In-situ Tuning of the Electric Dipole Strength of a Double Dot Charge Qubit: Charge Noise Protection and Ultra Strong Coupling

Abstract

Semiconductor quantum dots, where electrons or holes are isolated via electrostatic potentials generated by surface gates, are promising building blocks for semiconductor-based quantum technology. Here, we investigate double quantum dot (DQD) charge qubits in GaAs, capacitively coupled to high-impedance SQUID array and Josephson junction array resonators. We tune the strength of the electric dipole interaction between the qubit and the resonator in-situ using surface gates. We characterize the qubit-resonator coupling strength, qubit decoherence, and detuning noise affecting the charge qubit for different electrostatic DQD configurations. We find that all quantities can be tuned systematically over more than one order of magnitude, resulting in reproducible decoherence rates Γ2/2π< 5\Gamma_2/2\pi<~5 MHz in the limit of high interdot capacitance. Conversely, by reducing the interdot capacitance, we can increase the DQD electric dipole strength, and therefore its coupling to the resonator. By employing a Josephson junction array resonator with an impedance of ∼4\sim4 kΩ\Omega and a resonance frequency of ωr/2π∼5.6\omega_r/2\pi \sim 5.6 GHz, we observe a coupling strength of g/2π∼630g/2\pi \sim 630 MHz, demonstrating the possibility to achieve the ultrastrong coupling regime (USC) for electrons hosted in a semiconductor DQD. These results are essential for further increasing the coherence of quantum dot based qubits and investigating USC physics in semiconducting QDs.Comment: 24 pages, 13 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions