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ABSTRACT 

Integration of EGFR and LIN-12/Notch signaling in Vulval Precursor Cell fate specification 

in Caenorhabditis elegans 

Ryan Underwood 

Cellular differentiation is the cornerstone of metazoan development. Cell-cell signaling 

mechanisms are responsible for the specification of many cell fates. The response of a particular 

cell to a given signal is highly context dependent allowing signaling mechanisms to be reused to 

produce a variety of different outcomes. The EGFR and LIN-12/Notch signaling pathways are 

well-conserved across metazoan species and govern many fate-specification events. The 

specification of C. elegans Vulval Precursor Cells (VPCs) offers a powerful system to investigate 

how these signaling mechanisms specify cell-fates, and previous studies of VPC fate patterning 

have identified several forms of crosstalk between these two critical signaling mechanisms. 

In this thesis, I investigate how input from both the EGFR and LIN-12/Notch signaling 

pathways is integrated by the VPCs. I provide evidence that VPCs respond to the relative levels 

of LIN-12/Notch and EGFR signaling. I show that LIN-1/Elk1 is critical for VPCs to adopt discrete 

cell fates. In addition, I show that the Mediator components SUR-2/Med23 and the CDK-8 kinase 

module (CKM), in cooperation with LIN-1/Elk1, are required for an EGFR-mediated resistance to 

LIN-12/Notch activity.  

I also used CRISPR/Cas9 techniques to generate endogenous, fluorescently-tagged 

LAG-1 proteins. Characterization of tagged LAG-1 accumulation in the VPCs and in the somatic 

gonad show that LAG-1 is present in all VPCs at low levels in a lin-12/Notch independent 

manner. Activation of LIN-12/Notch is correlated with higher levels of LAG-1 accumulation 

compared to cells that do not have activated LIN-12/Notch. These findings suggest a potential 

autoregulation mechanism for lag-1 in certain contexts. They also suggest that endogenously-

tagged LAG-1 may be a useful molecular marker of LIN-12/Notch activation.



 

i 
 

Table of Contents 

List of Figures and Tables ........................................................................................................... vi 

Acknowledgements ................................................................................................................... viii 

Chapter 1. General Introduction ...................................................................................................... 1 

Vulval development of Caenorhabditis elegans .......................................................................... 2 

Establishment and maintenance of the vulval competency group .......................................... 3 

VPC specification ..................................................................................................................... 4 

Inductive signal ............................................................................................................................ 4 

Identification of the inductive signal ......................................................................................... 4 

EGFR-Ras-ERK signaling in P6.p ........................................................................................... 6 

Effectors and regulators of EGFR-RAS-ERK .......................................................................... 6 

ln-1 – Ets-domain-containing transcription factor .................................................................... 7 

Lateral signal ............................................................................................................................... 8 

Identification of the lateral signal ............................................................................................. 8 

LIN-12 signaling ....................................................................................................................... 9 

Lateral signaling targets ........................................................................................................ 10 

lag-1 – CSL transcription factor ............................................................................................. 10 

Drosophila Su(H) ................................................................................................................... 12 

Structure of CSL and the Notch ternary complex ...................................................................... 13 

Summary ................................................................................................................................... 14 

Chapter 1. Figures ......................................................................................................................... 16 

Chapter 2. Integration of EGFR and LIN-12/Notch signaling by LIN-1/Elk1, the Cdk8 kinase 

module, and SUR-2/Med23 in Vulval Precursor Cell fate patterning in C. elegans ...................... 21 



 

ii 
 

Abstract ...................................................................................................................................... 22 

Introduction ................................................................................................................................ 22 

Materials and Methods .............................................................................................................. 25 

Results ....................................................................................................................................... 27 

The CKM negatively regulates lin-12 activity in uninduced VPCs ......................................... 27 

The CKM is not required for EGFR- and SUR-2-promoted transcription of the lateral signal 

gene lag-2 in P6.p .................................................................................................................. 29 

Resistance to activated LIN-12 in P6.p depends on the relative balance of EGFR and LIN-12 

activity and allows for robust expression of lateral signal gene reporters ............................. 30 

The CKM and SUR-2/Med23 are required for resistance of P6.p to signal transduction by 

expression of constitutively active LIN-12/Notch ................................................................... 32 

Loss of LIN-1 leads to ectopic LIN-12 signal transduction in all VPCs ................................. 33 

LIN-1 coordinates crosstalk between the inductive and lateral signaling pathways ............. 34 

Discussion ................................................................................................................................. 35 

The CKM and basal activity of LIN-12/Notch in VPCs .......................................................... 36 

Different requirements for SUR-2, the CKM, and LIN-1 in P6.p for different functions relevant 

to LIN-12/Notch and VPC patterning ..................................................................................... 38 

Integrating the EGFR-Ras-ERK inductive signaling and LIN-12/Notch lateral signaling 

pathways ................................................................................................................................ 39 

Acknowledgments...................................................................................................................... 41 

Chapter 2. Figures ......................................................................................................................... 42 

Chapter 2. Supplemental Material ................................................................................................. 54 

Effect of lin-1(gf) on 2o-fate marker expression ......................................................................... 55 



 

iii 
 

Examination of requirement for additional Mediator components in EGFR-mediated resistance 

to LIN-12 activity ........................................................................................................................ 58 

Characterization of lin-31 mutants on 2o-fate marker expression ............................................. 60 

Chapter 3.  Characterization of expression and patterning of LAG-1 ........................................... 62 

Abstract ...................................................................................................................................... 63 

Introduction ................................................................................................................................ 63 

Materials and Methods .............................................................................................................. 66 

Results ....................................................................................................................................... 69 

An N-terminally tagged LAG-1-mCherry translational fosmid reporter rescued lag-1(0) 

lethality, but did not produce visible expression .................................................................... 69 

C-terminally tagged LAG-1-GFP translational fosmid reporters were visible and not 

patterned during VPC specification ....................................................................................... 70 

Endogenous CRISPR-engineered translational reporters of LAG-1 display a dynamic 

expression pattern in the VPCs ............................................................................................. 71 

LAG-1-mKate2 levels and patterning in the VPCs are dependent on lin-12 signaling .......... 72 

Strong constitutive LIN-12 activity elevates LAG-1-mKate levels in all VPCs....................... 73 

LAG-1-mKate2 levels are not affected by removal of sel-10 or cdk-8 ................................... 75 

Weak forms of constitutively active LIN-12 influence LAG-1 accumulation .......................... 75 

LAG-1-mKate2 is regulated in a lin-12 dependent manner during the AC/VU decision ....... 77 

Discussion ................................................................................................................................. 79 

Implications of LAG-1 fosmid reporter results ....................................................................... 80 

Use of endogenously-encoded reporters of LIN-12 activity .................................................. 82 

Regulating LIN-12 activity in the VPCs through control of LAG-1 levels or subcellular 

localization ............................................................................................................................. 83 



 

iv 
 

Further investigation of LAG-1 regulation .............................................................................. 84 

Chapter 3. Figures ......................................................................................................................... 86 

Chapter 4: Characterization of cis-regulatory sequences of the LIN-12 target gene lst-5 and in 

vivo analysis of LAG-1 target binding in the VPCs: successes and complications ....................... 95 

Abstract ...................................................................................................................................... 96 

Introduction ................................................................................................................................ 96 

Materials and methods .............................................................................................................. 98 

Results and Discussion ........................................................................................................... 100 

The regulatory sequence of lst-5 as a tool to study regulation of lin-12 signaling .............. 100 

The first exon and first intron of lst-5 are sufficient to drive expression in 2o VPCs ............ 101 

Deletion analysis of lst-5p transcriptional reporters ............................................................. 102 

Nuclear Spot Assay ............................................................................................................. 103 

Chapter 4. Figures ....................................................................................................................... 106 

Chapter 5. Discussion ................................................................................................................. 114 

Summary ................................................................................................................................. 115 

EGFR-mediated resistance to LIN-12 activity in P6.p ............................................................. 116 

Interactions of EGFR and LIN-12/Notch signaling in other contexts ....................................... 117 

LIN-1 function in VPC specification ......................................................................................... 121 

LIN-1 integrates EGFR and LIN-12/Notch signaling in the VPCs ........................................... 122 

Potential for autoregulation of lag-1......................................................................................... 122 

Potential for different LAG-1 isoforms to affect VPC ............................................................... 124 

Issues resulting from use of multi-copy arrays ........................................................................ 126 

Chapter 5. Figures ....................................................................................................................... 128 



 

v 
 

References .................................................................................................................................. 132 

  



 

vi 
 

List of Figures and Tables 

Chapter 1. Figures .......................................................................................................................... 16 

Figure 1. Overview of vulval development.................................................................................. 17 

Figure 2. EGFR-Ras-ERK activation in VPCs. ........................................................................... 18 

Figure 3. Canonical LIN-12/Notch activation. ............................................................................. 19 

Figure 4. LIN-12 domain organization and structure of transcriptional activation complex. ....... 20 

Chapter 2. Figures .......................................................................................................................... 44 

Figure 1. VPC fate specification. ................................................................................................ 45 

Figure 2. The CKM acts in a kinase dependent manner to negatively regulate lin-12 activity. .. 47 

Figure 3. Resistance to constitutively active LIN-12 signal transduction in P6.p. ...................... 49 

Figure 4. Activated LIN-12 expressed from single-copy transgenes overcomes resistance in 

P6.p and leads to repression of lateral signal gene expression. ................................................ 50 

Figure 5. Loss of LIN-1 results in ectopic LIN-12 activity in all VPCS, and abrogates LIN-12-

GFP endocytic downregulation in P6.p. ..................................................................................... 52 

Figure 6.  Resolution of cell fate in different genotypes. ............................................................ 54 

Figure 7.  Summary and models for the roles of LIN-1, SUR-2, and the CKM in P6.p. ............. 55 

Chapter 2. Supplementary Material  ............................................................................................... 56 

Figure S1. 2o-fate marker expression in putative lin-1 gain-of-function background. ................. 59 

Figure S2. 2o-fate marker expression in Mediator component loss-of-function mutants. ........... 61 

Figure S3. 2o-fate marker expression in lin-31 mutant backgrounds. ........................................ 63 

Chapter 3. Figures .......................................................................................................................... 88 

Figure 1. Schematics of VPC specification and formation of LIN-12 transcriptional activation 

complex....................................................................................................................................... 89 



 

vii 
 

Figure 2. Diagram of lag-1 genomic locus and mCherry-LAG-1 fosmid reporter. ...................... 90 

Figure 3. LAG-1-GFP from transgenic and endogenous sources. ............................................. 91 

Figure 4. LAG-1-mKate2 accumulation in the VPCs from L2 stage to Pn.pxx stage. ................ 92 

Figure 5. LAG-1-mKate2 accumulation in the VPCs is dependent on lin-12 activity. ................ 93 

Figure 6. LAG-1-mKate2 accumulation is sensitive to the presence of weak LIN-12. ............... 94 

Figure 7. LAG-1-mKate2 accumulation increases in somatic gonadal cells that receive lin-12 

signaling during the AC/VU.  ...................................................................................................... 95 

Chapter 4. Figures ........................................................................................................................ 108 

Figure 1. The gene lst-5 is a direct target of LIN-12. ................................................................ 109 

Figure 2. 5’ exon and first intron of lst-5 are sufficient to drive expression in P5.p and P7.p. . 110 

Figure 3. Deletions analysis of lst-5 5’ exon and first intron. .................................................... 111 

Figure 4. Deletion analysis of lst-5 5’ exon and first intron in the presence of LIN-12(intraΔP).

 .................................................................................................................................................. 112 

Figure 5. lst-5p transcriptional reporter with SunTag. .............................................................. 113 

Figure 6. Nuclear Spot Assay. .................................................................................................. 114 

Table 1. Summary of target arrays used in dot experiments and results. ................................ 115 

Chapter 5. Figures ........................................................................................................................ 130 

Figure 1. Summary of arIs116[lst-5p::2xnls-yfp] expression. ................................................... 131 

Figure 2. Summary of LAG-1-mKate2 accumulation. ............................................................... 132 



 

viii 
 

Acknowledgements 

I would like to thank my advisor, Dr. Iva Greenwald, for her supervision and guidance, both inside 

and outside the laboratory. She is a superb scientist with a penchant for asking insightful 

biological questions and an unwavering dedication towards scientific rigor. I am privileged to have 

learned from her over six years and incredibly grateful for her support throughout my graduate 

career. 

I thank Dr. Oliver Hobert and Dr. Gary Struhl for serving on my qualifying exam and 

thesis committees and for the helpful feedback they provided over the years. Additionally, I thank 

Dr. Alicia Melendez and Dr. Andrew Tomlinson for reading my dissertation and for serving on my 

thesis committee. 

Thank you to my bay-mates Claire de la Cova and Michelle Attner: I appreciate the time 

you two spent going over presentations, discussing experiments, and any of the hundreds of 

other things that you two did for me over the years, but most of all, thank you for the 

encouragement that you provided during my final year-long sprint to the finish, it made a world of 

difference. The old guard, Xantha Karp, Dan Shaye, and Maria Sallee, thank you for the help 

when I first stepped foot into the lab and your continued assistance since then. Yuting Deng, my 

class mate and commiserating buddy, Claudia Tenen, Jessica Chan, Hana Littleford, Justin 

Benavidez, Katherine Luo, Catherine O’Keeffe, and Justin Shaffer, thank you for your friendships 

and making the lab an enjoyable place to be; I expect big things from all of you! Gleniza Gomez, 

thank you for the technical support and for looking out for me. I am also grateful for the past 

support of Richie Ruiz, Cindy Zhou, and Orquidea Cardenas. 

Thanks to my friends and family for their continued support. To my parents Jeanne and 

Scott, brother Eric, step-mother Susan, and the Nagle clan: I am very appreciative of the constant 

check-ins and encouragement I received from all of you. Paul, Seth, Naps, Kevin, Brendan, 

Lizelle, and Roshan, I couldn’t have asked for better friends and drinking buddies. Finally, I thank 

my fiancée, Liz Nagle, for her patience, support, and around-the-clock encouragement even 

when, especially when, we were 3,000 miles apart. 



 

1 
 

Chapter 1. General Introduction 
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Vulval development of Caenorhabditis elegans 

The nematode species Caenorhabditis elegans has proved to be a valuable tool for studying the 

many biological processes necessary for multicellular life. C. elegans was chosen as a model 

organism to study development of the nervous system due to its practicality in a laboratory setting 

and its relative biological simplicity (Brenner 1974). This was a sound choice when it was made, 

but several defining features were only learned of during the subsequent years. One such feature 

of C. elegans is the virtually invariant cell lineages that give rise to the 959 somatic cells found in 

every adult hermaphrodite (Sulston and Horvitz 1977; Kimble and Hirsh 1979; Sulston et al. 

1983).  

The cellular response to any given developmental signal is generally highly context 

dependent. During C. elegans development, cells or groups of cells offer paradigms to study 

cellular signaling and how cellular contexts affect signaling. Investigating cells of different 

contexts that receive the same signal, but respond differently, is one tactic. Another is through the 

examination of groups of cells that are functionally equivalent but receive different signals. We 

can investigate how cells in the same context respond to different signals.  One such cellular 

group comprises the precursor cells that give rise to the adult vulva.  

The development of the C. elegans vulva has been extensively characterized and 

provides a powerful paradigm to study cell-cell communication and how cells integrate multiple 

signaling pathways to produce discrete outcomes. Vulva development is a multi-step process that 

occurs over several larval stages: beginning in the first larval (L1) stage, with the birth and 

establishment of the vulval precursor cells (VPCs); during the second larval (L2) stage, several 

intercellular signals maintain VPC competency; VPCs commit to vulval fates during the third larval 

(L3) stages; finally, during the third and fourth larval (L3 and L4) stages, descendants of specified 

VPCs differentiate into adult vulva cell-types and undergo morphogenesis to generate the adult 

vulva [reviewed in Sternberg (2005)]. The work described herein uses the paradigm of C. elegans 

vulva development, and specifically the patterning of the VPCs, to study how cells integrate two 

important signaling pathways. 
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Establishment and maintenance of the vulval competency group 

The VPCs are born during the L1 stage (Fig. 1). Twelve cells, numbered P1-12, migrate to the 

ventral side of the animal. P1-P11 undergo a round of division and the anterior (Pn.a) daughters 

become neuroblasts that produce ventral cord neurons, while the posterior (Pn.p) daughters 

become hypodermal cells; P12 does not follow this pattern and undergoes its own distinct 

lineage. Six of the Pn.p cells, P3.p-P8.p, become VPCs while the remaining Pn.p cells, P.p1, 

P2.p and P9.p-P11.p, fuse to the hypodermal syncytium, hyp7, before the L1 stage ends (Sulston 

and Horvitz 1977). The six VPCs form the “vulval competency group” and can respond to 

intercellular signals to adopt vulval fates (Sulston and Horvitz 1977; Sulston and White 1980; 

Kimble 1981). During normal development, descendants of P5.p, P6.p, and P7.p will generate the 

vulva, while descendants of P3.p, P4.p, and P8.p will fuse to the hypodermis (Sternberg and 

Horvitz 1986).  

The Hox gene lin-39, the C. elegans ortholog of Sex combs reduced and Deformed, is 

required for establishment of the VPCs (Clark et al. 1993; Wang et al. 1993).  lin-39 mutants are 

Vul, and mosaic analysis indicated that lin-39 functions cell autonomously in the P3.p-P8.p cells 

(Clark et al. 1993). Analysis of transcriptional reporters suggested that lin-39 expression is limited 

to P3.p-P8.p (Salser et al. 1993). Many transcription factors appear to work in combination to 

regulate lin-39 expression (Liu et al. 2014). LIN-39 was found to repress transcription of the 

fusogen gene eff-1 in P3p-P8.p (Shemer and Podbilewicz 2002). EFF-1 promotes the cellular 

fusion of P1, P2, and P9-P11 to hyp7. P3.p-P8.p express eff-1 in the absence of LIN-39, and fuse 

to hyp7 during the L1 stage similar to lin-39 mutants (Mohler et al. 2002).  

WNT and EGFR signaling are critical to prevent the VPCs from inappropriately fusing 

with the hypodermis during the L2 stage. The WNT ligand genes cwn-1 and egl-20 are expressed 

by the surrounding tissues and are required to prevent premature VPC fusion with the 

hypodermis (Gleason et al. 2006; Myers and Greenwald 2007). These ligands most likely activate 

expression of WNT target genes through bar-1, a β-catenin homolog, as VPCs in BAR-1/β-

catenin mutants will similarly prematurely fuse to the hypodermis (Eisenmann et al. 1998). Loss 
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of EGF ligand produced by the somatic gonad (Myers and Greenwald 2007) or EGFR-Ras 

activity in the VPCs (Eisenmann et al. 1998; Maloof and Kenyon 1998) can cause a failure of 

VPC maintenance. Many of these signals help to regulate the expression of lin-39. During the L2 

stage, continued lin-39 expression is critical for maintenance of VPCs (Eisenmann et al. 1998; 

Maloof and Kenyon 1998), and the eventual induction of VPCs (Maloof and Kenyon 1998; 

Wagmaister et al. 2006; Roiz et al. 2016).   

VPC specification 

The VPCs adopt one of three fates—primary (1o), secondary (2o), or tertiary (3o)—in an invariable 

3o-3o-2o-1o-2o-3o pattern (Sulston and White 1980; Sternberg and Horvitz 1986)(Fig. 1). The three 

1o and 2o VPCs will generate the vulva, while the 3o VPCs will fuse with the hypodermis. Two 

signaling events occur sequentially to specify VPC fates. First, an inductive signal is sent by the 

somatic gonad causing the nearest cell, P6.p, to adopt the 1o fate. The subsequent lateral signal 

causes the flanking VPCs, P5.p and P7.p, to adopt the 2o fate. The outer VPCs, P3.p, P4.p, and 

P8.p, do not receive either signal, and adopt the default 3o VPC fate. All VPCs undergo a single 

round of division, except for P3.p, which fuses with the hypodermis ~50% of the time prior to 

division. 

Two classes of mutant phenotypes have been used extensively to characterize genes 

involved in the generation of the vulva. In Vulvaless (Vul) mutants, the VPCs are not induced, and 

fuse with the hypodermis, thus, no vulva is generated. In Multivulva (Muv) mutants, the additional 

VPCs are induced to adopt the 1o or 2o fate, and adult animals will have ventral protrusions along 

the ventral side of their body. These categories are not inclusive and other vulval phenotypes 

exist. Additionally, phenotypes of the same category are not necessarily equivalent and there are 

many subdivisions with important distinctions.  

Inductive signal 

Identification of the inductive signal 

The anchor cell (AC), located in the somatic gonad, was implicated in vulval development through 

laser ablation experiments. When the gonad primordium is ablated at the time of hatching, the 
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VPCs adopt the 3o fate, and animals are Vul (Sulston and White 1980). When all gonadal cells 

except for the AC were eliminated during the L2 stage, animals produced a normal vulva. In the 

reciprocal experiment, only the AC was eliminated, and these animals failed to generate a vulva 

and were Vul (Kimble 1981), indicating that signaling from the AC was necessary and sufficient to 

induce vulval fates. Ablation experiments indicated that if the AC was eliminated near the first 

round of VPC divisions, the VPCs may only be partially specified (Kimble 1981). Temperature-

shift experiments suggested that the VPCs were specified during the L3 stage, just prior to the 

first-round of VPC division (Greenwald et al. 1983a). Additional laser ablation experiments were 

consistent with this finding (Greenwald et al. 1983a; Sternberg and Horvitz 1986).  

In a lin-3 mutant, the VPCs are not induced and animals are Vul, despite the presence of 

the AC (Horvitz and Sulston 1980; Sulston and Horvitz 1981; Ferguson and Horvitz 1985). The 

lin-3 locus was cloned and molecular analysis indicated that lin-3 encoded an epidermal growth 

factor (EGF)-like protein (Hill and Sternberg 1992). Observations of a LIN-3-LacZ translational 

fusion reporter suggested that lin-3 was expressed in the AC (Hill and Sternberg 1992). Animals 

carrying a transgene containing the lin-3 genetic locus had a Muv phenotype, proposed to be due 

to excessive vulval induction caused by the over-production of LIN-3. Ablation experiments 

revealed this Muv phenotype did not require the AC (Hill and Sternberg 1992), indicating that 

vulval induction caused by transgenic LIN-3 production bypassed the requirement for an AC. 

VPCs in let-23 mutants are not induced and animals are Vul. Molecular analysis of let-23 

revealed that it encoded an EGF receptor (EGFR)-family receptor tyrosine kinase (RTK), 

suggesting that let-23 was the receptor that transmitted the inductive AC signal to the VPCs 

(Aroian et al. 1990). When the lin-3 transgene was combined with a let-23 mutant, nearly all 

animals had a Vul phenotype, indicating that lin-3 functioned upstream of let-23 (Hill and 

Sternberg 1992). These experiments indicated that LIN-3/EGF was the inductive signal produced 

by the AC.  
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EGFR-Ras-ERK signaling in P6.p 

Upon EGF ligand binding, EGFR dimerizes and autophosphorylates at the C-terminal domain 

(Lemmon and Schlessinger 2010), and it had been assumed that the same would be true for 

LET-23 (Sundaram 2013). More recent data, however, suggests that LET-23 is constitutively 

dimeric unlike other EGFR-family RTKs (Freed et al. 2015). This study proposes that LIN-3 

binding induces an allosteric conformational change in the LET-23 dimer that triggers 

autophosphorylation. Ultimately, the scaffold protein SEM-5 associates with the phosphorylated 

intracellular tyrosine residues of the LET-23 dimer (Clark et al. 1992), and recruits the guanine 

nucleotide exchange factor SOS-1 (Chang et al. 2000); SOS-1 binds and activates LET-60/Ras 

(Han and Sternberg 1990). Activated LET-60/RAS initiates a phosphorylation cascade of LIN-

45/RAF (Han et al. 1993), MEK-2/MEK (Kornfeld et al. 1995), and MPK-1/ERK (Lackner et al. 

1994)(Fig. 2). Activation of the EGFR-Ras-ERK pathway activates expression of later signal 

genes (Chen and Greenwald 2004; Zhang and Greenwald 2011).  

Effectors and regulators of EGFR-RAS-ERK 

Many downstream effectors of MPK-1/ERK have been identified. MPK-1/ERK has two identified 

substrates: the forkhead-like transcription factor LIN-31 (Miller et al. 1993; Tan et al. 1998), and 

the ETS domain containing protein LIN-1 (Jacobs et al. 1998; Tan et al. 1998). In addition, the 

BTB-zinc finger transcription factor EOR-1 has been shown to be phosphorylated in vitro by 

murine ERK (Howell et al. 2010), and in vivo experiments suggest that LIN-45/RAF 

phosphorylated in a MPK-1/ERK-dependent manner (de la Cova and Greenwald 2012). The 

Mediator complex subunits SUR-2 (Singh and Han 1995) and LIN-25 (Tuck and Greenwald 1995; 

Nilsson et al. 1998), homologs of Med23 and Med24 respectively, function together downstream 

of LET-60/Ras, and potentially downstream of MPK-1 (Lackner and Kim 1998), to promote vulval 

induction. The uncharacterized protein EOR-2 binds with EOR-1; this complex functions to 

promote MPK-1/ERK 1o-fate induction redundantly with SUR-2/LIN-25 (Howard and Sundaram 

2002; Howell et al. 2010). 
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Activation of EGFR-RAS-ERK in P6.p promotes expression of lateral signal genes, 

including lag-2 (Chen and Greenwald 2004). In its unphosphorylated state, LIN-1 directly 

represses transcription of lateral signal genes in all VPCs (Zhang and Greenwald 2011). Upon 

ERK activation, LIN-1-mediated repression is relieved, and lag-2 is transcriptionally activated. 

Expression of lateral signal genes requires the presence of SUR-2 (Chen and Greenwald 2004). 

The requirement for SUR-2 for transcriptional activation of lag-2 is independent of LIN-1 (Zhang 

and Greenwald 2011). Regulation of lag-2 expression is discussed further in Chapter 2. 

ln-1 – Ets-domain-containing transcription factor  

lin-1 is critical for the appropriate cell fate pattern of the VPCs. LIN-1 is an ETS-domain 

containing protein of the Elk1 subfamily (Beitel et al. 1995), and biochemical analyses have 

determined that LIN-1 is directly phosphorylated by ERK (Tan et al. 1998; Jacobs et al. 1999). 

The loss of lin-1 activity leads to gonad-independent ectopic vulval induction and a strong Muv 

phenotype (Ferguson and Horvitz 1985; Ferguson et al. 1987). Genetic epistasis experiments 

placed lin-1 downstream of let-60/Ras and mpk-1/MAPK, and indicated that lin-1 acted to 

antagonize let-60/Ras signaling (Lackner et al. 1994; Wu and Han 1994).  

Lineage analysis of VPCs in lin-1(0) animals suggested that P6.p preferentially adopts 

the 1o fate in the presence of the AC. In the absence of the AC, P6.p appeared to adopt non-1o-

fate lineages at a higher frequency (Beitel et al. 1995). Another study showed that a LIN-45-YFP 

fusion protein was degraded in P6.p through an ERK-dependent mechanism; loss of lin-1 activity 

did not affect the downregulation of LIN-45-YFP (de la Cova and Greenwald 2012). Overall, these 

observations indicate that lin-1 activity negatively regulates a branch of the EGFR-Ras-ERK 

pathway. 

The role of lin-1 in VPC development has been challenging to decipher. Lineage analysis 

in the lin-1(0) background described many VPCs as being “hybrid” fates, showing some 1o- and 

2o-fate character. Analysis of lin-12(d); lin-1(0) suggests that VPCs were more 2o-like compared 

to lin-1(0) single mutant, while analysis of lin-12(0); lin-1(0) suggests that VPCs were more 1o-

like, when compared to the lin-1(0) single mutant (Beitel et al. 1995), suggesting that lin-1 may be 
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important in integrating the EGFR pathway with LIN-12 signaling. The role LIN-1 plays in 

integrating EGFR and LIN-12 is discussed further in Chapter 2. 

Positive roles for lin-1 have been described in VPC specification. A transcriptional 

reporter of the fibroblast growth factor gene, egl-17, is a reporter of 1o-fate adoption in the VPCs 

(Burdine et al. 1998). An analysis of this reporter, indicates lin-1 activity is required for expression 

of egl-17p::gfp in P6.p (Tiensuu et al. 2005). Deletion analysis of the egl-17 5’ cis-regulatory 

region, however, suggested that LIN-1 did not directly regulate egl-17p::gfp (Cui and Han 2003). 

As described above, the transcriptional reporters of the RHO kinase gene let-502 appear to 

require direct binding by LIN-1 to drive expression in 2o VPCs (Farooqui et al. 2012). The dual 

role of LIN-1/Elk1, as both a transcriptional activator and repressor, may explain some of these 

observations.  

In mammalian cells, Elk1 is a substrate for ERK (Gille et al. 1992; Marais et al. 1993). In 

its unphosphorylated state, Elk1 functions as a transcriptional repressor (Marais et al. 1993; Gille 

et al. 1995; Yang et al. 2001), and sumoylation of Elk1 can contribute to its role as a repressor 

(Yang et al. 2003). ERK-dependent phosphorylation switches Elk1 to function as a transcriptional 

activator and may recruit the Mediator complex through association with Med23 to activate target 

gene expression (Stevens et al. 2002; Wang et al. 2005). Sumoylated LIN-1 has been shown to 

function as a repressor as well (Leight et al. 2005; Leight et al. 2015). These studies proposed a 

model in which sumoylated unphosphorylated LIN-1 inhibits vulval cell fates, and phosphorylated 

LIN-1 recruits SUR-2 to promote P6.p to adopt the 1o fate. Observations suggest that this model 

is incomplete. Expression of lag-2 transcriptional reporters do require SUR-2, but not LIN-1 

(Zhang and Greenwald 2011). Furthermore, this model does not describe the role of lin-1 in the 

2o VPCs. The role of lin-1 in VPC development is discussed further in Chapters 2 and 5.   

Lateral signal 

Identification of the lateral signal 

Laser ablation experiments provided evidence for the presence of a lateral signal sent by the 1o 

VPC. In a lin-15 loss-of-function background, now known to result in production of LIN-3/EGF 
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from the major hypodermal syncytium (Myers and Greenwald 2005; Cui et al. 2006; Myers and 

Greenwald 2007), all VPCs adopt either the 1o or 2o fate in an alternating 1o-2o pattern, and 

adjacent 1o VPCs were not typically seen (Sternberg 1988). This spatial pattern is similar to the 

lateral inhibition seen in Drosophila proneural clusters (discussed in more detail later). 

Additionally, if there is one VPC, this VPC will adopt the 1o fate; if there are two adjacent VPCs, 

they will adopt a 1o-2o or 2o-1o pattern with equivalent frequencies. Combined, these observations 

indicated that the 1o VPC signaled adjacent VPCs (Sternberg 1988). 

Genetic analysis suggested that lin-12 was the receptor for this signal. In lin-12 null 

animals VPCs adopt either the 1o or 3o fate, but never the 2o fate. Semi-dominant hypermorphic 

lin-12(d) alleles cause all VPCs to adopt the 2o fate. Furthermore, lin-12(d) animals do not 

possess an anchor cell due to a cell-fate transformation in the gonad, indicating that lin-12 activity 

is necessary and sufficient for 2o fate (Greenwald et al. 1983a). In lin-12(null); lin-15 double 

mutants, all VPCs adopt the 1o fate (Sternberg and Horvitz 1989), suggesting that lin-12 was 

required for later inhibition.  

LIN-12 signaling  

lin-12 encodes one of two Notch homologs in C. elegans, glp-1 being the other (Yochem et al. 

1988; Yochem and Greenwald 1989); the LIN-12 and GLP-1 proteins are functionally 

interchangeable (Fitzgerald et al. 1993). The receptor form of LIN-12/Notch is activated by 

binding to a DSL ligand which induces two proteolytic events (Fig.3). The first cleavage event is 

regulated and catalyzed by a disintegrin and metalloprotease (ADAM) at the S2 cleavage site 

(Tax et al. 1997; Wen et al. 1997). ADAM activity cleaves the Notch extracellular domain and 

leaves a small extracellular truncation. The second event is constitutive and cleavage at the S3 

site is catalyzed by Presenilin of the γ-secretase complex (Levitan and Greenwald 1998b; Struhl 

and Greenwald 1999). The intracellular domain of LIN-12/Notch is released from the plasma 

membrane and translocated to the nucleus (Struhl and Adachi 1998). Within the nucleus, the 

intracellular domain of LIN-12/Notch will form a transcriptional activation complex with a CSL 

family (Fortini and Artavanis-Tsakonas 1994; Christensen et al. 1996) transcription factor and 
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member of the Mastermind family (Doyle et al. 2000; Petcherski and Kimble 2000; Wu et al. 

2000). 

Lateral signaling targets 

Activation of lin-12 in P5.p and P7.p promotes specification of the 2o fate and promotes target 

gene expression. A number of these genes are transcriptional targets of LIN-12 and appear to 

negatively regulate EGFR-RAS-MAPK activity, including lst-1, lst-2, lst-3, lst-4, and dpy-23 (Yoo 

et al. 2004). The gene lip-1 encodes a phosphatase that negatively regulates MAPK (Berset et al. 

2001), and ark-1 encodes a tyrosine kinase that interacts with SEM-5 to negatively regulate LET-

23/EGFR (Hopper et al. 2000; Yoo et al. 2004).  

The RHO kinase gene let-502 is expressed in 2o VPCs in response to LIN-12 activation, 

and is important for vulva morphogenesis (Farooqui et al. 2012). Analysis of let-502 

transcriptional reporters, however, suggest that it may transcriptionally activated by LIN-1 

(Farooqui et al. 2012).  

lag-1 – CSL transcription factor 

LAG-1 is a member of the conserved class of transcription factors known as “CSL,” and is a core 

component of canonical Notch signaling; the CSL name is an initialism derived from three 

orthologs: mammalian CBF1; Drosophila Su(H); and C. elegans LAG-1. In general, CSL proteins 

are DNA-binding proteins that recruit co-activator or co-repressor proteins to Notch target genes. 

In this way, CSL can function as activators or repressors. The Notch intracellular domain (NICD) 

replaces these co-repressors, and the CSL-NICD functions as a transcriptional activator. 

[reviewed by Bray (2016) ] 

Animals containing loss-of-function mutations in both Notch genes, lin-12 and glp-1, 

invariably arrest during the L1 stage with the distinctive Lag (lin-12 and glp-1) phenotype (Lambie 

and Kimble 1991). The Lag phenotype of the lin-12 glp-1 double was described as having three 

major anatomical defects: the lack of an excretory cell; the failure to develop a rectum; and a 

“twisted” nose. This phenotype was the basis for a genetic screen to identify core components of 

Notch signaling in C. elegans. Several lag-1 loss-of-function alleles were generated during this 
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screen, and ranked in an allelic series based on the strength and penetrance of the Lag 

phenotype (Lambie and Kimble 1991). Notably, this screen also led to the identification of the first 

C. elegans DSL ligand gene lag-2 (Lambie and Kimble 1991; Tax et al. 1994). Subsequent 

molecular analysis determined that the protein encoded by lag-1 was homologous to Drosophila 

Suppressor of Hairless (Su(H)), and mammalian CBF1; biochemical assays suggested that LAG-

1 bound DNA through a similar recognition motif (Christensen et al. 1996).  

Few studies have explicitly investigated lag-1 in C. elegans. Genetic experiments show 

that lag-1 is required for several specification events during embryogenesis (Hermann et al. 2000; 

Neves and Priess 2005). A positive requirement for LAG-1 for transcription of the ref-1 family of 

bHLH genes in early embryonic development has been described (Neves and Priess 2005). 

Subsequent lag-1 RNAi knock-down experiments indicate that LAG-1 is required for 

transcriptional activation of ref-1 family genes in combination with the GATA transcription factor, 

ELT-2, and LIN-12 activation (Neves et al. 2007). Mosaic analysis of lag-1 RNAi treated animals 

suggests that lag-1 is required for lin-12 activity in the ventral M lineage for sex myoblast 

differentiation (Foehr and Liu 2008).  

Other roles for lag-1 were suggested by the phenotype caused by weaker lag-1 alleles. 

These animals have lower penetrance of larval lethality and many survive to adulthood. Adult 

animals containing these weak lag-1 alleles were reported to have reduced germline proliferation 

consistent with reduced glp-1 activity (Lambie and Kimble 1991; Berry et al. 1997). These 

animals were not reported to have defects in vulval development (Lambie and Kimble 1991). 

Additional hypomorphic lag-1 alleles that enhance a weak loss-of-function glp-1 germline 

proliferation defect (Qiao et al. 1995) and suppress a weak lin-12(d) Vul phenotype (Katic et al. 

2005) were identified in subsequent screens.  

There is evidence to suggest a repressive role for LAG-1 during embryonic development 

of gland cells (Ghai and Gaudet 2008).  LAG-1 was shown to directly repress reporter expression 

from a minimal hlh-6 5’ cis-regulatory sequence (Ghai and Gaudet 2008). No co-repressor was 
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identified from this study, and thus far, no co-repressor that functions with LAG-1 has been 

identified in C. elegans.  

 

Drosophila Su(H) 

Many co-repressors that interact with CSL have been identified. The Hairless-Su(H) repressor 

complex recruits the global repressors CtBP and Groucho. (Morel et al. 2001; Barolo et al. 2002; 

Nagel et al. 2005)In mammals, the CSL protein CBF1, has been found to interact with 

SHARP/MINT (Oswald et al. 2002; Kuroda et al. 2003), KyoT2 (Taniguchi et al. 1998), and CIR 

(Hsieh et al. 1999) to repress target gene transcription. Transcriptional repression is generally 

accomplished through the recruitment of chromatin modifiers such as histone 

deacetylases (Hsieh et al. 1999; Borggrefe and Oswald 2009; Mulligan et al. 2011). Although no 

co-repressor in C. elegans have been identified, there are several candidates based on 

homology, including: DIN-1 and GRLD-1 are homologs of MINT; GEI-1 is a homolog of SMRT; 

and CIR-1 is a homolog of Cir1. 

The mechanosensory bristles of the adult peripheral nervous system are evenly spaced 

in a remarkably ordered pattern. The bristles arise from sense organ precursor cells (SOPs) that 

are specified in small populations of neural precursor cells called proneural clusters (PNCs). All 

cells of the PNC initially express the pro-SOP genes achaete (ac) and scute (sc) (Romani et al. 

1989). The cell that accumulates the highest amount of Ac and Sc protein will become the SOP 

through lateral inhibition (Cubas et al. 1991). Ac and Sc activate expression of the “inhibitory” 

signal, the Notch ligand delta (Haenlin et al. 1994; Kunisch et al. 1994). Notch activation drives 

expression of inhibitory-SOP genes in cells of the PNC (Bailey and Posakony 1995; Lecourtois 

and Schweisguth 1995) 

Su(H) regulates expression of both pro-SOP and inhibitory-SOP genes during lateral 

inhibition. Activation of Notch in non-SOP cells requires Su(H) to drive expression of SOP-

inhibitory E(spl)-C genes (Bailey and Posakony 1995; Lecourtois and Schweisguth 1995). In the 

absence of activated Notch, Su(H) forms a repressor complex with Hairless (H) to inhibit 
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expression of the same SOP-inhibitory E(spl)-C genes (Castro et al. 2005). The SOP gives rise to 

four terminally differentiated cells that comprise the adult bristle [reviewed by (Schweisguth 

2015)]. In a Notch-mediated binary cell-fate decision, two sister cells in the lineage differentiate to 

become the shaft cell and socket cell. Notch activation specifies the socket fate and produces 

high levels of Su(H) in this cell (Schweisguth and Posakony 1992; Gho et al. 1996). Analysis of 

cis-regulatory regions of a su(H) LacZ reporter gene identified Su(H) autoregulatory sites (Barolo 

et al. 2000). Su(H) autoinhibition is important for repression of Notch target genes and 

specification of the shaft cell. Positive autoregulation of Su(H) established by Notch activity is 

important for bristle function (Barolo et al. 2000; Liu and Posakony 2014). 

Structure of CSL and the Notch ternary complex 

All Notch proteins are single-pass transmembrane proteins that are composed similar structural 

domains [reviewed by (Kovall and Blacklow 2010)]. The extracellular domain contains EGF-like 

repeats, the number of which vary by species and subtype, at the amino terminus. The EGF 

repeats are followed by three LIN-12/Notch repeat (LNR) modules and a heterodimerization (HD) 

domain. Together the LNR and the HD domains form the negative regulatory region (NRR), which 

functions to prevent premature activation in the absence of ligand. The intracellular domain 

contains an RBP-Jκ associated molecule (RAM) domain, followed by seven ankyrin (ANK) 

repeats, a transactivation domain, and a PEST domain that promotes protein turnover (Fig. 4A).     

 CSL is composed of three general regions, a core region that is flanked by N- and C-

terminal regions. The two flanking regions have little conservation between species and are not 

included in the crystal structures obtained so far. The core regions of all CSL proteins are well-

conserved. Structural studies of mammalian CBF1 (Nam et al. 2006; Choi et al. 2012) and 

elegans LAG-1 (Kovall and Hendrickson 2004; Wilson and Kovall 2006; Friedmann et al. 2008) 

show a highly similar domain architecture and overall fold. The structure of the core region 

consists of three domains the N-terminal domain (NTD), β-trefoil domain (BTD), and C-terminal 

domain (CTD) separated by flexible linker strands. Specific NTD-BTD and NTD-CTD interactions 

contribute to a stable tertiary fold and these interactions are integral to the overall structure. CSL 
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proteins bind DNA monomerically through a large electropositive surface formed by segments of 

the NTD, BTD and their interdomain linker strand (Kovall and Hendrickson 2004). The protein-

DNA interface contains several residues that contact DNA bases and specify the recognition 

sequence.  

The core recognition sequence of CSL, GTGGGAA, was established biochemically in 

mammalian tissue (Tun et al. 1994), and subsequently confirmed in Drosophila (Brou et al. 1994) 

and C. elegans (Christensen et al. 1996). Studies indicate that CSL only has a moderate affinity 

for DNA, and that the specificity for this core recognition sequence is not particularly strong 

(Friedmann and Kovall 2010). This may represent a biochemical explanation for the requirement 

of low-affinity CSL sites for some cell differentiation (Swanson et al. 2011; Ramos and Barolo 

2013; Liu and Posakony 2014), and may be an explanation for some of the difficulties 

encountered in computationally predicting LAG-1 targets discussed in (Choi 2009) and Chapter 4. 

THE NICD and MAM bind with CSL to form the transcriptional activation complex (Fig. 

4B). The RAM domain of NICD interacts with a conserved hydrophobic motif of CSL. This 

interaction stabilizes the relatively weak interaction between the ANK repeats and the CTD 

(Wilson and Kovall 2006). MAM binds the NICD-CSL through a roughly 60 amino acid “kinked” α-

helical structure that binds to the Notch ANK domain and the CSL CTD (Nam et al. 2006). This 

binding does not induce a conformational change in Notch or CSL (Nam et al. 2006; Wilson and 

Kovall 2006), and does not increase the DNA binding affinity of CSL (Friedmann et al. 2008). 

There is evidence suggesting that association by MAM may stabilize the ANK-CTD interface 

(Choi et al. 2012). The majority of MAM, however, has not been analyzed structurally.  

Summary 

Here, I describe my investigations of regulatory mechanisms that contribute to the precise spatial 

patterning of VPC fate. In Chapter 2 I look at three factors—lin-1, sur-2, and the CDK-8 kinase 

module (CKM)—and find they interact in different combinations to regulate different aspects of 2o 

fate. In the presence of EGFR signaling, lin-1 and sur-2, work in combination to promote 

endocytic downregulation of LIN-12-GFP in P6.p, while all three factors work in combination to 
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establish a mechanism to resist activated LIN-12 in P6.p. I find that the VPCs respond to the 

relative activity of LIN-12 and EGFR, and that lin-1 is critical for proper integration of these two 

signals.  

 In Chapter 3, I discuss my work with tagged forms of the conserved CSL protein, LAG-1. 

I describe my observations using fosmid-based translational reporters. Ultimately, these reporters 

were contradicted by CRISPR-engineered, endogenously- tagged LAG-1 fusion proteins. These 

C-terminal LAG-1 fusions showed a dynamic pattern of LAG-1 protein accumulation in the VPCs. 

I observed that LAG-1 protein is present at a basal level uniformly in all VPCs, and LAG-1 

accumulation increases in P5.p and P7.p compared to the other VPCs. Additional, experiments 

suggest that in the VPCs, LAG-1 accumulation increases in response to LIN-12 activity. 

 In Chapter 4, I discuss experiments designed to uncover trans-acting factors that 

contribute to EGFR-mediated resistance of LIN-12 activity in P6.p. I performed deletion analysis 

of the 5’ regulatory region of lst-5, a direct LIN-12 transcription target. I also attempted to directly 

visualize the formation and activity of the LIN-12-LAG-1 transcriptional activation complex in vivo. 

Both experimental approaches had some successes but were ultimately limited by technical 

complications. I produced useful reagents during these experiments that were used in Chapters 2 

and 3. 
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Chapter 1. Figures 
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Figure 1. Overview of vulval development. During the L1 stage, the six VPCs, numbered P3.p-
P8.p, are born. During the L2 stage, intercellular signals prevent the VPCs from prematurely 
fusing with the hypodermis; P3.p will fuse to the hypodermis during the L2 stage in ~50% of 
animals. During the L3 stage, the VPCs adopt vulval fates in an invariable 3o-3o-2o-1o-2o-3o 
pattern. 1o red; 2o blue; 3o grey. VPCs undergo one round of division and execute their 
programmed cell fate. The descendants of 1o and 2o VPCs will generate the vulva, and the 
daughters of the 3o VPCs will fuse to the hypodermis. Previously, the stereotypical lineage 
pattern was used to assign vulval fates:  L longitudinal division (along anteroposterior axis); T 
transverse division (along left-right axis); N no division. Now, reporter gene expression is used 
(see Chapter 2).  Larval stages are not to scale. Figure adapted from (Li 2011).   
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Figure 2. EGFR-Ras-ERK activation in VPCs. The anchor cell produces the inductive signal, an 
EGF-like ligand LIN-3 (not shown). Activation of LET-23/EGFR in P6.p, the nearest VPC, leads to 
activation of a canonical Ras-Raf-ERK pathway. Phosphorylated LIN-1 promotes 1o-fate. Based 
on mammalian Elk1, ERK-mediated phosphorylation of LIN-1 may switch it from a transcriptional 
repressor to activator, although direct targets of phosphorylated LIN-1 are not known.   Evidence 
in C. elegans also indicates that it can relieve repression of lateral signal genes like lag-2 (Zhang 
and Greenwald, 2011). Figure from (Sundaram 2013). In Chapter 2, I propose additional specific 
models to account for genetic interactions in different aspects of 1o fate. 
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Figure 3. Canonical LIN-12/Notch activation. The membrane-bound receptor form of LIN-
12/Notch binds with a DSL-family ligand triggering two cleavage events. The cartoons represent 
mammalian Notch, where a cleavage at the S1 site leads to a heterodimeric Notch as shown.  
The ligand-dependent cleavage at the S2 site is mediated by a metalloprotease of the ADAM 
family. The cleavage at the S3 site is mediated by the γ-secretase complex. The untethered LIN-
12/Notch intracellular domain (NICD) is translocated to the nucleus where it will form a 
transcriptional activation complex with LAG-1, a CSL protein, and SEL-8, a mastermind (MAM)-
like protein. Figure adapted from (Bray 2016). 
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Figure 4. LIN-12 domain organization and structure of transcriptional activation complex. (A) 
Diagram showing modular organization of the full-length LIN-12 protein. The N-terminal 
extracellular region is composed of EGF repeats, LIN-12/Notch repeats (LNR), and the 
heterodimerization domains (HD). The negative regulator region (NRR) encompasses the LNR 
and HD domains. The C-terminal intracellular domain contains the RBPJ-associated module 
(RAM), Ankyrin (ANK) repeats, the transactivation domain (TAD), and a PEST domain. Figure 4A 
is adapted from (Greenwald and Kovall 2013). (B) Top panel shows ribbon diagram of the LIN-12-
LAG-1-SEL-8 ternary complex bound to DNA. The NTD (blue) of LAG-1/CSL binds to DNA at the 
recognition sequence. The LAG-1/CSL BTD (green) and CTD (orange) bind to the RAM (yellow) 
and ANK (yellow) domains of LIN-12/Notch respectively. The seven ANK repeats are numbered 
sequentially starting from the N-terminus. A kinked helical domain of SEL-8/MAM (black) binds to 
the NTD and the CTD-ANK interface. Bottom panel shows color-coded diagram of the domains 
represented in this structure. Figure 4B is adapted from (Wilson and Kovall 2006).   
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Chapter 2. Integration of EGFR and 

LIN-12/Notch signaling by LIN-1/Elk1, 

the Cdk8 kinase module, and SUR-

2/Med23 in Vulval Precursor Cell fate 

patterning in C. elegans 
 

The following chapter contains a paper published in Genetics (Underwood et al. 2017). 

I am responsible for all of the experiments and data presented in this chapter, with the exception 

of the analysis of cdk-8(0); arIs222[lag-2p::tagrfp], described in Figure 1C, and all experiments 

described in Figure 2. These experiments were performed by the co-author, Yuting Deng. 
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Abstract 

Six initially equivalent, multipotential Vulval Precursor Cells (VPCs) in C. elegans adopt distinct 

cell fates in a precise spatial pattern, with each fate associated with transcription of different 

target genes.  The pattern is centered on a cell that adopts the “1o” fate through Epidermal 

Growth Factor Receptor (EGFR) activity, and produces a lateral signal composed of ligands that 

activate LIN-12/Notch in the two flanking VPCs to cause them to adopt “2o” fate.  Here, we 

investigate orthologs of a transcription complex that acts in mammalian EGFR signaling—lin-

1/Elk1, sur-2/Med23, and the Cdk8 Kinase module (CKM)—previously implicated in aspects of 1o 

fate in C. elegans and show they act in different combinations for different processes for 2o fate.  

When EGFR is inactive, the CKM, but not SUR-2, helps to set a threshold for LIN-12/Notch 

activity in all VPCs.  When EGFR is active, all three factors act to resist LIN-12/Notch, as 

revealed by the reduced ability of ectopically-activated LIN-12/Notch to activate target gene 

reporters.  We show that overcoming this resistance in the 1o VPC leads to repression of lateral 

signal gene reporters, suggesting that resistance to LIN-12/Notch helps ensure that P6.p 

becomes the robust source of lateral signal.  In addition, we show that sur-2/Med23 and lin-

1/Elk1, and not the CKM, are required to promote endocytic downregulation of LIN-12-GFP in the 

1o VPC.  Finally, our analysis using cell fate reporters reveals that both EGFR and LIN-12/Notch 

signal transduction pathways are active in all VPCs in lin-1/Elk1 mutants, and that lin-1/Elk1 is 

important for integrating EGFR and lin-12/Notch signaling inputs in the VPCs so that the proper 

gene complement is transcribed.  

 

Introduction 

The development of the C. elegans vulva is a valuable paradigm for studying signal transduction 

and how cells integrate multiple signaling inputs to regulate the expression of specific gene 

complements.  Six Vulval Precursor Cells (VPCs), numbered P3.p-P8.p, each have the potential 

to adopt one of three fates, termed 1o, 2o, or 3o (Figure 1A).  These fates are specified in the L3 

larval stage and can be distinguished by division pattern, marker expression, and the terminal cell 
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types produced after the lineage is completed (Figure 1B).  Patterning is initiated by an "inductive 

signal," the Epidermal Growth Factor (EGF)-like LIN-3 ligand produced by the anchor cell of the 

gonad.  LIN-3/EGF activates EGF receptor (EGFR) and a canonical Ras-Raf-ERK cascade in 

P6.p, the VPC nearest the anchor cell, which causes P6.p to adopt the 1o fate.  The EGFR-Ras-

ERK cascade also promotes transcription of genes encoding Delta/Serrate/LAG-2 (DSL) family 

ligands for LIN-12/Notch in P6.p.  These ligands constitute a “lateral signal” that activates LIN-

12/Notch in the flanking VPCs, P5.p and P7.p, and causes these cells to adopt the 2° fate.  

EGFR-Ras may also support LIN-12/Notch activity in P5.p and P7.p via an alternate effector 

pathway, RalGEF-Ral (Zand et al. 2011).  The remaining VPCs do not receive either the EGF or 

DSL signals and adopt the 3° fate.  In addition to positive regulatory modes, like ligand 

production, the precise patterning of VPCs depends on negative regulatory modes as well.  

These include mechanisms that set high thresholds for response in all VPCs, as well as mutually 

inhibitory mechanisms for crosstalk between EGFR and LIN-12/Notch in the presumptive 1o and 

2o VPCs [reviewed in Sundaram (2006)].  

Activating the EGFR signal transduction pathway modulates the activity of transcription 

factors that change target gene expression.  The transcription factor LIN-1 is a member of the 

Elk1 subfamily of ETS transcription factors (Hart et al. 2000; Shaye and Greenwald 2011), and is 

a key target of EGFR-Ras-ERK activation in VPCs (Beitel et al. 1995).  LIN-1 (Jacobs et al. 1998) 

and Elk1 (Gille et al. 1992; Marais et al. 1993) are phosphorylated by ERK.  For both LIN-1 

(Leight et al. 2005; Leight et al. 2015) and Elk1 (Marais et al. 1993; Gille et al. 1995; Yang et al. 

2003) the unphosphorylated, sumoylated transcription factor acts as a repressor, and the 

phosphorylated form acts as an activator.  In mammalian cells, ERK-phosphorylated Elk1 

associates with the Med23 component of the large multiprotein complex called Mediator, which 

links DNA-bound transcription factors to the basal transcription machinery (Allen and Taatjes 

2015), to promote transcription of its targets.  It has been proposed that the C. elegans ortholog, 

SUR-2/Med23 (Singh and Han 1995), as well as another Mediator component with which SUR-2 

interacts, LIN-25/Med24 (Tuck and Greenwald 1995; Nilsson et al. 1998), work together with LIN-

1/Elk1 to promote 1o fate in P6.p (Leight et al. 2015).  Indeed, there are clear roles for these 
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genes in positively regulating 1o fate (Howard and Sundaram 2002; Tiensuu et al. 2005); 

however, the mechanisms by which SUR-2/Med23 and LIN-1/Elk1 regulate lateral signal gene 

transcription in VPCs do not conform to this model.  SUR-2/Med23 is required for transcriptional 

activation of lateral signal genes in P6.p, likely via association with the Hox protein LIN-39, 

whereas LIN-1 is not required to activate transcription of lateral signal genes, only to repress 

transcription in all other VPCs (Zhang and Greenwald 2011).  

 Along with Elk1, Med23 also associates reversibly with the Cdk8 Kinase Module (CKM) 

(Boyer et al. 1999), a protein complex that modulates Mediator activity and consists of four 

subunits:  Cdk8, Cyclin C, Med12, and Med13 [reviewed in Allen and Taatjes (2015)].  When 

associated with the Mediator core complex, the CKM can sterically prevent RNA Pol II binding to 

cause transcriptional repression of target genes, or can promote transcriptional activation via the 

kinase activity of Cdk8.  In C. elegans, the CKM has been implicated in the control of cell cycle 

quiescence of VPCs (Clayton et al. 2008) and, when combined with mutations that activate EGFR 

pathway components or may have general effects on chromatin structure, in promoting ectopic 

vulval fate in VPCs that would normally adopt the 3o fate (Clayton et al. 2008; Grants et al. 2016).  

However, as discussed further herein, cdk-8 and cic-1/Cyclin C null mutants are homozygous 

viable and have overtly normal vulval development, suggesting that they are not required for 

normal VPC fate patterning; in contrast, dpy-22/Med12 and let-19/Med13 null mutants are not 

viable, complicating the interpretation of their requirements in VPC fate patterning.    

In this study, we analyze different combinations of lin-1, sur-2, and the CKM, and observe 

that they act in parallel to mediate different processes during VPC fate specification.  Our analysis 

suggests that in the absence of EGFR signaling, the CKM, but not SUR-2, helps set a threshold 

to LIN-12/Notch activity in all VPCs.  We also find that in the presence of EGFR signaling, all 

three factors are required to resist the response to ectopic LIN-12/Notch activity in P6.p, but only 

sur-2/Med23 and lin-1/Elk1 are required for endocytic downregulation of LIN-12-GFP in P6.p.  

Our further investigation of the role of lin-1/Elk1 in VPC patterning using cell fate reporters 

revealed that VPCs have characteristics of both 1o and 2o fate, suggesting that lin-1/Elk1 is 
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important for integrating EGFR and lin-12/Notch signaling inputs in the VPCs so that the gene 

complement for a specific cell fate is transcribed.  

 

Materials and Methods 

C. elegans genetics 

Full genotypes are listed in Table S1. The following mutations were used and described fully in 

WormBase unless otherwise indicated:  LGI: cdk-8(tm1238), sur-2(ku9).  LGII: let-19(os33), and a 

marked derivative of mIn1[mIs14 dpy-10(e128)].  LGIII: lin-12(n302), lin-12(n941), a marked 

derivative of qC1 [dpy-19(e1259) glp-1(q339) qIs26], cic-1(tm3740), pha-1(e2123).  LGIV: lin-

1(n304). LGV: lin-25(ga67). LGX: dpy-22(e652), nre-1(hd20) lin-15b(hd126) [isolated as a double 

mutant in Schmitz et al. (2007)]. 

The following transgenes were used: arIs107[mir-61p::2xnls-yfp] (Yoo and Greenwald 

2005); arEx1080[lin-31p::lin-12(intraΔP)] (Li and Greenwald 2010); arIs131[lag-2p::2xnls-yfp] 

(Zhang and Greenwald 2011); arEx1575[lin-12::gfp] (Karp and Greenwald 2013); arIs222[lag-

2p::tagrfp] (Sallee and Greenwald 2015); arTi31[lin-31p::lin-45(AA, V627E)] (de la Cova et al. 

2017). 

The arIs116[lst-5p::2xnls-yfp] transgene was described by (Choi 2009), and has been 

used as a LIN-12 target gene reporter and 2o-fate marker in other studies (Li and Greenwald 

2010; Karp and Greenwald 2013; Keil et al. 2017).  It is robustly expressed in the L3 stage, when 

2o fate specification occurs, suggesting that LIN-12 activity is the main input into its expression in 

VPCs, in contrast to most other LIN-12 target gene reporters, which have a dynamic pattern of 

expression starting in the L2 stage (Yoo et al. 2004).  We note that arIs107[mir-61p::2xnls-yfp] 

(Yoo and Greenwald 2005), also used in this study, is specific to the L3 stage but is harder to 

visualize than arIs116. 
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Generation of single-copy insertion miniMos-based transgenes 

The arTi102, arTi117, arTi120, arTi121, and arTi190 transgenes drive expression using 

regulatory elements from the lin-31 promoter (Tan et al. 1998) and the unc-54 3’UTR.  Each were 

cloned in the miniMos transgenesis vector pCFJ910 (Frøkjær-Jensen et al. 2014)(Addgene, 

#44481).  Single-copy transgenes were generated by germline injection into N2 animals and 

insertions were isolated as described by Frøkjær-Jensen et al. (2014).  

The transgenes arTi102 and arTi190 were modelled after arEx1080 (Li and Greenwald 

2010).  They encode LIN-12(intraP), the intracellular domain of LIN-12 protein (Wormbase 

sequence R107.8), from residues G931 to R1340.  In arTi102, LIN-12(intraP) is untagged; in 

arTi190, it is tagged at the C-terminus with mKate2.  

The transgenes arTi117, arTi120, and arTi121 encode CDK-8 protein (Wormbase 

sequence F39H11.3) in frame with the T2A peptide (Ahier and Jarriault 2014) and mCherry-H2B.  

arTi117 encodes CDK-8(+), and arTi120 and arTi121 encode CDK-8(D182A). 

RNAi 

Feeding RNAi was performed as described, using HT115-derived bacterial strains expressing C. 

elegans gene sequences (Kamath and Ahringer 2003) (Source BioScience) or mCherry. 

Briefly, eggs were prepared from lin-12(n302); nre-1(hd20) lin-15b(hd126) hermaphrodites 

maintained at 20°C using a bleach/sodium hydroxide protocol and placed on RNAi plates 

containing the appropriate bacterial strain.  RNAi experiments were conducted at 25°C. 

Assessment of Multivulva phenotype in the lin-12(n302) enhancement assay 

Strains containing lin-12(n302) were grown at 20°C. In RNAi experiments, eggs were placed on 

RNAi plates and the Multivulva phenotype of adults was assessed three to four days after egg 

preparation.  Animals with three or more pseudovulvae were scored as Multivulva. When scoring 

conventional genotypes, L4 hermaphrodites were picked and the Multivulva phenotype of adults 

was assessed 24 hours later. Because let-19(0) homozygotes arrest during larval development, 
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homozygous progeny of a balanced let-19(os33)/mIn1 strain were identified by loss of the 

mIn1[mIs14 dpy-10(e128)] balancer. 

Scoring fluorescent reporter expression 

Strains were raised at 20o or 25o and scored at the L3 stage when VPCs were undivided (Pn.p), 

or had undergone either one cell division (Pn.px), or two cell divisions (Pn.pxx).  Animals were 

immobilized in 10mM levamisole, mounted on a 2% agarose pad on a glass slide, and imaged at 

40X on either a Zeiss Axio Imager D1 with an AxioCam MRm or a Zeiss Axio Imager Z1 with a 

Hamamatsu Orca-ER camera.  Illumination was provided by an X-Cite 120Q light source (EXFO 

photonics solutions).  Exposure times and scoring thresholds were established for individual 

reporters based on brightness of expression in control strains. 

Data Availability 

All strains and reagents are available upon request.  Please refer to Table S1 for full genotypes 

and strain names. 

 

Results 

The CKM negatively regulates lin-12 activity in uninduced VPCs  

lin-12(d) missense mutations cause ligand-independent constitutive activity (Greenwald and 

Seydoux 1990).  All lin-12(d) mutants lack an anchor cell (AC) and therefore lack the cellular 

source of the LIN-3/EGF inductive signal.  These mutants can be ranked in an allelic series 

(Greenwald et al. 1983b) based on their vulval phenotype:  in a "weak" lin-12(d) mutant, 

exemplified by lin-12(n302), all VPCs adopt the 3° fate, as in wild-type hermaphrodites when the 

AC is ablated; in a "strong" lin-12(d) mutant, higher constitutive lin-12 activity causes all VPCs to 

adopt the 2° fate, causing a characteristic "Multivulva" phenotype (Figure 2A).  Loss of a negative 

regulator such as sel-10/Fbw7 boosts the activity of the weak lin-12(d) allele, such that all VPCs 

adopt the 2° fate instead of the 3o fate and the animals become Multivulva (Sundaram and 

Greenwald 1993; Hubbard et al. 1997).   
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 Null alleles of cdk-8 are homozygous viable and fertile, and have normal VPC fate 

specification based on marker gene expression and vulval anatomy (Figure 1C).  We find that the 

null allele cdk-8(tm1238) enhances lin-12(n302) activity based on the characteristic Multivulva 

phenotype of adults (Figure 2B-C) and expression of arIs116[lst-5p::2xnls-yfp], a direct 

transcriptional target of LIN-12/Notch (Li and Greenwald 2010)(Figure 2D).  RNAi against cdk-8 in 

a lin-12(n302) background sensitized for RNAi also enhances the Multivulva phenotype (Figure 

2E). Thus, cdk-8 behaves as a negative regulator of lin-12 activity in this assay. 

 We evaluated the three other components of the CKM, cic-1/Cyclin C, dpy-22/Med12 and 

let-19/Med13 in the same assay.  Null alleles of cic-1 are homozygous viable and fertile, as is the 

hypomorphic allele dpy-22(e652).  Homozygous let-19 null mutants can be obtained as sterile 

segregants from heterozygotes.  Loss of activity of each of these genes enhances lin-12(n302), 

based on the Multivulva phenotype or arIs116[lst-5p::2xnls-yfp] expression (Figure 2C-E).  Thus, 

all four components of the CKM are required for negative regulation of lin-12 activity in VPCs and 

are likely to work together in this process.  

In human cells, Cdk8 kinase activity is dispensable when the CKM is associated with the 

Mediator core complex in repressing gene expression, implying that the CKM plays primarily a 

structural role in repressor mode (Knuesel et al. 2009a). In contrast, kinase activity appears to be 

essential when the CKM-Mediator complex promotes activation of target gene expression 

(Knuesel et al. 2009b).  The mutation of a catalytic aspartate residue in the kinase domain to 

alanine (D173A) completely inactivates the kinase activity of mammalian Cdk8 (Akoulitchev et al. 

2000).  Sequence alignment of C. elegans CDK-8 protein with the human Cdk8 protein shows 

that this catalytic residue and its context are conserved in C. elegans (Figure 2F), so we infer that 

the corresponding D182A mutation should lack kinase activity as well.   

We therefore investigated the requirement for kinase activity by examining the ability of 

wild-type CDK-8 or CDK-8(D173A), expressed in VPCs, to rescue the enhancement of lin-

12(n302) by cdk-8(0).  To do so, we constructed single-copy insertion transgenes in which CDK-

8(+) or CDK-8(D173A) is expressed in VPCs as part of a bicistronic transcript, made by fusing 
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mCherry-H2B via the viral T2A peptide, which causes ribosome skipping and works efficiently in 

C. elegans  (Ahier and Jarriault 2014). The visualization of mCherry-H2B gives confidence that 

the upstream CDK-8 protein is expressed in the VPCs even when it has no rescuing activity.  We 

find that CDK-8(+) efficiently rescues the Multivulva phenotype of cdk-8(0); lin-12(n302), while 

two independent lines carrying transgenes that express the CDK-8(D173A) mutant are not 

rescued (Figure 2G).  The inability of CDK-8(D173A) to rescue the enhancement of lin-12(n302) 

by cdk-8(0) supports the inference that the mutation abrogates kinase activity and suggests that 

kinase activity is essential for this role of the CKM. 

 We tested the requirement for sur-2/Med23 or lin-25/Med24 using null alleles and did not 

observe enhancement of lin-12(n302) (Figure 2C).  This observation contrasts with the 

requirement for sur-2 in the negative regulation of lin-12 activity when EGFR-Ras-ERK is active, 

as described below.    

The CKM is not required for EGFR- and SUR-2-promoted transcription of the lateral signal 

gene lag-2 in P6.p 

Ligands for LIN-12 constitute the lateral signal, and the genes encoding these ligands are 

transcribed in P6.p in response to EGFR-Ras-ERK signaling (Chen and Greenwald 2004).  

Characterization of the upstream region of lag-2 identified a cis-regulatory module composed of 

VPCrep, an element for repression in all VPCs, adjacent to VPCact, an element that is required 

for activation in all VPCs (Zhang and Greenwald 2011).  The current model is that VPCrep is a 

binding site for LIN-1/Elk1, and VPCact is a binding site for a Hox protein, likely LIN-39.  Both 

LIN-1 and LIN-39 are present in all VPCs (Wagmaister et al. 2006; Zhang and Greenwald 2011).  

When the inductive signal activates EGFR-Ras-ERK in P6.p, phosphorylation of LIN-1 by ERK 

relieves repression so that LIN-39 can promote transcription of lag-2.  The Mediator components 

SUR-2/Med23 and LIN-25/Med24 are required for lag-2 transcription even when VPCrep is 

deleted, consistent with Mediator acting in conjunction with LIN-39 to promote lag-2 transcription 

through VPCact rather than acting with LIN-1/Elk1 to promote repression through VPCrep (Zhang 

and Greenwald 2011).    
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We assayed the effect of the CKM using null alleles for cdk-8 and cic-1 on the expression 

of the lag-2 transcriptional reporter arIs222[lag-2p::tagrfp], which contains 7.2 kb of 5’ flanking 

region (Sallee and Greenwald 2015).  This reporter is strongly expressed in P6.p and its 

descendants in otherwise wild-type worms (Figure 1B), and is expressed normally in mutants 

lacking the CKM components cdk-8 or cic-1 (Figure 1C). Furthermore, the 2o-fate marker 

arIs116[lst-5p::2xnls-yfp] is expressed normally in CKM mutants, confirming that the lateral signal 

is produced (Figure 1C).  These results suggest that sur-2 and lin-25 may promote transcription 

of lateral signal genes independent of the CKM, consistent with their distinctive abnormal vulval 

phenotypes.  We also find that arIs222[lag-2p::tagrfp] expression in P6.p, as well as the anchor 

cell, is greatly reduced in let-19 animals, but such animals typically arrest prior to or during the L3 

stage, so we cannot conclude that arIs222[lag-2p::tagrfp] transcription requires LET-19. 

Resistance to activated LIN-12 in P6.p depends on the relative balance of EGFR and LIN-12 

activity and allows for robust expression of lateral signal gene reporters 

As described above, constitutive activation of LIN-12 in lin-12(d) mutants eliminates the anchor 

cell.  When constitutively active forms of LIN-12 are expressed specifically in VPCs, and therefore 

do not prevent formation of the anchor cell, P6.p adopts and maintains the 1o fate (Shaye and 

Greenwald 2005; Li and Greenwald 2010), suggesting the existence of a mechanism for 

countering lin-12 activity associated with 1o fate.   

To ascertain if the CKM, SUR-2 and LIN-1 play a role in this mechanism, we first needed 

to characterize it further.  To do so, we utilized transgenes that drive expression in VPCs using 

regulatory sequences from the lin-31 gene (“lin-31p”) (Tan et al. 1998) and the constitutively 

active form LIN-12(intraΔP).  This derivative of the intracellular domain (“intra”) mimics the natural 

signal-transducing cleavage product (Struhl et al. 1993), but is stabilized by removal of a degron 

("ΔP"), resulting in more potent constitutive activity (Li and Greenwald, 2010; Deng and 

Greenwald, 2016).    

In the presence of the extrachromosomal array arEx1080[lin-31p::lin-12(intraΔP)], all 

VPCs other than P6.p adopt the 2o
  fate, while P6.p still adopts the 1o fate (Figure 3A).  The LIN-
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12 target reporter arIs116[lst-5p::2xnls-yfp] is generally not transcribed in P6.p, consistent with 

implementation of a mechanism that resists constitutive lin-12 activity (Figure 3A).  In contrast, 

two independent, single-copy integrated transgenes that encode LIN-12(intraΔP) lead to 

transcription of arIs116[lst-5p::2xnls-yfp] in P6.p (Figure 4A-C).  We interpret this observation as 

indicating that these transgenes result in sufficient ectopic LIN-12 activity in P6.p to overcome 

resistance to LIN-12 activity in P6.p, thereby allowing us to examine the consequences of 

constitutive LIN-12 activity in a 1o VPC.  To do so, we simultaneously scored arIs116[lst-

5p::2xnls-yfp] and arIs222[lag-2p::tagrfp] on a VPC-by-VPC basis in the presence of the single-

copy insertion transgene arTi102[lin-31p::lin-12(intraΔP)].  We observed that not only was 

arIs116[lst-5p::2xnls-yfp] expressed in P6.p, indicating that the resistance was overcome, but also 

that arIs222[lag-2p::tagrfp] expression was concomitantly reduced in P6.p, suggesting that 

resistance is important for ensuring strong lateral signal gene expression (Figure 4A).   

To test if this effect may be an artifact of the arTi102[lin-31p::lin-12(intraΔP)] insertion site 

or arIs222[lag-2p::tagrfp] reporter, we combined a different single-copy insertion transgene, 

arTi190[lin-31p::lin-12(intraΔP)-mkate2], and a different lag-2 reporter, arIs131[lag-2p::2xnls-yfp] 

(Zhang and Greenwald 2011).  We observed a similar reduction of lag-2 reporter expression in 

this independent combination (Figure 4C), suggesting that reduced lateral signaling is a bona fide 

effect of ectopic LIN-12 activation in a 1o VPC.   

We also tested whether LIN-12 activity from the arEx1080[lin-31p::lin-12(intraΔP)] 

transgene, which appears to have lower constitutive activity, is sufficient to reduce transcription of 

arIs131[lag-2p::2xnls-yfp] in P6.p.  We observed that lag-2 reporter expression levels were 

initially reduced during the Pn.p stage (Figure 4C),  consistent with the inference that lateral 

signaling in a 1o VPC is reduced by increased LIN-12 activity and further support the existence of 

a mechanism for countering lin-12 activity in 1o VPCs.  In this genotype, however, expression 

returned to wild-type levels by the Pn.px stage.  We interpret the difference in the timing of the 

restoration of lag-2 reporter expression between the two strains as reflecting the fact that 

expression driven by lin-31p regulatory sequences diminishes over the course of the lineage in 
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induced VPCs, while the anchor cell continues to produce LIN-3/EGF, so that the strength of lin-

12 activity and the number of copies of lag-2 regulatory sequences in the reporters may come 

into play later in development. 

In sum, our results suggest that 1°-fate associated resistance to activated LIN-12 

depends on the relative balance of EGFR and LIN-12 activity and that this resistance helps 

ensure that P6.p becomes the robust source of lateral signal (Figure 4D).   In the next section, we 

examine if the CKM and SUR-2 play a role in this resistance, and in the following section, 

describe how our investigation of a potential role for lin-1 in this resistance led to novel 

observations about the role of lin-1 in VPC patterning. 

The CKM and SUR-2/Med23 are required for resistance of P6.p to signal transduction by 

expression of constitutively active LIN-12/Notch 

As described above, analysis of the role of the CKM in the absence of the inductive signal 

suggests that the CKM plays a role in setting a threshold by opposing LIN-12 activity in the VPCs.  

We therefore assessed whether the CKM also mediates the resistance to activated LIN-12 in 

P6.p in the presence of the inductive signal, when EGFR is activated.  Additionally, we asked if 

sur-2, which acts in P6.p to promote lateral signal gene expression but does not enhance lin-

12(n302) activity, is required for resistance to activated LIN-12 in P6.p.  To do so, we removed 

the activity of individual genes using null alleles in the presence of arEx1080[lin-31p::lin-

12(intraΔP)], the “weak” transgene that does not overwhelm the resistance in P6.p, and assessed 

transcription of the LIN-12 target arIs116[lst-5p::2xnls-yfp].  We found that removal of any of 

these genes allowed arIs116[lst-5p::2xnls-yfp] transcription in P6.p, indicating that resistance to 

activated LIN-12 due to EGFR activation is relieved (Figure 3B-D).   

We then assessed whether removal of cdk-8 reduces arIs131[lag-2p::2xnls-yfp] 

expression in the presence of arEx1080[lin-31p::lin-12(intraΔP)], as might be expected if loss of 

cdk-8 increases constitutive lin-12 activity.  Although we could only assay a limited number of 

Pn.px-stage hermaphrodites due to the low brood size of the strain, we observed reduction of lag-

2 reporter expression in 4/8 cdk-8(0); arIs131 [lag-2p::2xnls-yfp]; arEx1080[lin-31p::lin-
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12(intraΔP)] hermaphrodites as compared to arIs131[lag-2p::2xnls-yfp]; arEx1080[lin-31p::lin-

12(intraΔP)] hermaphrodites (13/14), which is statistically significant by Fisher’s Exact Test (p 

<0.04).   

The requirement for the CKM for resistance to nuclear LIN-12 contrasts with the lack of a 

requirement for the CKM to promote lag-2 transcription in the same VPC.  These observations 

are consistent with independent function of different subcomplexes, e.g. a subcomplex containing 

both the CKM and SUR-2 for resistance to nuclear LIN-12, and a subcomplex that lacks the CKM 

(but may have LET-19/Med13) for expression of lag-2.  We could not test if CDK-8 kinase activity 

is required for resistance to nuclear LIN-12 in P6.p because of synthetic lethality when we tried to 

construct strains containing cdk-8(0), arIs116, arEx1080, and any of the single-copy CDK-8-

expressing transgenes, for reasons we did not investigate further. 

Loss of LIN-1 leads to ectopic LIN-12 signal transduction in all VPCs  

Previous studies suggest that loss of lin-1 does not affect production of the inductive signal by the 

anchor cell or activation of the EGFR-Ras-ERK phosphorylation cascade per se (Beitel et al. 

1995; de la Cova and Greenwald 2012).  We began to test if lin-1 is required for resistance to 

activated LIN-12 in P6.p by constructing a control strain in which lin-1(n304), a null mutant, and 

the LIN-12 target gene reporter arIs116[lst-5p::2xnls-yfp], were combined.  We observed that the 

reporter is expressed in all VPCs in this strain, even though it lacks any transgenic source of 

constitutively active LIN-12 (Figure 5A-B).  To determine whether this unexpected expression of 

arIs116[lst-5p::2xnls-yfp] in all VPCs is a property of the reporter transgene, we tested a second 

LIN-12 target gene reporter, arIs107[mir-61p::2xnls-yfp] (Yoo and Greenwald 2005).  Again, we 

observed ectopic expression in all VPCs in lin-1(n304) (Figure 5C), indicating that LIN-12 target 

genes may be generally derepressed in the absence of lin-1 activity.  We note that precocious 

derepression of arIs116[lst-5p::2xnls-yfp] is not observed during the L2 stage (Figure 5D), 

indicating that the temporal mechanism that normally restricts induction of this target to the L3 

stage is not abrogated by loss of lin-1, and suggesting that the observed expression in all VPCs 

reflects a function of lin-1 relevant to spatial patterning.  
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 Due to the above observations, and because loss of lin-1 leads to derepression of lateral 

signal gene expression (Zhang and Greenwald 2011), we hypothesized that LIN-12 signal 

transduction is ectopically activated in all VPCs in a lin-1(0) mutant background.  We tested this 

hypothesis genetically by examining the effect of removing lin-12 activity in a lin-1(0) background.  

If LIN-12 signal transduction occurs in all VPCs in a lin-1(0) background, then lst-5 expression in 

the absence of LIN-1 would still require lin-12 activity.  When we examined lin-12(0); lin-1(0); 

arIs116[lst-5p::2xnls-yfp] hermaphrodites, we observed that arIs116[lst-5p::2xnls-yfp] was no 

longer expressed (Figure 5E), consistent with the possibility that LIN-12 signal transduction is 

ectopically activated.   

