532 research outputs found

    Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat Hindlimb Ischemia Model.

    Get PDF
    ObjectiveThis study aimed to examine acellular extracellular matrix based hydrogels as potential therapies for treating peripheral artery disease (PAD). We tested the efficacy of using a tissue specific injectable hydrogel, derived from decellularized porcine skeletal muscle (SKM), compared to a new human umbilical cord derived matrix (hUC) hydrogel, which could have greater potential for tissue regeneration because of its young tissue source age.BackgroundThe prevalence of PAD is increasing and can lead to critical limb ischemia (CLI) with potential limb amputation. Currently there are no therapies for PAD that effectively treat all of the underlying pathologies, including reduced tissue perfusion and muscle atrophy.MethodsIn a rodent hindlimb ischemia model both hydrogels were injected 1-week post-surgery and perfusion was regularly monitored with laser speckle contrast analysis (LASCA) to 35 days post-injection. Histology and immunohistochemistry were used to assess neovascularization and muscle health. Whole transcriptome analysis was further conducted on SKM injected animals on 3 and 10 days post-injection.ResultsSignificant improvements in hindlimb tissue perfusion and perfusion kinetics were observed with both biomaterials. End point histology indicated this was a result of arteriogenesis, rather than angiogenesis, and that the materials were biocompatible. Skeletal muscle fiber morphology analysis indicated that the muscle treated with the tissue specific, SKM hydrogel more closely matched healthy tissue morphology. Short term histology also indicated arteriogenesis rather than angiogenesis, as well as improved recruitment of skeletal muscle progenitors. Whole transcriptome analysis indicated that the SKM hydrogel caused a shift in the inflammatory response, decreased cell death, and increased blood vessel and muscle development.ConclusionThese results show the efficacy of an injectable ECM hydrogel alone as a potential therapy for treating patients with PAD. Our results indicate that the SKM hydrogel improved functional outcomes through stimulation of arteriogenesis and muscle progenitor cell recruitment

    Specialization and integration of brain responses to object recognition and location detection

    Get PDF
    Visual information is processed in the brain primarily through two distinct pathways, the dorsal and the ventral visual streams. The present functional magnetic resonance imaging study investigated the specialization and integration of dorsal and ventral streams using tasks of object recognition and location detection. The study included 22 healthy adult volunteers who viewed stimuli consisting of grayscale photographs of common household objects presented in blocked design. Participants were asked to either recognize an object or to locate its position. While the location detection task elicited greater activation in the dorsal visual stream, recognizing objects showed greater activation in the middle occipital gyri, left inferior temporal gyrus, and in the left inferior frontal gyrus. The integration between dorsal and ventral brain areas was stronger during location detection than during object recognition. In addition, a principal components analysis found preliminary evidence for a group of regions, such as frontal and parietal cortex, working together in this task. Overall, the results of this study indicate the existence of specialized modules for object recognition and location detection, and possible interactions between areas beyond the visual cortex that may play a role in such tasks

    Contributions from cognitive neuroscience to understanding functional mechanisms of visual search.

    Get PDF
    We argue that cognitive neuroscience can contribute not only information about the neural localization of processes underlying visual search, but also information about the functional nature of these processes. First we present an overview of recent work on whether search for form - colour conjunctions is constrained by processes involved in binding across the two dimensions. Patients with parietal lesions show a selective problem with form - colour conjunctive search relative to a more difficult search task not requiring cross-dimensional binding. This is consistent with an additional process - cross-dimensional binding - being involved in the conjunctive search task. We then review evidence from preview search using electrophysiological, brain imaging, and neuropsychological techniques suggesting preview benefits in search are not simply due to onset capture. Taken together the results highlight the value of using converging evidence from behavioural studies of normal observers and studies using neuroscientific methods. © 2006 Psychology Press Ltd

    How does aging influence object-location and name-location binding during a visual short-term memory task?

    Get PDF
    Objective: Age-related impairments in human visual short-term memory (VSTM) may reflect a reduced ability to retain bound object representations, viz., object form, name, spatial, and temporal location (so called ‘memory sources’). Our objective is to examine how healthy aging affects VSTM in a battery of memory recognition tasks in which sequentially presented objects, locations, and names (as auditory stimuli) were learned, with one component cued at test. Methods: Thirty-six young healthy adults (18-30 years) and 36 normally aging older adults (>60 years with no underlying health and vision issues) completed five VSTM tasks: 1. Object recognition for two or four objects; 2. Spatial location recognition for two or four objects; 3. Bound object-location recognition for two or four objects; 4. Object recognition with location priming for two or four objects; 5. Bound name (auditory)-location (cross-modal) recognition for four objects. Results: Significantly lower performance for older adults was found in spatial location recognition [task 2, p=0.03, 2 (memory loads) × 2 (age groups) ANOVA], bound object-location recognition [task 3, p˂0.001, 2 (memory loads) × 2 (age groups) ANOVA], object recognition with location priming [task 4, p=0.02, 2 (memory loads) × 2 (age groups) ANOVA], and bound name-location recognition [task 5, p=0.001, independent samples t-test] tasks. A significant age group-task interaction was found (p =0.02) Conclusion: Performance for all tests except test 1 was impaired in older adults. Lower performance for older adults was most significant in VSTM tasks requiring object-location (visual only) or name-location (auditory and visual) binding. The findings are compatible with the ‘memory source’ model, demonstrating that age-related binding performance is influenced by spatial coding and location priming deficits

    Effects of mixed versus blocked design on stimulus evaluation: combining underaddative effects.

    Get PDF
    (from the journal abstract) According to the asynchronous discrete coding model of Miller, two manipulations should display underadditive effects on reaction time if they slow down noncontingent stages associated with the processing of two separable dimensions of a stimulus. Underadditive effects are also predicted by a dual route model when a task variable is factorially varied with design type (mixed vs blocked). Interpretations of both underadditive effects and their combination were evaluated. Intact and degraded stimuli were presented to 18 young adults either in a single block (mixed) or in separate blocks (blocked). Spatial stimulus-response (S-R) compatibility was manipulated in all conditions. Stimulus degradation and S-R compatibility interacted underadditively, but only in blocked presentations. Both interpretations of underadditive effects were supported. Eye-movement registrations provided additional support for the alternative routes model

    Binding - a proposed experiment and a model

    Get PDF
    The binding problem is regarded as one of today's key questions about brain function. Several solutions have been proposed, yet the issue is still controversial. The goal of this article is twofold. Firstly, we propose a new experimental paradigm requiring feature binding, the "delayed binding response task". Secondly, we propose a binding mechanism employing fast reversible synaptic plasticity to express the binding between concepts. We discuss the experimental predictions of our model for the delayed binding response task

    Eye movements and hazard perception in active and passive driving

    Get PDF
    Differences in eye movement patterns are often found when comparing passive viewing paradigms to actively engaging in everyday tasks. Arguably, investigations into visuomotor control should therefore be most useful when conducted in settings that incorporate the intrinsic link between vision and action. We present a study that compares oculomotor behaviour and hazard reaction times across a simulated driving task and a comparable, but passive, video-based hazard perception task. We found that participants scanned the road less during the active driving task and fixated closer to the front of the vehicle. Participants were also slower to detect the hazards in the driving task. Our results suggest that the interactivity of simulated driving places increased demand upon the visual and attention systems than simply viewing driving movies. We offer insights into why these differences occur and explore the possible implications of such findings within the wider context of driver training and assessment

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory
    corecore