardens.Publisher versio

    A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data

    Get PDF
    Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes, and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness, and growing season length) often termed “land surface phenology,” as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data-processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multiscale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams, and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization

    Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys

    Get PDF
    Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS

    Climate change and mountain water resources: overview and recommendations for research, management and policy

    Get PDF
    Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy. &lt;br&gt;&lt;br&gt; After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields. &lt;br&gt;&lt;br&gt; We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction

    Study of possible restoration of a defunct water reservoir within the enhancement of a landscape retention potential

    Get PDF
    Tato bakalářská práce je zaměřena na problematiku obnovy malých vodních nádrží v rámci možného zvýšení retenčního potenciálu krajiny. První část práce je věnována literární rešerši a obecnému seznámení s možnostmi retence vody v krajině. V další kapitole této bakalářské práce se čtenář seznámí s fyzicko-geografickou charakteristikou zájmové lokality s důrazem na hydrologickou analýzu doplněnou o data z měrných profilů Českého hydrometeorologického ústavu.Práce se v praktické části věnuje vytipovaným zaniklým nádržím, které jsou dle Povodí Ohře s.p. vhodné k možné obnově. Pomocí vlastního 3D modelu a fotogrammetrické mapy se v tomto díle analyzuje výše zmíněný zájem.The aim of this research is to explore the challenges of renewing small water reservoir in order to improve soil water retention. First of all, the paper provides a systematic review of a secondary research, focusing on a general understanding of soil water retention. Furthermore, this study analyses physiogeographic properties of the interest side, particularly focusing on hydrological analysis of this area. This investigation is supported by the data from Czech Hydrogeological Institute.The objective of the primary research is to analyse demolished dams that could be rebuilt according to Povodi Ohre s.p. . Theoretical framework is supported by a primary research in form of a 3D model of the focused landscape as well as its photogrammetric map
    corecore