Normally the EGFR-mediated inductive signal causes LIN-12 protein to be endocytosed 

and degraded in P6.p (Levitan and Greenwald 1998a; Shaye and Greenwald 2002)(Figure 5F-G), 

yet P6.p expresses LIN-12 target gene reporters in lin-1(0).  Thus, if loss of lin-1 indeed causes 

ectopic LIN-12 signal transduction, we would predict that loss of lin-1 also prevents LIN-12 

downregulation in P6.p despite its 1o fate characteristics, such as lag-2 expression and formation 

of a functional vulva.  Indeed, when we assessed the presence of LIN-12-GFP in a lin-1(0) 

background, we observed that it is visible at the apical membrane of P6.p, as in the other VPCs, 

indicating that it has not been downregulated (Figure 5F-G).  Furthermore, as described above, 

the 1o fate is normally associated with resistance to activated LIN-12, yet two different targets of 

LIN-12 are transcribed in P6.p and in all other VPCs in a lin-1(0) background, indicating that 

resistance is abrogated or overcome.   

LIN-1 coordinates crosstalk between the inductive and lateral signaling pathways 

Cell lineage analysis suggested that in lin-1(0) mutants, VPCs commit to either the 1o or 2o fate 

and that VPCs are able to resolve the relative strength of the EGFR and LIN-12/Notch signaling 

inputs (Beitel et al. 1995).  However, now, using direct targets of the inductive and lateral 

signaling pathways to assess the state of signal transduction in the VPCs, we instead observe 

highly penetrant expression of direct targets for both EGFR and LIN-12/Notch pathways in all 

VPC (Figure 6A-B).  We interpret this observation as indicating that loss of lin-1 activity 
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compromises at least some aspects of the ability of VPCs to integrate the signaling inputs from 

these pathways. 

The simultaneous activation of EGFR and LIN-12/Notch signal transduction observed in 

lin-1(0) mutants contrasts with the mutually exclusive expression of the same targets when the 

Ras cascade per se is activated.  We scored expression of the same signaling pathway reporters 

on a VPC-by-VPC basis in the presence of a transgene that expresses a constitutively active and 

stable form of LIN-45/Braf in all VPCs arTi31[lin-31p::lin-45(AA, V627E)] (de la Cova and 

Greenwald 2012; de la Cova et al. 2017).  In contrast to lin-1(0), we found that when the Ras 

cascade is activated, each VPC generally expresses one marker or the other, not both (Figure 

6C-D).  The innermost VPCs adopt their normal fates, indicating that the anchor cell inductive 

signal continues to center the pattern on P6.p.  In addition, the outermost VPCs, which normally 

would adopt the 3o fate but instead form ectopic pseudovulvae away from the anchor cell, are 

patterned by their neighbors:  P8.p always expresses only the lag-2 reporter, because its 

neighbor P7.p always adopts its normal 2o fate; and P3.p and P4.p generally express one or the 

other reporter, but not both, implying that they retain the ability to resolve their fates through 

interactions between them.  Thus, we interpret the difference in marker pattern as indicating that 

loss of lin-1 not only causes all VPCs to behave as if they have been induced, but also abrogates 

coordination between the inductive and lateral signaling pathways.   

 

Discussion 

In the C. elegans Vulval Precursor Cells (VPCs), multiple mechanisms coordinate LIN-12/Notch 

and EGFR signaling inputs to ensure a precise and robust spatial pattern of distinct cell fates.  

The pattern is centered on P6.p, in which EGFR-Ras-ERK is activated by an EGF-like ligand 

produced by the gonad, and subsequently produces a lateral signal composed of ligands that 

activate LIN-12/Notch.  We examined how several parameters impacting the activity of lin-

12/Notch in VPC fate patterning are affected by loss of three components that have biochemical 

relationships:  LIN-1, the ortholog of the Elk1 subfamily of transcription factors, which regulates 
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lateral signal gene transcription in response to the inductive signal; SUR-2, the ortholog of 

Med23, which in mammalian cells links Elk1 to the core Mediator complex; and the facultative 

modulator of the Mediator complex, the Cdk8 kinase module (CKM).   

We discuss here our three main conclusions and their implications.  (i) The CKM, but not 

SUR-2/Med23, helps set a threshold for LIN-12/Notch activity in all VPCs.  (ii) In P6.p, where 

EGFR is active and LIN-12/Notch is normally inactive, we find that the CKM, SUR-2 and LIN-1 

are all required for EGFR-associated resistance to ectopically activated LIN-12/Notch, while only 

SUR-2 is required for lateral signal gene transcription.  (iii) We extend the understanding of the 

integration of inductive and lateral signaling in view of our new insights into how loss of lin-1 

impacts lin-12 activity, and how sufficient ectopic LIN-12 activity in P6.p can overcome EGF-

promoted resistance and oppose 1o fate.  Our results suggest that different configurations of the 

CKM, SUR-2 and LIN-1 operate simultaneously in VPCs to coordinate EGFR and LIN-12/Notch 

signaling to specify the 2o VPC fate, and emphasize the crucial role of lin-1 in VPC fate patterning 

(Figure 7A-C).    

The CKM and basal activity of LIN-12/Notch in VPCs 

We identified a requirement for the CKM and its associated kinase activity in negative regulation 

of lin-12 activity. Loss of cdk-8 strongly enhanced the mildly activated mutation lin-12(n302), an 

allele which has two useful properties: (i) it affords a sensitized background for observing 

increased lin-12 activity (Hubbard et al. 1997; de Souza et al. 2007), and (ii) it removes the 

anchor cell of the gonad, which serves as the cellular source of the EGF signal, and hence 

removed input from EGFR-mediated induction into VPC fate.  Thus, the genetic interactions we 

observed with Mediator CKM components indicate that the CKM exerts a negative regulation on 

basal lin-12 activity independent of EGFR-mediated input.  We suggest that the CKM is important 

for setting a threshold in VPCs for response to lin-12 activity.   

In mammalian cells, (Fryer et al. 2004) found that Cdk8 and Cyclin C associate with the 

Notch nuclear complex, and that Cdk8 phosphorylates the Notch intracellular domain to promote 

its targeting by Fbw7 for ubiquitination and proteasome-mediated degradation.  Based on these 
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observations and other supporting data, they proposed that Cdk8 activity promotes degradation 

of the Notch enhancer complex at target genes.  Their biochemical observations were 

corroborated in a subsequent study, which further showed that in vivo Cyclin C is a 

haploinsufficient tumor suppressor for the NOTCH1-driven cancer T cell acute lymphoblastic 

leukemia (Li et al. 2014).  Furthermore, a recent study of another NOTCH1-driven cancer, chronic 

lymphocytic leukemia, found that mutations in MED12 correlate with increased levels of NOTCH1 

intracellular domain, and that Cdk8 kinase activity negatively regulates its level in this cancer 

context, too (Wu et al. 2017).  These findings are consistent with our conclusions that individual 

components of the CKM all contribute to the negative regulation of lin-12 activity in a CDK-8 

kinase dependent fashion.  

sel-10, the C. elegans ortholog of Fbw7, was first implicated in negative regulation of 

Notch through genetic analysis in C. elegans (Sundaram and Greenwald 1993; Hubbard et al. 

1997).  The functional relationship of sel-10 and lin-12 parallels the functional relationship of 

FBXW7 (the gene that encodes Fbw7) and NOTCH1:  mutations that inactivate sel-10 increase 

the activity of lin-12(n302), and mutations that inactivate FBXW7 increase the activity of 

oncogenic forms of NOTCH1 with similar lesions (Gupta-Rossi et al. 2001; Öberg et al. 2001; Wu 

et al. 2001).  However, in C. elegans, it is not clear that negative regulation of LIN-12 by CDK-8 is 

direct:  although the intracellular domain of LIN-12/Notch must be able to assemble into the 

nuclear complex to be degraded by SEL-10/Fbw7 (Deng and Greenwald 2016), the Cdk8-

dependent phosphorylation of the mammalian Notch1 intracellular domain occurs at serines that 

are not conserved in C. elegans LIN-12.  It is possible that the CKM phosphorylates LIN-12 

directly, but at a different site than in mammalian Notch1.  Alternatively, the negative regulation of 

lin-12 activity by the CKM in VPCs may occur by a different mechanism, such as phosphorylation 

of another component of the nuclear complex or more indirectly.    



 

38 
 

Different requirements for SUR-2, the CKM, and LIN-1 in P6.p for different functions 

relevant to LIN-12/Notch and VPC patterning 

The roles of SUR-2, the CKM, and LIN-1 are different in P6.p for three functions that are relevant 

to LIN-12/Notch signaling and VPC patterning: transcription of the lateral signal genes (Figure 

7A), downregulation of the receptor form of LIN-12 (Figure 7B), and resistance to the nuclear 

form of LIN-12 (Figure 7C).  Although the physical interactions cannot be known from this genetic 

analysis, we can make some hypotheses about complexes and mechanisms that mediate the 

different functions. 

With respect to transcription of the lateral signal genes in P6.p, SUR-2/Med23 is required 

for expression (Chen and Greenwald 2004) and LIN-1/Elk1 is not, although lin-1 plays an 

important role in VPC patterning by repressing the lateral signal genes in other VPCs (Zhang and 

Greenwald 2011).  Our analysis of cdk-8 and cic-1 indicates that the CKM is not required for 

expression of the lateral signal genes.  Thus, the LIN-39/Hox activator complex that promotes 

lateral signal gene transcription in P6.p may contain SUR-2 but not the CKM, and the LIN-1 

repressor complex that prevents expression in other VPCs may not contain either SUR-2 or the 

CKM.  We note that a small difference in penetrance of lag-2 expression reported for a complex 

background that differed in cdk-8 activity, interpreted as evidence that cdk-8 partially contributes 

to LIN-1-mediated repression of lateral signal genes (Grants et al. 2016), is not statistically 

significant, so at present there is no unequivocal evidence for a partial contribution of the CKM to 

LIN-1-mediated repression of lateral signal genes.    

The endocytic downregulation of a GFP-tagged receptor form of LIN-12 in P6.p was 

previously shown to require SUR-2 (Shaye and Greenwald 2002); we now find that LIN-1 is also 

required for this process, but the CKM is not.  In addition, analysis of cis-acting sequences in the 

intracellular domain of LIN-12 suggested that kinases and ubiquitin ligases promote its 

internalization and degradation, leading to the hypothesis that one or more of these factors are 

under the transcriptional control of the EGFR-Ras-ERK pathway (Shaye and Greenwald 2005).  

Our analysis here suggests the further hypothesis that one or more direct transcriptional targets 
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are activated by ERK-phosphorylated LIN-1 recruitment of Mediator via SUR-2, as in mammals, 

although no direct targets regulated in this way have been identified in C. elegans as yet.   

Finally, the CKM, SUR-2 and LIN-1 are all required for EGFR-associated resistance to a 

stabilized, nuclear form LIN-12/Notch that mimics the natural signal-transducing form after ligand-

induced cleavage.  Thus, we envisage that a complex containing all three components may 

mediate this function.  In such complexes, a requirement for Cdk8 kinase activity is associated 

with transcriptional activation (Knuesel et al. 2009b) and the lack of a requirement for Cdk8 

kinase activity, with repression (Knuesel et al. 2009a).  However, we were unable to test if CDK-8 

kinase activity was required for resistance because of synthetic lethality of the necessary 

genotype.  It is possible that this complex functions in repressor mode to directly repress LIN-12 

target genes; alternatively, it may function in activator mode to promote expression of one or 

more targets of EGFR-Ras-ERK that mediates resistance.  

We note that there are differences in the contributions of the EGFR-Ras-ERK pathway to 

vulval development in other species when compared to C. elegans (Felix 2007; Sommer 2012).  

There also may be differences in the contributions of the components we have studied here to 

vulval development in the related species, Caenorhabditis briggsae:  the ortholog of lin-1 is critical 

for inhibiting ectopic vulval fate (Sharanya et al. 2015), but the ortholog of sur-2 may not be 

essential for production of the lateral signal (Mahalak et al. 2017).  Finally, these components 

function in different configurations and activate or repress different target genes in other 

developmental contexts in C. elegans, such the excretory system (Howard and Sundaram 2002; 

Rocheleau et al. 2002; Sundaram and Buechner 2016).     

Integrating the EGFR-Ras-ERK inductive signaling and LIN-12/Notch lateral signaling 

pathways  

Our observations on the phenotype of lin-1(0) mutants and the resistance to activated LIN-12 in 

P6.p are relevant to how signaling inputs are integrated during VPC specification. lin-1 has been 

viewed as an “inhibitor of vulval fate”, because loss of lin-1 causes ectopic vulval induction 

(Ferguson et al. 1987; Beitel et al. 1995), while missense mutations near phospho-acceptor sites 
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prevent the generation of additional vulval cells even in the presence of activated Ras (Jacobs et 

al. 1998).  In terms of molecular mechanism, it has been proposed that sumoylated LIN-1 recruits 

transcriptional repressors to inhibit the 1o fate, and ERK-mediated phosphorylation of LIN-1 

converts it into a transcriptional activator to promote 1o fate in P6.p (Leight et al. 2015).  This 

model accounts for a positive role for lin-1 in promoting 1o fate as inferred from a requirement for 

expression of egl-17, a marker for 1o fate in VPCs (Howard and Sundaram 2002; Tiensuu et al. 

2005), and is compatible with the regulation of lag-2 expression by loss of LIN-1 repression in 

response to the inductive signal.   The later role of lin-1 in descendants of 2o  VPCs during vulval 

morphogenesis (Farooqui et al. 2012) is distinct from the role in VPC fate specification 

considered here.   

In classic cell lineage analysis, VPC fates were assigned using the best criteria available 

at the time--the plane of the final division in the lineage and adhesive properties of the terminal 

cells (Sternberg and Horvitz 1986).  Such analysis suggested that in a lin-1(0) mutant, each VPC 

adopts a 1o or 2o fate, depending on the relative input of competing inductive and lateral signaling 

pathway activity (Beitel et al. 1995); however, it was also noted that many of the lineages were 

abnormal.  Here, using markers that directly report the activities of the EGFR and LIN-12/Notch 

pathways, we observed that both EGFR-Ras-ERK and LIN-12/Notch signal transduction is active 

in VPCs in lin-1(0) mutants, likely accounting for the abnormal lineages previously observed.  We 

observed that expression of these reporters persists throughout the lineage in lin-1(0) mutants, in 

contrast to their clean resolution by the Pn.px stage when LIN-45/Braf, the first kinase in the Ras 

cascade, is constitutively activated.  We interpret these findings as indicating that lin-1 is required 

for crosstalk between the EGFR and LIN-12 signal transduction pathways, such that loss of lin-1 

not only leads to ectopic 1o fate, but also abrogates the normal mechanisms that mediate 

crosstalk between the EGFR-Ras and LIN-12/Notch, such as downregulation of LIN-12. 

In previous reports it had been briefly noted that in response to EGFR activity, P6.p 

appears to be refractory to an activated form of LIN-12 lacking the extracellular domain (Shaye 

and Greenwald 2005; Li and Greenwald 2010).  We have now characterized this phenomenon 
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further using a stabilized form of the untethered intracellular domain, which mimics the ultimate 

cleavage product after ligand binding, and transcriptional reporters for EGFR-Ras-ERK and LIN-

12 target genes.  Our observation that lag-2 expression can be repressed  when lin-12 activity is 

sufficiently high in the presence of the inductive signal is evidence that “high” LIN-12 can oppose 

EGFR-Ras-ERK in presumptive 1o VPCs, suggesting that EGFR-promoted resistance to 

activated LIN-12 is a mechanism for preventing inappropriate activation of 2o-fate genes that 

would otherwise inhibit adoption of 1o fate.  How high constitutive lin-12 activity overcomes 

resistance may be mechanistically related to what normally occurs in 2o VPCs, where activation 

of LIN-12 leads to expression of negative regulators of EGFR-Ras-ERK activity (Berset et al. 

2001; Yoo et al. 2004) and positively reinforces lin-12 activity through a microRNA-mediated 

double negative feedback loop (Yoo and Greenwald 2005).  We speculate that LIN-1, SUR-2 and 

the CKM work together to promote expression of one or more target genes that implement 

resistance to LIN-12. 
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Chapter 2. Figures
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Figure 1. VPC fate specification. (A) Schematic of VPC fate specification. The EGF-like inductive 
signal produced by the anchor cell (AC) of the gonad activates a canonical EGFR-Ras-ERK 
cascade in P6.p, causing it to adopt the 1° vulval fate and transcribe lateral signal genes, 
including the DSL-type ligand lag-2.  The lateral signal activates LIN-12 in P5.p and P7.p, which 
adopt the 2° vulval fate.  The fates are represented as 1° vulval fate (red), 2° vulval fate (blue), 
and 3° non-vulval fate (gray). (B) Photomicrographs of VPCs and their descendants in the L3 
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stage.  The red 1o-fate reporter, arIs222[lag-2p::tagrfp], is a direct target of the EGFR-Ras-ERK 
pathway. The yellow 2o-fate reporter, arIs116[lst-5p::2xnls-yfp], is a direct target of LIN-12/Notch. 
Top, marker expression in VPCs (the “Pn.p” stage); middle, marker expression in the daughters 
of P5.p-P7.p (the “Pn.px” stage); bottom, marker expression in the granddaughters of P5.p-P7.p 
(the “Pn.pxx” stage).  (C) cdk-8 null mutants have normal expression of cell fate markers.  14/14 
individuals for each genotype, scored in a single experiment, showed normal marker expression.  
Right, photomicrograph of a cdk-8(tm1238); arIs222[lag-2p::tagrfp] hermaphrodite at the Pn.px 
stage, showing normal lag-2 reporter expression in the anchor cell (arrowhead) and in the two 
daughters of P6.p (bracket). Left, photomicrograph of a cdk-8(tm128); arIs116[lst-5p::2xnls-yfp] 
hermaphrodite at the Pn.px stage, showing normal 2o fate marker expression in the daughters of 
P5.p and P7.p (brackets).    
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Figure 2. The CKM acts in a kinase dependent manner to negatively regulate lin-12 activity.  (A) 
Schematic showing VPC fates adopted depending on the degree of elevated lin-12 activity. lin-
12(d) mutations prevent the development of the anchor cell.  In lin-12(n302), a relatively “weak” 
lin-12(d) allele, all VPCs adopt the 3o non-vulval fate, as would wild-type VPCs in the absence of 
an anchor cell.  lin-12(n302) activity can be enhanced in VPCs by removal of negative regulators, 
resulting in “strong” activity and causing all VPCs to adopt the 2° fate.  (B) Photomicrographs 
showing that cdk-8(0) enhances lin-12(n302) activity to cause the distinctive Multivulva phenotype 
associated with all VPCs adopting the 2o fate.  (C) Loss of individual CKM components, but not 
the core Mediator components sur-2 or lin-25, enhances lin-12(n302) activity, as assessed by the 
Multivulva (Muv) phenotype.  Graph shows percentage of adult hermaphrodites that are Muv. **P 

