782 research outputs found

    An open framework for highly concurrent hardware-in-the-loop simulation

    Get PDF
    Hardware-in-the-loop (HIL) simulation is becoming a significant tool in prototyping complex, highly available systems. The HIL approach allows an engineer to build a physical system incrementally by enabling real components of the system to seamlessly interface with simulated components. It also permits testing of hardware prototypes of components that would be extremely costly to test in the deployed environment. Key issues are the ability to wrap the systems of equations (such as Partial Differential Equations) describing the deployed environment into real-time software models, provide low synchronization overhead between the hardware and software, and reduce reliance on proprietary platforms. This thesis introduces an open source HIL simulation framework that can be ported to any standard Unix-like system on any shared-memory multiprocessor computer, requires minimal operating system scheduler controls, provides a soft real-time guarantee for any constituent simulation that does likewise, enables an asynchronous user interface, and allows for an arbitrary number of secondary control components --Abstract, page iii

    The Effects of Hydrostatic Pressure on Early Endothelial Tubulogenic Processes

    Get PDF
    The effects of mechanical forces on endothelial cell function and behavior are well documented, but have not been fully characterized. Specifically, fluid pressure has been shown to elicit physical and chemical responses known to be involved in the initiation and progression of endothelial cell-mediated vascularization. Central to the process of vascularization is the formation of tube-like structures. This process—tubulogenesis—is essential to both the physiological and pathological growth of tissues. Given the known effects of pressure on endothelial cells and its ubiquitous presence in the vasculature, we investigated pressure as a magnitude-dependent parameter for the regulation of endothelial tubulogenic activity. To accomplish this, we exposed two- and three-dimensional bovine aortic endothelial cell (BAEC) cultures to static pressures of 0, 20, and 40 mmHg for 3 and 4 days. The most significant findings were: (1) cells in two-dimensional culture exposed to 20, but not 40, mmHg exhibited significantly (p \u3c 0.05) increased expression of both VEGF-C and VEGFR-3, and (2) cells in three-dimensional culture exposed to 20, but not 40, mmHg exhibited significant (p \u3e 0.05) increases in endothelial sprouting. These findings evidence the utility of pressure as a selective modulator of tissue microvascularization in vitro and implicates pressure as factor in pathological tubulogenesis in vivo

    NASA's Potential Contributions for Remediation of Retention Ponds Using Solar Ultraviolet Radiation and Photocatalysis

    Get PDF
    This Candidate Solution uses NASA Earth science research on atmospheric ozone and aerosols data (1) to help improve the prediction capabilities of water runoff models that are used to estimate runoff pollution from retention ponds, and (2) to understand the pollutant removal contribution and potential of photocatalytically coated materials that could be used in these ponds. Models (the EPA's SWMM and the USGS SLAMM) exist that estimate the release of pollutants into the environment from storm-water-related retention pond runoff. UV irradiance data acquired from the satellite mission Aura and from the OMI Surface UV algorithm will be incorporated into these models to enhance their capabilities, not only by increasing the general understanding of retention pond function (both the efficacy and efficiency) but additionally by adding photocatalytic materials to these retention ponds, augmenting their performance. State and local officials who run pollution protection programs could then develop and implement photocatalytic technologies for water pollution control in retention ponds and use them in conjunction with existing runoff models. More effective decisions about water pollution protection programs could be made, the persistence and toxicity of waste generated could be minimized, and subsequently our natural water resources would be improved. This Candidate Solution is in alignment with the Water Management and Public Health National Applications

    Solutions Network Formulation Report. NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation and Increasing Air Quality

    Get PDF
    This Candidate Solution is based on using NASA Earth science research on atmospheric ozone and aerosols data as a means to predict and evaluate the effectiveness of photocatalytically created surfaces (building materials like glass, tile and cement) for air pollution mitigation purposes. When these surfaces are exposed to near UV light, organic molecules, like air pollutants and smog precursors, will degrade into environmentally friendly compounds. U.S. EPA (Environmental Protection Agency) is responsible for forecasting daily air quality by using the Air Quality Index (AQI) that is provided by AIRNow. EPA is partnered with AIRNow and is responsible for calculating the AQI for five major air pollutants that are regulated by the Clean Air Act. In this Solution, UV irradiance data acquired from the satellite mission Aura and the OMI Surface UV algorithm will be used to help understand both the efficacy and efficiency of the photocatalytic decomposition process these surfaces facilitate, and their ability to reduce air pollutants. Prediction models that estimate photocatalytic function do not exist. NASA UV irradiance data will enable this capability, so that air quality agencies that are run by state and local officials can develop and implement programs that utilize photocatalysis for urban air pollution control and, enable them to make effective decisions about air pollution protection programs

    Creating A Disability Corpus for Literary Analysis: Pilot Classification Experiments

