745 research outputs found
Light-harvesting superstructures of green plant chloroplasts lacking photosystems
"This is the peer reviewed version of the following article: Belgio, E., Ungerer, P., and Ruban, A. V. (2015) Light-harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Environ, 38: 2035–2047. doi: 10.1111/pce.12528.which has been published in final form at https://dx.10.1111/pce.12528. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This work was supported by TheLeverhulme Trust and BBSRC research grants to A.V.R
Systematic Investigation of Novel, Controlled Low‐Temperature Sintering Processes for Inkjet Printed Silver Nanoparticle Ink
Functional inks enable manufacturing of flexible electronic devices by means of printing technology. Silver nanoparticle (Ag NP) ink is widely used for printing conductive components. A sintering process is required to obtain sufficient conductivity. Thermal sintering is the most commonly used method, but the heat must be carefully applied to avoid damaging low-temperature substrates such as polymer films. In this work, two alternative sintering methods, damp heat sintering and water sintering are systematically investigated for inkjet-printed Ag tracks on polymer substrates. Both methods allow sintering polyvinyl pyrrolidone (PVP) capped Ag NPs at 85°C. In this way, the resistance is significantly reduced to only 1.7 times that of the samples on polyimide sintered in an oven at 250°C. The microstructure of sintered Ag NPs is analyzed. Taking the states of the capping layer under different conditions into account, the explanation of the sintering mechanism of Ag NPs at low temperatures is presented. Overall, both damp heat sintering and water sintering are viable options for achieving high conductivity of printed Ag tracks. They can broaden the range of substrates available for flexible electronic device fabrication while mitigating substrate damage risks. The choice between them depends on the specific application and the substrate used
Mission moves
This scholarly book is the final result of a team-research project, done by ten Practical Theologians from three denominations in the Reformed tradition in South Africa. The authors posed the following research problem and-question: What would be the relationship (if any) between preaching (and the liturgy of which it is a part) and the development of missional congregations? And secondly, what kind of preaching and preacher would best serve (even facilitate) such a process of missional congregational development in preaching and worship
Finite temperature stability and dimensional crossover of exotic superfluidity in lattices
We investigate exotic paired states of spin-imbalanced Fermi gases in
anisotropic lattices, tuning the dimension between one and three. We calculate
the finite temperature phase diagram of the system using real-space dynamical
mean-field theory in combination with the quantum Monte Carlo method. We find
that regardless of the intermediate dimensions examined, the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state survives to reach about one third
of the BCS critical temperature of the spin-density balanced case. We show how
the gapless nature of the state found is reflected in the local spectral
function. While the FFLO state is found at a wide range of polarizations at low
temperatures across the dimensional crossover, with increasing temperature we
find out strongly dimensionality-dependent melting characteristics of shell
structures related to harmonic confinement. Moreover, we show that intermediate
dimension can help to stabilize an extremely uniform finite temperature FFLO
state despite the presence of harmonic confinement.Comment: 5 pages, 3 figure
The relationship between consumer ethnocentrism, cosmopolitanism and product country image among younger generation consumers: the moderating role of country development status
Although the differences between developed and developing countries have been extensively studied in the context of globalization strategies, few studies have so far been conducted on the relationship between country development status and the possession by countries of a favorable (or unfavorable) product country image (PCI). Moreover, the results of such studies to date have been inconclusive. The purpose of this paper is to investigate the moderating role of country developmental status on PCI coupled with two antecedents of PCI, namely consumer ethnocentrism and cosmopolitanism. The paper also distinguishes between the PCI of the home and foreign country images of respondents. We test a new model that incorporates these constructs with a sample of 2655 younger generation consumers. The results show that country development status moderates some relationships but does not moderate others. These findings have significant implications for international companies from both developed and developing countries when developing global strategy
Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model
An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile
Banking union in historical perspective: the initiative of the European Commission in the 1960s-1970s
This article shows that planning for the organization of EU banking regulation and supervision did not just appear on the agenda in recent years with discussions over the creation of the eurozone banking union. It unveils a hitherto neglected initiative of the European Commission in the 1960s and early 1970s. Drawing on extensive archival work, this article explains that this initiative, however, rested on a number of different assumptions, and emerged in a much different context. It first explains that the Commission's initial project was not crisis-driven; that it articulated the link between monetary integration and banking regulation; and finally that it did not set out to move the supervisory framework to the supranational level, unlike present-day developments
Observational Constraints on Interstellar Grain Alignment
We present new multicolor photo-polarimetry of stars behind the Southern
Coalsack. Analyzed together with multiband polarization data from the
literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus
clouds, we show that the wavelength of maximum polarization (lambda_max) is
linearly correlated with the radiation environment of the grains. Using
Far-Infrared emission data, we show that the large scatter seen in previous
studies of lambda_max as a function of A_V is primarily due to line of sight
effects causing some A_V measurements to not be a good tracer of the extinction
(radiation field strength) seen by the grains being probed. The derived slopes
in lambda_max vs. A_V, for the individual clouds, are consistent with a common
value, while the zero intercepts scale with the average values of the ratios of
total-to-selective extinction (R_V) for the individual clouds. Within each
cloud we do not find direct correlations between lambda_max and R_V. The
positive slope in consistent with recent developments in theory and indicating
alignment driven by the radiation field. The present data cannot conclusively
differentiate between direct radiative torques and alignment driven by H_2
formation. However, the small values of lambda_max(A_V=0), seen in several
clouds, suggest a role for the latter, at least at the cloud surfaces. The
scatter in the lambda_max vs. A_V relation is found to be associated with the
characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We
propose that this is partially due to locally increased plasma damping of the
grain rotation caused by X-rays from the YSOs.Comment: Accepted for publication in the Astrophysical Journa
Mission moves
This scholarly book is the final result of a team-research project, done by ten Practical Theologians from three denominations in the Reformed tradition in South Africa. The authors posed the following research problem and-question: What would be the relationship (if any) between preaching (and the liturgy of which it is a part) and the development of missional congregations? And secondly, what kind of preaching and preacher would best serve (even facilitate) such a process of missional congregational development in preaching and worship
In-situ Tuning of the Electric Dipole Strength of a Double Dot Charge Qubit: Charge Noise Protection and Ultra Strong Coupling
Semiconductor quantum dots, where electrons or holes are isolated via
electrostatic potentials generated by surface gates, are promising building
blocks for semiconductor-based quantum technology. Here, we investigate double
quantum dot (DQD) charge qubits in GaAs, capacitively coupled to high-impedance
SQUID array and Josephson junction array resonators. We tune the strength of
the electric dipole interaction between the qubit and the resonator in-situ
using surface gates. We characterize the qubit-resonator coupling strength,
qubit decoherence, and detuning noise affecting the charge qubit for different
electrostatic DQD configurations. We find that all quantities can be tuned
systematically over more than one order of magnitude, resulting in reproducible
decoherence rates MHz in the limit of high interdot
capacitance. Conversely, by reducing the interdot capacitance, we can increase
the DQD electric dipole strength, and therefore its coupling to the resonator.
By employing a Josephson junction array resonator with an impedance of
k and a resonance frequency of GHz, we observe
a coupling strength of MHz, demonstrating the possibility to
achieve the ultrastrong coupling regime (USC) for electrons hosted in a
semiconductor DQD. These results are essential for further increasing the
coherence of quantum dot based qubits and investigating USC physics in
semiconducting QDs.Comment: 24 pages, 13 figure
- …