< 0.001 compared to lin-12(n302) (Fisher’s exact test). † Scored homozygous let-19(os33) 

progeny from heterozygous let-19(os33)/mIn1 mothers.  (D) Loss of individual CKM components 
enhance lin-12(n302) activity, as assessed by expression of the LIN-12 target reporter 
arIs116[lst-5p::2xnls-yfp]. Schematic representation of the percentage of individual VPCs that 
display YFP fluorescence. (E) Reduction of individual CKM components by RNAi enhances lin-
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12(n302) activity.  Graph shows percentage of adult hermaphrodites that are Muv. **P < 0.001, 
*P < 0.01 compared to RNAi against mCherry (Fisher’s exact test).  (F) ClustalW2 alignment 
(Larkin et al. 2007) of human Cdk8 and C. elegans CDK-8 showing conservation of the region 
required for kinase activity. The aspartate residue essential for Cdk8 kinase activity, D182, and 
the corresponding C. elegans residue, D173, mutated to alanine for the analysis in G are 
highlighted in red. (G) CDK-8 kinase activity is necessary for negative regulation of lin-12(n302) 
activity.  Graph shows percentage of adult hermaphrodites that are Muv.  Transgene arTi117 
expresses CDK-8(+) in the VPCs, restoring activity and rescuing enhancement of lin-12(n302) by 
cdk-8(0).  Two independent transgenes (arTi120 and arTi121) expressing the putative kinase-
dead CDK-8(D182A) mutant in the VPCs do not rescue cdk-8(0).  All three transgenes express a 
bicistronic transcript in which CDK-8 fused to T2A-mCherry-H2B in order to confirm transgene 
expression in VPCs (see Materials and Methods). **P < 0.001 compared to cdk-8(0); lin-12(n302) 
(Fisher’s exact test). 
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Figure 3. Resistance to constitutively active LIN-12 signal transduction in P6.p. (A) Left, 
schematic representing the resistance to LIN-12 activation in P6.p in the presence of the AC. The 
arEx1080 transgene expresses constitutively active LIN-12(intraΔP) in all VPCs.  However, the 
LIN-12 target reporter arIs116 is not expressed in P6.p, allowing genes to be assessed for roles 
in resistance to activated LIN-12 associated with 1o fate.  Right, photomicrograph showing 
expression of the LIN-12 target reporter arIs116[lst-5p::2xnls-yfp]; arEx1080[lin-31p::lin-
12(intraΔP)] in daughters of all VPCs except P6.p, where LIN-12 signal transduction is resisted.  
(B) Loss of resistance to LIN-12 activation in P6.p in cdk-8 null mutants.  Left, schematic in which 
P6.p fate is denoted as 1o~2o, since it now expresses arIs116[lst-5p::2xnls-yfp] but will form a 
functional vulva.  Figure 4 considers the state of P6.p further.  Right, photomicrograph of cdk-
8(tm1238); arIs116[lst-5p::2xnls-yfp]; arEx1080[lin-31p::lin-12(intraΔP)] showing resistance in 
P6.p is lost and YFP is present in daughters of all VPCs.  (C) Control for D, showing that 
arIs116[lst-5p::2xnls-yfp] is not ectopically expressed in P6.p in the absence of individual CKM 
components or sur-2. Graph shows percentage of animals with YFP fluorescence in P6.p. N.S. 
denotes not significant compared to wild type (Fisher’s exact test).  (D) Loss of individual 
components of the CKM or sur-2 relieve resistance to expression of arIs116[lst-5p::2xnls-yfp] in 
P6.p in the presence of arEx1080[lin-31p::lin-12(intraΔP)]. Graph shows percentage of animals 
with YFP fluorescence in P6.p.  **P < 0.001 compared to wild type (Fisher’s exact test).   
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Figure 4. Activated LIN-12 expressed from single-copy transgenes overcomes resistance in P6.p 
and leads to repression of lateral signal gene expression.  (A) Constitutive LIN-12 activity 
provided by arTi102[lin-31p::lin-12(intraΔP)] overcomes resistance to lin-12 activity in P6.p, the 1o 
VPC.  Each row in the chart represents an individual with arIs222[lag-2p::tagrfp] and arIs116[lst-
5p::2xnls-yfp] reporters.  On the left, the reporters are in an otherwise wild-type background; on 
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the right, they are in the background of arT1102, which expresses LIN-12(intraP).  In each 
hermaphrodite, each marker was scored on a per VPC basis. Red, only tagRFP fluorescence 
was present; blue, only YFP fluorescence was present; purple, both tagRFP and YFP were 
present; grey, no fluorescence was observed.  (B) arIs131[lag-2p::2xnls-yfp] expression is 
inhibited by LIN-12(intraΔP) expressed from arTi190.  Photomicrographs of a hermaphrodite of 
genotype arTi102[lin-31p::lin-12(intraΔP)]; arIs222[lag-2p::tagrfp]; arIs116[lst-5p::2xnls-yfp] 
showing expression of the lst-5 reporter in daughters of P6.p (top), and, inhibition of the lag-2 
reporter expression in P6.p in the same individual (middle).  In the merge (bottom), tagRFP can 
be seen in the AC (arrowhead) and neurons, but not in Pn.px cells. (C) Constitutive LIN-12 
activity from arTi190[(lin-31p::lin-12(intraΔP)-mkate2] overcomes resistance to lin-12 activity in 
P6.p, leading to reduced expression of arIs131[lag-2p::2xnls-yfp]  and to ectopic transcription of 
arIs116[lst-5p::2xnls-yfp]. In this panel, the two markers were scored in separate strains.  The 
graphs shows percentage of animals with fluorescent protein expression in P6.p, its daughters, 
and granddaughters.   At the Pn.p stage,  *P<0.015 and **P<0.0005 when wild-type and 
transgene-containing strains were compared (Fisher’s exact test).  When arEx1080 and arTi190 
are compared in the Pn.px and Pn.pxx stages, †P<0.0005.  In the bottom graph, the “+” value 
represents the same data shown in A. (D) Model illustrating that resistance to activated LIN-12 in 
P6.p depends on the relative balance of EGFR and LIN-12 activity.  Left, resistance to “weak” 
activity of LIN-12(intraΔP) allows for expression of lag-2 reporters and lack of expression of LIN-
12 target reporters.  Right, resistance can be overcome by “strong” activity of LIN-12(intraΔP), 
resulting in expression of LIN-12 target gene reporters and diminished expression of lag-2 
reporters.    
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Figure 5. Loss of LIN-1 results in ectopic LIN-12 activity in all VPCS, and abrogates LIN-12-GFP 
endocytic downregulation in P6.p.  (A) Photomicrograph of arIs116[lst-5p::2xnls-yfp] expression in 
lin-1(+) (left) or lin-1(n304) (null, right).  (B) Loss of LIN-1 results in ectopic expression of the LIN-
12 target gene reporter arIs116[lst-5p::2xnls-yfp] in all VPCs.  Here and in C, the graph compares 
percentage of VPCs in lin-1(+) to lin-1(0) that express YFP.  **P < 0.001 and * P< 0.016 for lin-
1(+) compared to lin-1(0) (Fisher’s Exact Test).  (C) Loss of LIN-1 results in ectopic expression of 
a different LIN-12 target gene reporter, arIs107[mir-61p::2xnls-yfp] in all VPCs. (D) Loss of LIN-1 
does not cause precocious expression of arIs116[lst-5p::2xnls-yfp]. Graph shows percentage of 
animals having more than one VPC expressing YFP.  N.S. denotes not significant compared to 
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wild type (Fisher’s exact test).  (E)  Photomicrograph of a lin-12(n941); lin-1(n304); arIs116[lst-
5p::2xnls-yfp] hermaphrodite.  Expression of YFP is not observed, indicating that ectopic 
expression of LIN-12 target reporters in lin-1(0) requires lin-12 activity.  Animals homozygous for 
both mutations were isolated from heterozygous strain of genotype lin-12(n941)/qC1; lin-
1(n304)/oxTi915; arIs116[lst-5p::2xnls-yfp]. (F) Photomicrographs showing endocytic 
downregulation of LIN-12-GFP accumulation in the apical membrane of lin-1(+) hermaphrodite 
(left), and loss of downregulation in a lin-1(0) hermaphrodite (right).  Each image is a maximum 
projection of a z-stack taken on a Zeiss spinning disk confocal system.  Images were processed 
using FIJI/ImageJ (Schindelin et al. 2012; Schindelin et al. 2015).  (G) Graphs show percentage 
of VPCs with GFP evident in the apical membrane of the genotypes shown in F:  pha-1; 
arEx1575[lin-12-gfp] (left) and pha-1; lin-1(n304); arEx1575[lin-12-gfp] (right).  **P < 0.001 for lin-
1(+) compared to lin-1(0) (Fisher’s Exact Test).   
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Figure 6.  Resolution of cell fate in different genotypes.  All strains contain arIs222[lag-2p::tagrfp] 
and arIs116[lst-5p::2xnls-yfp], scored simultaneously on a per-VPC basis, except for lin-1(0), 
which is based on the complete penetrance of lag-2 expression in Zhang and Greenwald (2011) 
and data in Figure 5.  Red, only the tagRFP marker was observed; blue, only YFP was observed; 
purple, both markers were observed; grey, neither marker was observed.  (A) Typical expression 
pattern for wild-type hermaphrodites; refer to Figure 1B for images.  (B) Typical expression 
pattern for lin-1(n304) hermaphrodites.  (C) Chart depicting reporter expression on a per-VPC 
basis of arTi31[(lin-31p::lin-45(AA,V627E)]; arIs222[lag-2p::tagrfp]; arIs116[lst-5p::2xnls-yfp] 
hermaphrodites.  (D) Photomicrograph of arTi31[lin-31p::lin-45[(AA, V627E)]; arIs222[lag-
2p::tagrfp]; arIs116[lst-5p::2xnls-yfp].  Top, tagRFP channel; middle, YFP channel; bottom, 
images merged with DIC. 
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Figure 7.  Summary and models for the roles of LIN-1, SUR-2, and the CKM in P6.p.  Black lines 
connecting components are hypothetical protein-protein interactions based on known interactions 
in mammalian cells that are consistent with our genetic data, but more complex models in which 
the various components act in parallel are also possible.  (A) Regulation of lag-2 transcription in 
VPCs.  We show herein that the CKM is not required for either repression of a lag-2 reporter in 
uninduced VPCs or transcriptional activation in P6.p.  Prior analysis of a cis-regulatory module in 
this reporter (Zhang and Greenwald 2011) suggested that LIN-3/EGF activation of EGFR-Ras-
ERK leads to phosphorylation of LIN-1 and relief of repression of lag-2 via VPCrep, allowing a 
Hox gene, likely LIN-39 (Niu et al. 2011), to promote its transcription via VPCact.  SUR-2/Med23 
is required for lag-2 transcription even when VPCrep is deleted, consistent with SUR-2 acting in 
conjunction with LIN-39 to promote lag-2 transcription through VPCact rather than functioning 
with LIN-1/Elk1 to promote repression through VPCrep. (B)  Endocytic downregulation of LIN-12.  
We present results herein indicating that lin-1, but not the CKM, is required for endocytic 
downregulation of LIN-12 in P6.p.  Since sur-2 is also required for this process (Shaye and 
Greenwald 2002), and phosphorylated Elk1 interacts with Med23 in mammalian cells, we propose 
that a complex between LIN-1 and SUR-2 promotes expression of one or more target genes that 
promote endocytic downregulation of LIN-12.  (C) Resistance to LIN-12 activity in P6.p.  Our 
analysis suggests that P6.p is able to resist constitutively active LIN-12, and that overcoming this 
resistance by higher constitutive activity has deleterious consequences for the expression of lag-
2.  We also report that LIN-1, SUR-2 and the CKM are required for this resistance.  Because all 
three components have the ability to form a complex in mammalian cells, we propose that they do 
so for this function.  We envisage that resistance could be achieved if the complex acts directly to 
repress key LIN-12 target gene(s) or indirectly through transcription of a factor that opposes LIN-
12 nuclear complex activity, assembly, or stability.  We note that the 1 kb regulatory region 
present in the arIs116[lst-5p::2xnls-yfp] reporter does not contain a canonical Elk1 binding site, 
but there are numerous short GGA sequences that could in principle be Ets factor binding sites. 
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Effect of lin-1(gf) on 2o-fate marker expression 

I found that loss of lin-1 activity results in ectopic 2o-fate marker expression in all VPCs (Fig. 5 A-

C). In an attempt to gain further insight into the role that LIN-1 was playing in VPC fate adoption, I 

looked at arIs116[lst-5p::2xnls-yfp] expression in a lin-1 gain-of-function background. 

The allele lin-1(n1790) contains an early-stop codon and is predicted to encode a mutant 

LIN-1 protein that lacks the C-terminal 90 amino acids (Jacobs et al 1998). The loss of an ERK 

docking site within this truncated C-terminal region is predicted to greatly reduce the efficiency of 

LIN-1 phosphorylation by ERK, a hypothesis supported by in vitro biochemical assays (Jacobs et 

al. 1998)(Jacobs et al. 1999). This suggested that the protein product of lin-1(n1790) would be 

unable to be efficiently phosphorylated by ERK, and thus remain in repressor-mode.  

I observed that arIs116[lst-5p::2xnls-yfp] is ectopically expressed in all VPCs and their 

descendants in the lin-1(n1790) background (Fig. S1A), similar to the phenotype observed in a 

lin-1 null background. Unsurprisingly, when activated LIN-12 is present via the transgene 

arEx1080[lin-12(intraΔP)] YFP expression is greatly elevated in P6.p and descendants compared 

to wild type (Fig. S1B). These findings are consistent with the hypothesis that LIN-1 activity is 

required for EGFR-mediated resistance to LIN-12/Notch activity and suggest a positive role for 

phosphorylated LIN-1 in 1o-fate adoption. However, we hypothesized in Chapter 2 that ectopic 

arIs116[lst-5p::2xnls-yfp] expression in a lin-1 null background is due to VPC-wide derepression 

of lag-2 causing ectopic LIN-12 activation. This contradicts the hypothesis that lin-1(n1790) 

produces a constitutively repressive form of LIN-1, which would be expected to inhibit lag-2 

transcription.  

One explanation for this contradiction is that lin-1(n1790) is not a gain-of-function allele. 

There is evidence that lin-1(n1790) behaves as a loss-of-function mutant due to nonsense-

mediated decay of lin-1(n1790) transcripts (Jacobs et al. 1998). Thus, I cannot rule out the 

possibility that the observations discussed here are the result of loss of lin-1 function rather than a 

hypermorphic effect of lin-1(n1790).  
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Although there are many experiments that could be done using the lin-1(n1790) allele, 

with the advent of CRISPR it is now possible to generate a “clean” gain-of-function allele which 

should avoid nonsense mediated decay. Using CRISPR, a researcher could precisely delete the 

region between the early stop codon present in lin-1(n1790) and the endogenous 3’ UTR. 

Alternatively, CRISPR could be used to mutate or delete the FQFP docking site located near the 

C-terminus.  
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Figure S1. 2o-fate marker expression in putative lin-1 gain-of-function background. A) Graph of 

YFP fluorescence from arIs116[lst-5p::2xnls-yfp] in VPCs and their descendants. (B) Graph of 
YFP fluorescence from arIs116[lst-5p::2xnls-yfp] in VPCs and their descendants in the presence 
of activated LIN-12. For both graphs, *P < 0.001 and NS denotes “not significant” compared to 
lin-1(+) (Fisher’s exact test). lin-1(gf) corresponds to lin-1(n1790). 
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Examination of requirement for additional Mediator components in EGFR-

mediated resistance to LIN-12 activity 

I examined additional Mediator components for their requirement in EGFR-mediated resistance to 

LIN-12/Notch activity. The loss of the MDT-28 and MDT-29 did not impact expression of 

arIs116[lst-5p::2xnls-yfp] in an otherwise wildtype background, whereas the loss of the metazoan-

specific regulatory module mdt-26 resulted in ectopic YFP expression in P6.p specifically (Fig. 

S2A). When activated LIN-12/Notch is provide via arEx1080[lin-12(intraΔP)], activity from mdt-28, 

but not mdt-29, is required for EGFR-mediated resistance to LIN-12 activity in P6.p (Fig. S2B). 

Although these results are intriguing, I ultimately decided not to explore them further due to time 

constraints and the inherent complexity of the Mediator complex. 
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Figure S2. 2o-fate marker expression in Mediator component loss-of-function mutants. (A) Graph 
of YFP fluorescence from arIs116[lst-5p::2xnls-yfp] in VPCs and their descendants. (B) Graph of 
YFP fluorescence from arIs116[lst-5p::2xnls-yfp] in VPCs and their descendants in the presence 
of activated LIN-12. For both graphs, *P < 0.0075 and NS denotes “not significant” compared to 

wild type (Fisher’s exact test). The following alleles were used: mdt-26(tm6272), mdt-28(tm1704), 
mdt-29(tm2893). mdt-26(tm6272) animals were maintained using a derivative of mIn1 containing a GFP 
marker; mdt-26(tm6272) homozygotes were selected by loss of GFP marker. 
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Characterization of lin-31 mutants on 2o-fate marker expression 

lin-31 encodes an HNF-3/fork head family transcription factor (Miller et al. 1993), and has been 

proposed to function as a repressor of vulval fate in complex with LIN-1 (Tan et al. 1998). When I 

examined arIs116[lst-5p::2xnls-yfp] expression in a lin-31 null background, I observed ectopic 

expression in all VPCs (Fig. S3A). As expected, when activated LIN-12 is present via the 

transgene arEx1080[lin-12(intraΔP)] YFP expression is elevated in P6.p and descendants 

compared to lin-31(+) (Fig. S3B). Curiously, it was observed that loss of lin-31 did not result in 

transcriptional derepression of lag-2 in the VPCs (Zhang and Greenwald 2010). Thus, it is unclear 

what is causing the ectopic expression from arEx1080[lin-12(intraΔP)]. The priority to 

understanding this is to determine the requirement for lin-12, similar to Figure 5E.  

Additionally, I investigated two CRISPR-engineered lin-31 mutants. Four threonine 

residues in LIN-31, predicted to be phosphorylated by ERK (Tan et al. 1998), were targeted for 

mutagenesis. These were mutated to alanine in lin-31(4T->A) or glutamic acid in lin-31(4T->E) 

(Dickinson et al. 2013). These mutations were reported to cause abnormal vulval phenotpyes in 

L4 and adult animals. I combined these alleles with arIs116[lst-5p::2xnls-yfp] and scored for YFP 

expression in VPCs. In the absence of activated LIN-12, arIs116[lst-5p::2xnls-yfp] expression was 

indistinguishable from lin-31(+) (Fig. S3A). When activated LIN-12 was added via the transgene 

arEx1080[lin-12(intraΔP)], I observed no significant increase in YFP expression in P6.p and its 

descendants (Fig. S3B). It is difficult to draw conclusions from these experiments, and the role of 

lin-31 in vulval development remains unresolved. 
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Figure S3. 2o-fate marker expression in lin-31 mutant backgrounds. (A) Graph of YFP fluorescence 

from arIs116[lst-5p::2xnls-yfp] in VPCs and their descendants. (B) Graph of YFP fluorescence 
from arIs116[lst-5p::2xnls-yfp] in VPCs and their descendants in the presence of activated LIN-
12. For both graphs, *P < 0.008 and NS denotes “not significant” compared to lin-31(+) (Fisher’s 
exact test). lin-31(4T->A) corresponds to lin-31(cp1); lin-31(4T->E) corresponds to lin-31(cp3); lin-
31(0) corresponds to lin-31(n301). 
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Chapter 3.  Characterization of 
expression and patterning of LAG-1  
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Abstract 

LIN-12/Notch signaling is a conserved mechanism of cell-cell communication that mediates many 

cell-fate decisions. The conserved class of proteins known as CSL (CBF1/Su(H)/LAG-1) function 

to both activate and repress transcription of LIN-12/Notch target genes, and the regulation of CSL 

proteins, both transcriptionally and post-translationally, is important for normal specification of 

many cell types.  Although LIN-12/Notch activity has been extensively studied in C. elegans, little 

is known about the expression and regulation of the CSL protein, LAG-1. Here I used CRISPR 

techniques to engineer endogenous, fluorescently-tagged LAG-1 fusion proteins and 

characterized their expression in the VPCs and during the AC/VU decision. I find that low levels 

of LAG-1 expression are independent of lin-12 activity, and that LAG-1 accumulation increases 

later in development due to LIN-12/Notch activity. The characterization of LAG-1 I describe here 

is a to understanding the regulatory mechanisms of LAG-1 and what affect these mechanisms 

have on LIN-12/Notch activity in vulval induction and the AC/VU decision. 