    Get PDF
    As literary text opens to researchers for distant reading, the computational analysis of large corpora of text for literary scholarship, problems beyond typical data science roadblocks, such as data scale and statistical significance of findings have emerged. For scholars studying character and social representation in literature, the identification of characters within the given classes of study is crucial, painstaking, and often a manual process. However, for characters with disabilities, manual identification is prohibitively difficult to undertake at scale, and especially challenging given the coded textual markers that can be used to refer to disability. There currently exists no corpus of characters in fiction with disabilities, which is the first step to at-scale computational study of this topic. This project seeks to pilot a classification process using manually assigned ground truth on a subset of volumes from the HathiTrust. Having successfully built and evaluated a Naïve Bayes classifier, we suggest full-scale deployment of a statistical classifier on a large corpus of literature in order to assemble a disability corpus. This project also covers preliminary exploratory textual analysis of characters with disabilities to yield potential research questions for further exploration

    NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation

    Get PDF
    More than 75 percent of the U.S. population lives in urban communities where people are exposed to levels of smog or pollution that exceed the EPA (U.S. Environmental Protection Agency) safety standards. Urban air quality presents a unique problem because of a number of complex variables, including traffic congestion, energy production, and energy consumption activities, all of which can contribute to and affect air pollution and air quality in this environment. In environmental engineering, photocatalysis is an area of research whose potential for environmental clean-up is rapidly developing popularity and success. Photocatalysis, a natural chemical process, is the acceleration of a photoreaction in the presence of a catalyst. Photocatalytic agents are activated when exposed to near UV (ultraviolet) light (320-400 nm) and water. In recent years, surfaces coated with photocatalytic materials have been extensively studied because pollutants on these surfaces will degrade when the surfaces are exposed to near UV light. Building materials, such as tiles, cement, glass, and aluminum sidings, can be coated with a thin film of a photocatalyst. These coated materials can then break down organic molecules, like air pollutants and smog precursors, into environmentally friendly compounds. These surfaces also exhibit a high affinity for water when exposed to UV light. Therefore, not only are the pollutants decomposed, but this superhydrophilic nature makes the surface self-cleaning, which helps to further increase the degradation rate by allowing rain and/or water to wash byproducts away. According to the Clean Air Act, each individual state is responsible for implementing prevention and regulatory programs to control air pollution. To operate an air quality program, states must adopt and/or develop a plan and obtain approval from the EPA. Federal approval provides a means for the EPA to maintain consistency among different state programs and ensures that they comply with the requirements of the Clean Air Act

    An Open Framework for Highly Concurrent Real-Time Hardware-in-the-Loop Simulation

    Get PDF
    Hardware-in-the-loop (HIL) real-time simulation is becoming a significant tool in prototyping complex, highly available systems. The HIL approach permits testing of hardware prototypes of components that would be extremely costly or difficult to test in the deployed environment. In power system simulation, key issues are the ability to wrap the systems of equations (such as Partial Differential Equations) describing the deployed environment into real-time software models, provide low synchronization overhead between the hardware and software, and reduce reliance on proprietary platforms. This paper introduces an open source HIL simulation framework that can be ported to any standard Unix-like system on any shared-memory multiprocessor computer, requires minimal operating system scheduler controls, enables an asynchronous user interface, and allows for an arbitrary number of secondary control components. The framework is implemented in a soft real-time HIL simulation of a power transmission network with physical Flexible AC Transmission System (FACTS) devices. Performance results are given that demonstrate a low synchronization overhead of the framework

    Lung Cancer Metastasis Presenting as a Solitary Skull Mass

    Get PDF
    Lung cancer has been well documented to spread to bone and the axial skeleton after metastasis to adjacent organs. Bony metastasis is not, however, the typical presenting manifestation. The differential diagnosis for a tissue mass on the skull should warrant a workup for metastatic disease. Bony metastasis plays an important role in treatment and disease management. We report an exceptionally rare case of stage IV lung adenocarcinoma that presented with a solitary skull metastasis and a significant soft-tissue component. The lesion was treated by excision via craniotomy and subsequent medical management of the adenocarcinoma. This case illustrates a very rare presentation of lung adenocarcinoma and also represents what the authors believe to be the first report of a solitary skull mass originating from a lung primary. We also present a review of the literature surrounding bony metastasis to the skull and implications for patient care

    An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    Get PDF
    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor dye degradation on the slides over time, a temperature-stabilized white light LED was used to illuminate the opposite side of the slides. As the dye degraded, the amount of light from the white light LED transmitted through the slide was monitored with a spectrometer and subsequently analyzed to determine and compare the rate of dye degradation for photocatalytically coated versus uncoated slide surfaces. The long-term stability of the spectrometer/white light LED combination, which required only a single reference spectra to be taken for a time series sequence of several hours, enabled accurate measurements of transmitted light over time. Time series transmission curves were generated and results demonstrated that over time the transmission increased much more rapidly on the coated slides than on the control slides. This experimental configuration and methodology for photocatalytic activity measurement minimizes many external variable effects and allows low light level studies to be performed. This study also compares the advantages of this novel LED light source design to traditional mercury lamp systems and non-LED lamp approaches that have conventionally been used. The methodology and experimental design research summarized in this abstract is partly funded by the Department of Homeland Security, Science and Technology Directorate, and by the NASA Stennis Space Center Innovative Partnerships Program
    • …
    corecore