 

Introduction  

Notch signaling mediates the specification of many cell fates and normal development of many 

tissues [reviewed in Andersson et al. (2011)]. Abnormal activation of Notch has been attributed to 

a number of human diseases in various tissues (Mašek and Andersson 2017). For instance, in a 

majority of samples tested, genetic tests of T-cell acute lymphoblastic leukemia (T-ALL) samples 

revealed hyperactive mutations in Notch1 (Koch and Radtke 2011). Thus, understanding the 

regulation of Notch signaling and activation of Notch target genes is critical for understanding 

development and certain diseases.  

The development of the C. elegans vulva is an exceptional paradigm to study the 

regulation of LIN-12/Notch signaling. Vulval development begins with six vulval precursor cells 

(VPCs), numbered P3.p-P8.p, are born during the L1 stage and made competent to adopt one of 

three fates. VPC fate specification begins during the L2 stage with the production of an epidermal 

growth factor (EGF)-like protein LIN-3 by the anchor cell (AC), termed the “inductive signal.” 
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EGF/LIN-3 ligand activates EGF receptor (EGFR)-Ras-ERK initiating a canonical Ras-Raf-ERK 

phosphorylation expressed in the nearest VPC, P6.p. Phosphorylation of downstream effector 

proteins by ERK in P6.p, such as the Elk-1 family protein LIN-1 (Beitel et al. 1995; Jacobs et al. 

1998), results in adoption of 1o fate and transcriptional activation of LIN-12/Notch ligand genes 

(Chen and Greenwald 2004; Zhang and Greenwald 2011). The ligands comprise the “lateral 

signal” and activate LIN-12/Notch on the membranes of the neighboring cells, P5.p and P7.p, 

leading to transcription of lin-12 target genes and adoption of the 2o fate. The remaining cells, 

P3.p, P4.p and P8.p, receive neither the inductive nor lateral signal and adopt the 3o fate 

[reviewed by Sternberg (2005)].  

The precise spatial and temporal pattern of VPC specification requires the input and 

integration of several signaling pathways.  During the L2 stage, the heterochronic gene lin-14 was 

found to block constitutive lin-12 activity, suggesting a mechanism to block premature LIN-12 

activation (Li and Greenwald 2010).  As described in Chapter 2, a characteristic of EGFR-Ras-

ERK activation in VPCs is a mechanism that resists activity of constitutively activated LIN-12, 

including forms that resemble the activating mutations found in a subset of T-ALL (Greenwald 

and Seydoux 1990; Weng et al. 2004).  The molecular mechanisms behind these forms of 

negative regulation to activated LIN-12 remain unknown. 

The LIN-12/Notch receptor proteins are a single-pass transmembrane protein that 

functions as an extracellular receptor. Activation of Notch by a Delta/Serrate/LAG-2 (DSL) ligand 

results in two proteolytic cleavage events that release the Notch intracellular domain from the 

plasma membrane. The freed Notch intracellular domain is then translocated to the nucleus 

where it interacts with a member of the CBF1/Suppressor of Hairless/LAG-1 (CSL) class of 

transcription factors. The Notch-CSL complex associates with an accessory protein, SEL-8 in C. 

elegans, Mastermind in Drosophila and Mastermind-Like (MAML) in mammals, to form a ternary 

core transcriptional activation complex that recruits co-activators and promotes target gene 

expression [reviewed by Greenwald and Kovall (2013)]. 
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The CSL class of DNA binding proteins are essential components of Notch signaling.  

Presence of the sole CSL protein LAG-1 is required for development in C. elegans (Lambie and 

Kimble 1991; Christensen et al. 1996), Drosophila (Schweisguth and Posakony 1992), and 

mammals (Oka et al. 1995) alike. In general, CSL proteins form repressor complexes with co-

repressors in the absence of activated Notch, and upon translocation of the Notch intracellular 

domain to the nucleus, CSL proteins link the Notch intracellular domain to DNA and other co-

activators to promote target gene expression. Several co-repressors have been identified in 

Drosophila, such as Hairless (Schweisguth and Posakony 1994), and in mammals, such as 

MINT/SHARP (Oswald et al. 2002; Kuroda et al. 2003) and Kyot2 (Taniguchi et al. 1998). A 

repressor function for LAG-1 has been described in the developing gland cells (Ghai and Gaudet 

2008), and although C. elegans have orthologs of some of these co-repressors, currently no 

LAG-1-associated co-repressors has been identified. 

CSL is the main effector of Notch-mediated cellular specification, and thus a focal point 

for regulation. The positive autoregulation of transcription factors is a widely utilized method of 

controlling and maintaining responses to signaling events [reviewed by Hobert (2011)], and the 

positive autoregulation of Su(H) has been shown to be required for formation of the socket cell in 

Drosophila (Liu and Posakony 2014). In C. elegans, LIN-12/Notch positively regulates itself 

during specification of the ventral uterine precursor cell (Wilkinson et al. 1994). Post-translational 

regulation and modifications of CSL proteins have been shown to be mechanisms to attenuate 

Notch signaling as well.  In mammalian cells, the RBP-J interacting and tubulin associated (RITA) 

protein was shown to negatively regulate Notch1 activity by physically binding to RBP-J/CBF1 

and exporting it from the nucleus (Wacker et al. 2011). In Drosophila cell culture, structural and 

biochemical studies suggest that Notch signal transduction may be reduced via the 

phosphorylation of Su(H) (Nagel et al. 2017), and indicated that Su(H) may be phosphorylated 

directly by mitogen activated protein kinase (MAPK) (Auer et al. 2015).  

Here I characterize the expression of LAG-1 protein in the VPCs and during another LIN-

12/Notch mediated fate-specification event, the AC/VU decision in the somatic gonad. Initial 



 

66 
 

experiments using fosmid-based translational reporters indicated that LAG-1 was present in P5.p, 

P6.p, and P7.p at equivalent levels; however, I later used CRISPR techniques to engineer 

endogenously-tagged lag-1 alleles and found that accumulation of LAG-1 had a dynamic pattern 

VPCs and in the somatic gonad. I found that LAG-1 levels are established at a low basal level 

independent of lin-12 activity, and that LAG-1 levels appeared to be elevated in cells known to 

have lin-12 activity as development continues. Further analyses of LAG-1 levels in these cellular 

contexts in different genetic and transgenic backgrounds show that LAG-1 levels are increased in 

the presence of activated LIN-12.   

 

Materials and Methods 

C. elegans genetics 

See Table S1 for complete strain information. All strains were raised according to standard 

practices at 20o (Brenner 1974). The following alleles were used in this section: LGI: cdk-

8(tm1238), sur-2(ku9). LGIII: lin-12(n137), lin-12(n302), lin-12(n941), unc-119(ed3), pha-

1(e2123). LGIV: lin-1(n304), DnT1(IV:V), lag-1(q418). LGV: DnT1(IV:V), sel-10(ok1632). 

DnT1 is modified version of the nT1 translocation and contains a dominant unc mutation, 

unc-?(n754), and an unknown recessive let allele. 

The following transgenes were used: oxTi414 (Frøkjær-Jensen et al. 2014) was used to 

mark the lag-1 locus during crosses; arTi22[hlh-2(prox)p::gfp-h2b] (Michelle Attner), the hlh-

2(prox) promoter is described in (Sallee and Greenwald 2015), arTi43[lin-31p::lin-12(intra)] and 

arTi113[lin-31p::lin-12(intraΔP)] (Deng 2016).   

mCherry-LAG-1 fosmid transgenesis 

To make the arEx1680 and arEx1681 transgenes pRSU11 was linearized and injected into pha-

1(e2123) animals at 15ng/uL with, pBX (pha-1(+)) at 1ng/uL, pCW2.1 (ceh-22p::gfp) at 1 ng/uL, 

and N2 genomic DNA linearized with PVUII at 50 ng/uL. Injected P0 animals were kept at 15° for 

4 days and then shifted to 25°. F2 progeny were singled from P0 plates stable lines to generate 
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stable lines with a maximum of one array per injection plate to ensure independent arrays. 

Animals were maintained at 25°. 

LAG-1-GFP fosmid transgenesis 

To make the arEx1893 and arEx1894 transgenes, the LAG-1-GFP fosmid reporter from the 

TransgeneOme project (Sarov et al. 2012) was linearized and injected into unc-119(ed3) animals 

at 15ng/uL, with a lin-44p::yfp (Nikos-Hobert lab) at 3ng/uL, and sheared OP50 genomic DNA at 

100ng/uL. Non-unc F1 animals were isolated, and those that produced non-unc F2 progeny were 

used to establish lines. 

lag-1(0) rescue assay 

The lag-1(q418) allele was maintain over the balancer DnT1 which contains a dominant unc 

allele. To score for rescue of the lag-1(0) larval lethal phenotype, array positive animals were 

placed on fresh plates and allowed to lay eggs for 24 hours. 2-3 days later, array-positive animals 

were assayed for Unc phenotype. Array-positive non-Unc animals were scored as “rescued”. 

Plasmid construction 

pRSU11: mCherry-LAG-1 fosmid was constructed as described in (Tursun et al. 2009) using 

pBALU8 as PCR template and recombineering into the lag-1-containing fosmid WRM625aC01. 

pRSU100: repair template for LAG-1-GFP was cloned into the pBS vector using sequential 

cloning steps. The final product was a repair template containing: lag-1 5’ homology::gfp::lag-1 

3’UTR::reverse orientation[LoxP::rps-27p::hygr::unc-54 3’UTR::LoxP]::lag-1 3’ homology. 

pRSU78: LAG-1-mKate2 repair template was made using Self-Excising Cassette (SEC) reagents 

and protocols described by (Dickinson et al. 2015). Homology arms of 656bp (5’) and 616bp (3’) 

were generated by PCR using pRSU100 as the template. The SEC plasmid pDD285 was 

digested with SpeI and AvrII. pRSU78 was generated from these reagents using HiFi Assembly 

Mix (NEB).  

pRSU101: Contains lag-1 targeting sequence: GATGGTGTCGTCTACTCGTC. Target sequence 

was identified by searching for sequences that conformed to the pattern: GN19NGG (Dickinson et 
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al. 2013; Kim et al. 2014), and were near the 3’ end of the lag-1. A fusion PCR product containing 

the inserted target sequence was generated and restriction cloned into pDD162 using SpeI and 

NdeI.  

pRSU82: Contains the lag-1 targeting sequence: CGAGAGTGGAATCTAGTAAT, which was 

designed using crispr.mit.edu. The RF-Cloning web app (http://www.rf-cloning.org/)(Bond and 

Naus 2012) was used to generate the primers and the protocol was followed as described to 

introduce target sequence into the pU6::unc-119 sgRNA vector described by Friedland et al. 

(2013) 

CRISPR allele generation 

lag-1::gfp: To generate lag-1(ar611[lag-1::gfp + loxP HygR loxP]), N2 animals were injected with 

pRSU100 a 50 ng/μL, pRSU101 at 50 ng/μL along with pCCM935 50ng/μL, and pRF4 at 50 

ng/μL. After 3-4 days plates were examined for twitching progeny. Plates positive for twitching 

progeny were assayed for insertion of GFP by scanning on a fluorescent compound microscope 

and confirmed using PCR (Kim et al. 2014). 

lag-1::mkate2: To generate lag-1(ar613[lag-1::mKate2]), all plasmids were purified with midi-prep 

columns (Qiagen) or ethanol precipitation. N2 animals were injected with pRSU78 at 10 ng/μL, 

pRSU82 at 80 ng/μL, “Peft-3::Cas9-SV40 NLS::tbb-2 3′UTR” (Friedland et al. 2013) at 50ng/μL, 

p705(dpy-7p::2xnls-yfp) at 10ng/μL, rab-3p::yfp plasmid (Hobert lab) at 5 ng/μL, and pCW2.1 

(ceh-22p::gfp) at 10 ng/μL. Successful integrant was isolated and self-excising cassette removed 

according to protocol described by Dickinson et al. (2015).  

Scoring fluorescent LAG-1 expression 

To score expression in the VPCs and AC/VU, approximately 20 gravid adult animals were placed 

on a fresh plate and allowed to lay eggs at 25o. To score VPC expression, adults were removed 

after 12 hours, and L3 progeny was scored approximately 36 hours later. To score AC/VU 

expression, egg laying was restricted to 2 hours and progeny were scored the following day. lin-

1(n304) mutants were kept at 20o and synchronization via timed egg-lays was not attempted. 

http://crispr.mit.edu/
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All animals were scored on Zeiss Axio Imager Z1 with a Hamamatsu Orca-ER camera and an X-

Cite 120Q light source (EXFO photonics solutions) at 100% power.  All images were processed 

using FIJI/ImageJ (Schindelin et al. 2012; Schindelin et al. 2015)  

LAG-1-mKate2 fluorescence in VPCs was imaged at 40X with an 500ms exposure and camera 

set to 2x2 binning mode. GFP fluorescence from arTi43 or arTi113 was simultaneously imaged at 

800ms. mKate2 fluorescence during the AC/VU decision was scored at 63X by taking a z-stack 

through the entire animal with 1 μm step, an 800ms exposure and GFP fluorescence from arTi22 

was simultaneously imaged at 500ms exposure with the camera set to 2x2 binning mode. The 

ar611(lag-1::gfp) strain, LAG-1-GFP was scored at 40x with camera set to 1x1 with exposure time 

of 800ms. LAG-1-GFP from arEx1893 and arEx1894 transgenes were scored at 40x with camera 

set to 1x1 with exposure time of 500ms. 

 

Results 

An N-terminally tagged LAG-1-mCherry translational fosmid reporter rescued lag-1(0) 

lethality, but did not produce visible expression 

During the L2 stage, the heterochronic gene lin-14 blocks expression of LIN-12 target gene 

reporters in the presence of constitutively active lin-12 (Li and Greenwald 2010). A similar 

phenomenon occurs during the L3 in 1o VPCs due to EGFR activation (Shaye and Greenwald 

2005)(Chapter 2). An early hypothesis was that negative regulation of LIN-12 by was achieved 

downregulation of LAG-1 or sequestering LAG-1 from the nucleus.  

Before the development of CRISPR based gene-editing techniques for C. elegans, 

fosmid-based reporters were the gold-standard due to the relatively large amount of genomic 

context, i.e. regulatory information, they provided compared to alternative methods of reporter 

construction. Additional benefits were the existence of a fosmid library that covered a majority of 

C. elegans genes (wormbase), and the development of protocols and reagents that allowed for 

fast and efficient generation of fluorescent gene reporters (Tursun et al. 2009; Sarov et al. 2012).  

file:///C:/Users/Casa/Dropbox/Greenwald%20rotation/Thesis%20from%20former%20grad%20students/wormbase.org
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To analyze the expression of LAG-1 in the VPCs, I made an N-terminal mCherry-LAG-1 

translational fusion reporter by recombineering the coding sequence for mCherry in-frame 

immediately following the start codon of lag-1 (Fig. 2B).  I generated two independent 

extrachromosomal transgenic arrays and observed dim fluorescence in random VPCs at a low 

penetrance.  This observation, along with occasional dim fluorescence in some head neurons, 

indicated that mCherry-LAG-1 was possibly being expressed at low levels below my detection 

limit.  Antibody staining did not increase the visibility of mCherry-LAG-1 in the VPCs. I used an 

antibody which recognizes the apical junction marker, AJM-1, to identify VPCs and serve as a 

positive control (Koppen et al. 2001; Shaye and Greenwald 2005). I combined these arrays with 

the null allele, lag-1(q418), to determine if these reporters could rescue LAG-1 function. Null 

alleles of lag-1 are sterile and lag-1(0) segregants from heterozygous mothers typically arrest 

during the L1 larval stage (Christensen et al. 1996). I found that both arrays provided some 

rescue of the L1 lethality of lag-1(0) homozygotes (Fig. 2C), indicating that these fosmid arrays 

produced functional LAG-1 protein.  

Fluorescent expression data obtained from these transgenes were therefore not useful 

for determining regulation or patterning of LAG-1.  Two possible explanations for these results are 

that mCherry-LAG-1 may not be stable in the VPCs or a transgenic artifact. A more recent 

suggestion is the prediction of an additional LAG-1 isoform. These possibilities were not 

investigated further. 

C-terminally tagged LAG-1-GFP translational fosmid reporters were visible and not 

patterned during VPC specification 

I used an available C-terminally tagged GFP-fusion fosmid reporter (Sarov et al. 2012) to 

generate two independent extrachromosomal transgenic arrays. I observed LAG-1-GFP levels to 

be generally equivalent and nuclear in P5.p, P6.p, and P7.p, and in the descendants of these 

VPCs (Fig. 3B-C). As described below, I later determined this result to be a transgenic artifact 

(Fig. 3B, D); however, this observation led me to assume that regulation of LAG-1 levels or 

subcellular localization was not a likely mechanism for resistance to LIN-12 activation in P6.p and 
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to pursue alternative hypotheses, which are addressed in Chapter 4. Additionally, this result 

highlights a potential pitfall of multi-copy arrays and will be discussed in more detail later.   

Endogenous CRISPR-engineered translational reporters of LAG-1 display a dynamic 

expression pattern in the VPCs 

CRISPR-Cas9 allows for precise editing of the C. elegans genome by taking advantage of 

homologous recombination machinery [reviewed by Dickinson and Goldstein (2016)]. This 

method provides a number of advantages compared to older transgenic-based reporters, 

including: endogenous regulation, minimal disruption of the genome compared to irradiation-

based integration methods, and does not use multi-copy arrays, which can vary in copy number 

and be silenced due to their repetitive nature over time.   

I used CRISPR techniques to engineer the insertion of the coding sequences of two 

different fluorescent proteins in-frame at the C-terminus of the endogenous lag-1 locus. Both 

alleles produced visible fluorescence and had a similar dynamic expression pattern in the VPCs 

(Fig. 3B, 3D, 4A). In otherwise wild-type L2 animals, I saw LAG-1-mKate2 or LAG-1-GFP 

accumulation in all the VPCs. When compared on a VPC-by-VPC basis, these levels appeared to 

be equivalent, and I could not qualitatively identify a pattern at this stage.  These levels remained 

constant and uniform in the VPCs until approximately the L2 molt.  At approximately the 

beginning of the L3 stage, I observed that accumulation of LAG-1-GFP or LAG-1-mKate2 in P5.p 

and P7.p was higher in comparison to the other VPCs, and appeared to rise relative to the 

starting level prior to that time. This pattern was most pronounced after the first division of the 

VPCs and was maintained into the Pn.pxx stage. My qualitative assessment could not determine 

whether LAG-1 levels in P3.p, P4.p, P6.p, or P8.p had risen compared to their levels during the 

L2 stage, nor could I determine whether LAG-1 levels in P5.p and P7.p had continued to rise or 

had plateaued.  

The observation that tagged LAG-1 fluorescence is higher in 2o VPCs compared to 1o 

and 3o VPCs is reminiscent of the pattern of 2o-fate adoption in the VPCs due to lin-12 activity. I 

consider these observations to strongly suggests that lin-12 activity positively regulates LAG-1 in 



 

72 
 

2o VPCs. This positive regulation could be direct or indirect, and if it were direct, then this might 

indicate the positive autoregulation of lag-1 transcription. Another possibility is that LAG-1 may be 

negatively regulated in non-2o-fate cells, possibly via protein degradation although other modes of 

regulation are possible. 

To explore these possibilities, I generated several strains containing lag-1::mkate2 to 

examine the effect that removing or enhancing lin-12 activity had on LAG-1-mKate2 levels. I 

imaged animals using similar setting, including exposure times, to allow me to compare the 

relative brightness of mKate2 fluorescence from animal to animal.  

LAG-1-mKate2 levels and patterning in the VPCs are dependent on lin-12 signaling 

If the elevated levels of fluorescently tagged LAG-1 seen in P5.p and P7.p are dependent on lin-

12 activity, then loss of lin-12 should result in reduced LAG-1-mKate2 levels in all VPCs and loss 

of a LAG-1-mKate2 pattern. Similarly, providing constitutively activate LIN-12, either genetically or 

via transgene, would be expected to result in increased LAG-1-mKate2 levels in all VPCs, and 

again result in the loss of a LAG-1-mKate2 pattern.   

I first assayed LAG-1-mKate2 accumulation in two backgrounds that abrogate lin-12 

activity in the VPCs. In hermaphrodites of a lin-12(0) background VPCs do not adopt the 2o fate 

(Greenwald et al. 1983a).  I combined lag-1::mkate2 with lin-12(n941), a null allele.  During the L2 

stage, I observed that LAG-1-mKate2 was present in all VPCs at levels similar to those seen in 

wild-type L2 animals. During the L3 stage, LAG-1-mKate2 levels did not become elevated in P5.p 

or P7.p or their descendants during compared to the other VPCs. Instead, LAG-1-mKate2 levels 

appeared to remain constant in all VPCs relative to their starting levels (Fig. 5A). This result 

supports the idea that LAG-1 levels in the VPCs are dependent on lin-12 activity; however, 

hermaphrodites lacking lin-12 produce two anchor cells and result in additional induction of the 1o 

fate which could affect lag-1 expression.  

To test this possibility, I used a mutant that produces a normal AC, but fails to activate 

LIN-12 in the VPCs. sur-2 is the C. elegans ortholog of the Mediator component Med23 and is 

required in P6.p for transcriptional activation of lin-12 ligand (Zhang and Greenwald 2011). sur-
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2(0) hermaphrodites develop an anchor cell and P6.p receives the inductive signal like normal; 

however, LIN-12 is not activated in P5.p and P7.p due to loss of the lateral signal (Singh and Han 

1995). I combined lag-1::mkate2 with sur-2(ku9), a null allele, and examined LAG-1-mKate2 

levels in the VPCs. Again, during the L2 stage, LAG-1-mKate2 levels were uniform in all VPCs at 

levels roughly equivalent to wild-type L2 VPCs.  During the L3 stage, LAG-1-mKate2 levels 

remained uniform at levels similar to their starting levels (Fig. 5A), consistent with the prediction 

that LAG-1 is positively regulated by LIN-12 activity. 

Strong constitutive LIN-12 activity elevates LAG-1-mKate levels in all VPCs 

I next investigated the effect that enhancement of lin-12 activity had on LAG-1-mKate2 levels in 

the VPCs. Many mutations that cause ligand-independent activation have been characterized and 

are collectively known as lin-12(d) alleles (Greenwald et al. 1983a; Seydoux et al. 1990). While all 

lin-12(d) alleles fail to produce an anchor cell, they generally can be categorized into two classes 

based on their vulval phenotype, “strong” and “weak”. A strong lin-12(d) allele cause VPCs to 

adopt the 2o fate, and adult hermaphrodites develop a Multivulva phenotype; a weak lin-12(d) 

allele fails to induce 2o fate in VPCs, and adult hermaphrodites are Vulvaless. I used the strong 

lin-12(d) allele, lin-12(n137), to observe the effect that strong constitutively-activated LIN-12 had 

on LAG-1-mKate2 levels. During the L2 stage, I observed LAG-1-mKate2 levels to be uniform in 

all VPCs at approximately the same level as wild-type L2 hermaphrodites. LAG-1-mKate2 levels 

then increased during the L3 in all VPCs in a uniform manner (Fig. 5B), consistent with LAG-1 

being positively regulated in 2o VPCs by constitutive lin-12 activity. The uniform level of LAG-1-

mKate2 in all of the VPCs seemed similar to the levels of LAG-1-mKate2 in P5.p and P7.p in wild-

type animals.  

Because lin-12(d) hermaphrodites lack anchor cells, I combined lag-1::mkate2 with a 

transgene that expresses constitutively activated LIN-12 in a VPC specific manner to investigate 

LAG-1-mKate2 levels in hermaphrodites that still receive the inductive signal. arTi113[lin-31p::lin-

12(intraΔP)-gfp] is a single-copy array that uses regulatory sequences from the lin-31 gene to 

specifically express in the VPCs (Tan et al. 1998). Expression of the intracellular domain of LIN-
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12 [LIN-12(intra)] mimics the activation of LIN-12 (Struhl et al. 1993). LIN-12(intraΔP) is a further 

truncation of the protein and removes a region containing a Cdc4 phosphodegron (CPD), 

resulting in a stable and highly active form of LIN-12 (Li and Greenwald 2010; de la Cova and 

Greenwald 2012; Deng and Greenwald 2016). When combined with lag-1::mkate2, I observed 

that accumulation of LAG-1-mKate2 was uniform in all VPCs during the L2 stage at levels 

comparable to wild-type L2 hermaphrodites.  LAG-1-mKate2 levels then rose in all VPC uniformly 

as development continued during the L3 stage (Fig. 5B).  Again, the elevated levels of LAG-1-

mKate2 seen in all VPCs was comparable to the levels seen in P5.p and P7.p of wild-type L3 

animals. These observations are consistent with the those made using lin-12(n137), and 

suggests that EGFR activation in P6.p does not result in lower accumulation of LAG-1-mKate2. 

However, as discussed in Chapter 2, high levels of LIN-12 activity in P6.p can inhibit certain 1o 

characteristics, and therefore this result does not rule out the possibility that EGFR activation may 

negatively regulate levels of LAG-1. 

In sum, these observations suggest that prior to vulval induction, LAG-1 is present in all 

VPCs at a low basal level and that lin-12 is not required to establish this initial baseline. It 

appears that the presence of activated LIN-12 during the L2 does not result in increased LAG-1 

accumulation. This would be consistent with previous observations of a block to constitutive lin-12 

activity, mediated by lin-14, during the L2 stage. During the L3, the presence of LIN-12 activity 

results in an accumulation of LAG-1 uniformly in all VPCs to a level comparable to that of P5.p 

and P7.p in wild-type L3 animals. The experiments performed, however, did not allow me to 

separate LIN-12 activity from 2o-fate adoption, and it remains possible that LAG-1 is degraded in 

non-2o.  I attempt to address this in the following sections by examining if removal of negative 

regulators, or the presence of weaker forms of constitutively active LIN-12 affect accumulation of 

LAG-1.   
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LAG-1-mKate2 levels are not affected by removal of sel-10 or cdk-8 

Removing negative regulators of lin-12 could potentially affect LAG-1 accumulation in two 

different ways. Their removal may directly stabilize LAG-1 or may result in higher observed LAG-

1 levels to due to mild enhancement of increased lin-12 activity.  

The Fbw7 ortholog SEL-10 targets the LIN-12 intracellular domain for ubiquitination and 

eventual degradation by the proteasome (Sundaram and Greenwald 1993; Hubbard et al. 1997), 

and there is evidence to suggest that formation of the nuclear complex with LAG-1 is required for 

this process (Deng and Greenwald 2016).  Null mutants of sel-10 are viable, and hermaphrodites 

that lack sel-10, but are otherwise wild type, generally produce a normal vulva.  When I assayed 

lag-1::mkate2 in a sel-10(0) background, I did not observe a significant change in LAG-1-mKate2 

levels compared to wild type during any stage.  

In mammalian cells, the mediator-associated kinase Cdk8 phosphorylates the 

intracellular domain of Notch to promotes targeting by Fbw7 (Fryer et al. 2004). While 

phosphorylation of LIN-12 by the ortholog CDK-8 has not been demonstrated in C. elegans, it has 

been shown that CDK-8 negatively regulates lin-12 in the VPCs (Chapter 2).  Hermaphrodites 

that are homozygous for a null allele of cdk-8 are viable and generally produce a normal vulva. 

The absence of CDK-8 did not result in a change of LAG-1-mKate2 accumulation compared to 

wild type in any stage. These results suggest that LAG-1 is not negatively regulated by either of 

these proteins, although there may be factors that work redundantly with SEL-10 or CDK-8. 

These observations show that a mild enhancement of lin-12 activity due to removal of sel-10 or 

cdk-8 is not sufficient to effect LAG-1-mKate2 accumulation. 

Weak forms of constitutively active LIN-12 influence LAG-1 accumulation 

As described above, strong constitutive LIN-12 activity elevates LAG-1-mKate2 levels in all VPCs 

and causes all VPCs to adopt the 2o fate. I attempted to analyze LAG-1-mKate2 levels in 

backgrounds that have constitutive LIN-12 activity, but do not induce the VPCs to adopt 2o fate.  

The weak lin-12(d) activity from lin-12(n302) is sufficient to produce a cell-fate change in 

the somatic gonad, resulting in a 0 AC phenotype based on lineage analysis and a failure to 
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induce a vulva (Greenwald et al. 1983a). lin-12(n302) activity is not sufficient, however, to cause 

formation of psuedovulvae (Greenwald et al. 1983a) or to activate expression of a 2o-fate reporter 

(Chapter 2) in the VPCs. By these criteria I viewed VPCs to remain uninduced in lin-12(n302) 

animals, thus I predicted that LAG-1-mKate2 levels would remain uniform in the VPCs at low 

levels, similar to my previous observations of uninduced VPCs in a lin-12(0) or sur-2(0) 

background. However, my examination suggests that lin-12(n302) is active in the VPCs during 

the L3 stage. Many animals I examined appeared to have uniformly higher LAG-1-mKate2 levels 

in all VPCs relative to their prior levels or to uninduced VPCs of lin-12(0), consistent with 

constitutive activation of lin-12 in all VPCs (Fig. 6A). Contrary to a strong lin-12(d) background, 

this was seen in a much lower percentage of L3 animals (11/29 for lin-12(n302)) versus (25/28 for 

lin-12(n137)). In addition to penetrance, the increase of LAG-1-mkate2 accumulation generally 

appeared to be less than what was observed in the strong lin-12(d); however, a more quantitative 

measurement of fluorescence is required to accurately make this comparison.   

I observed a subset of lin-12(n302); lag-1::mkate2 animals that appeared to have wild-

type VPC pattern based on LAG-1-mKate2 fluorescence in adjacent VPCs. Similar to the pattern 

seen in wild-type L3 animals, LAG-1-mKate2 accumulation was higher in P5.p and P7.p relative 

to the other VPCs in small number (3/14) of Pn.p-staged animals. The penetrance of this pattern 

increased following the first round of VPC divisions, during the Pn.px and Pn.pxx stages, where I 

observed this pattern in (8/14) animals (Fig. 6A). These observations suggest that LAG-1-mKate2 

levels are sensitive to the weak constitutive activation of lin-12(n302) in VPCs, as well as a few 

other implications discussed further below.  

Providing LIN-12(intra)-GFP via a transgene does not produce a Multivulva phenotype 

nor visible GFP fluorescence at it is efficiently turned over in the VPCs (de la Cova and 

Greenwald 2012; Deng and Greenwald 2016). I used the single-copy arTi43[lin-31p::lin-12(intra)-

gfp] to further test the effect that weak constitutive LIN-12 activity has on LAG-1-mKate2 

accumulation.  Loss of sel-10 in hermaphrodites carrying arTi43[lin-31p::lin-12(intra)-gfp] leads to 

a Multivulva phenotype similar to arTi113[lin-31p::lin-12(intraΔP)-gfp].  
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I simultaneously assessed arTi43[lin-31p::lin-12(intra)-gfp]; lag-1::mkate2 animals for 

mKate2 and GFP fluorescence.  GFP fluorescence was only rarely visible in the VPCs, indicating 

that LIN-12(intra)-GFP was being degraded as expected.  When I analyzed mKate2 fluorescence 

in Pn.p-staged animals, LAG-1-mKate2 accumulation was uniform in all VPCs. These LAG-1-

mKate2 levels were higher than the levels seen in non-2o VPCs of wild-type Pn.p-staged animals. 

I observed this pattern in (17/17) animals (Fig. 6B), whereas in wild-type Pn.p-staged animals, no 

animal had similarly uniform elevated LAG-1-mKate2, and (14/21) had the wild-type-like 2o-fate 

pattern. Following the first VPC division, the LAG-1-mKate2 accumulation in the presence of LIN-

12(intra)-GFP returned to being elevated in 2o VPCs, and was observed to be higher in daughters 

and granddaughters of P5.p and P7.p in 15/17 animals (Fig. 6B).  

I stabilized LIN-12(intra)-GFP combining sel-10(0) with arTi43[lin-31p::lin-12(intra)-gfp]; 

lag-1::mkate2. LAG-1-mKate2 accumulation was seen be elevated in all VPCs, as well as VPC 

daughters and granddaughters, similar to my observations of LAG-1-mKate2 using the 

arTi113[lin-31p::lin-12(intraΔP)-gfp] transgene. 

It is possible that an interaction between GFP and mKate2 led to artificially high levels of 

LAG-1-mKate2 in all VPCs. This explanation seems unlikely because such an interaction should 

stabilize LIN-12(intra)-GFP as well, which was not observed by GFP fluorescence.  

In sum, I combined lag-1::mkate2 into two different backgrounds that produce constitutive 

weak LIN-12 activity in the VPCs.  Neither of these forms are known to ectopically induce 2o fate 

by our typical criteria, i.e. cell lineage, Multivulva phenotype, or transgenic 2o-fate reporters. The 

levels of LAG-1-mKate2 accumulation that I observed in these two backgrounds, however, are 

consistent with ectopic LIN-12 activity. These results suggest that LAG-1 levels are elevated even 

due to weak LIN-12 activity.  

LAG-1-mKate2 is regulated in a lin-12 dependent manner during the AC/VU decision 

The AC/VU decision provides another paradigm in C. elegans to study lin-12 and its role in fate 

specification. The somatic cells Z1.pp and Z4.aa divide during the L1 stage to produce two pairs 

of sister cells. The proximal members of each pair, Z1.ppp and Z4.aaa, termed “α cells”, are 
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equally competent to adopt either the anchor cell (AC) fate or the ventral uterine precursor cell 

(VU) fate (Kimble and Hirsh 1979). In one of the few variable cell-fate decisions in C. elegans, 

these cells adopt fates in a stochastic manner, such that in wild-type hermaphrodites 50% of the 

time Z1.ppp becomes the AC, and 50% of the time Z4.aaa will become the AC.  VU fate is due to 

cell-autonomous lin-12 activity (Seydoux and Greenwald 1989), and in lin-12(0) animals, both 

cells adopt the AC fate (Greenwald et al. 1983a). Both α cells initially express lin-12, and a 

positive feedback loop leads to an increase of lin-12 expression in the presumptive VU (Wilkinson 

et al. 1994) (Fig. 7A) and lin-12 expression is reduced in the presumptive AC by an unknown 

mechanism. The distal cells, Z1.ppa and Z4.aap, termed “β cells”, are born with the potential to 

adopt the AC fate or the VU fate.  In wild-type development, this competence is lost sooner than 

the α cells and they adopt the VU fate in a lin-12 independent manner (Seydoux et al. 1990).   

To mark the α and β cells in the somatic gonad, I used the transcriptional reporter 

arTi22[hlh-2(prox)p::gfp-h2b], and used Nomarski microscopy to identify the presumptive AC by 

morphology. Expression of this reporter begins in Z1.pp and Z4.aa, the two parental cells, and 

remains restricted to the four α and β cells through fate specification into the L3 stage (Fig. 7B).   

The observations described above suggest that LAG-1 levels are increased in cells with 

lin-12 activity, thus, if LAG-1 is similarly regulated in the α and β cells during the AC/VU decision, 

I expect to see LAG-1-mKate2 levels elevate in the α VU. This may not be true in the β VUs, 

since this cell-fate decision is largely independent of lin-12 activity, although LIN-12 is present in 

these cells (Wilkinson et al. 1994; Levitan and Greenwald 1998b), and in lin-12(0), a  cell 

becomes an AC at low-penetrance (Greenwald et al. 1983a; Seydoux and Greenwald 1989; 

Sallee et al. 2015).  I examined LAG-1-mKate2 accumulation in the somatic gonad of 

hermaphrodites carrying the arTi22[hlh-2(prox)p::gfp-h2b] transgene. LAG-1-mKate2 was not 

present at detectable levels in Z1.pp and Z4.aa. Following division of Z1.pp and Z4.aa, but before 

AC specification, I observed a mix of patterns LAG-1-mKate accumulation. In (2/10) animals 

LAG-1-mKate2 was not detectable in any cell; in (4/10) animals LAG-1-mKate2 was present at 

low levels in three cells and higher in one cell; and in (4/10) animals LAG-1-mKate2 was elevated 
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and equivalent in all four cells (Fig. 7C). Following specification of the AC, LAG-1-mKate2 was 

clearly patterned, and levels in the three VUs were higher than the presumptive AC in (10/10) 

hermaphrodites (Fig. 7D). These results suggest that LAG-1 is positively regulated by lin-12 

activity during the AC/VU decision.  

I combined lag-1::mkate2; arTi22[hlh-2(prox)p::gfp-h2b] with the null allele lin-12(n941).  

The two α cells both adopt the AC fate, and LAG-1-mKate2 levels were low, as expected to be 

low in these cells. The β cells usually adopt the VU fate even in the absence of lin-12; in these 

cells, LAG-1-mKate2 levels were also low. This observation suggests that elevated levels of LAG-

1-mKate2 is not an aspect of VU fate specification but is dependent on lin-12 activity. 

In sum, these results suggest that LAG-1 accumulation increases due to lin-12 activity in 

the somatic gonad, similar to what I observed in the VPCs. Although not detectable by 

fluorescence, I would predict that LAG-1-mKate2 is present at a low basal level in Z1.pp and 

Z4.aa to prevent ectopic activation of lin-12 target genes and potentially to promote transcription 

following LIN-12 activation, but I cannot exclude the possibility that LAG-1 entirely absent in these 

cells. Following division of Z1.pp and Z4.aa, LAG-1 levels increase in all cells until becoming 

uniform in the α and β cells.  LIN-12 activation in the presumptive VUs promotes maintenance of 

LAG-1 levels and possibly increases LAG-1 accumulation, although my analysis was insufficient 

to determine between these possibilities. The presumptive AC which lacks lin-12 activity and 

LAG-1 levels are dramatically reduced in this cell. 

 

Discussion 

The CSL family of proteins are core components of the Notch signaling pathway. Generally, CSL 

proteins function as a transcriptional repressor in the absence of Notch signaling, and as a 

transcriptional activator in the presence of Notch signaling. In Drosophila and mammals, 

regulation of CSL protein levels or subcellular localization have been shown to affect the 

transcriptional response to Notch activation (Barolo et al. 2000; Wacker et al. 2011; Liu and 
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Posakony 2014). Little has been described about the regulation of the C. eleganas CSL protein, 

LAG-1. Here, I investigated the regulation of LAG-1 during VPC specification and the AC/VU 

decision. My characterization of endogenously tagged LAG-1 suggest that LAG-1 is initially 

present in these cells at a low basal level prior to specification, and activation of LIN-12 produces 

an increase of LAG-1 accumulation; the nature of this regulation, e.g. transcriptional or post-

translational, remains unknown.  

Implications of LAG-1 fosmid reporter results  

I used two different fosmid-based translational reporters to determine the pattern of LAG-1 in the 

VPCs. I observed only rare expression from the mcherry-lag-1 reporter, and I observed LAG-1-

GFP fluorescence from the C-terminal GFP-tagged fosmid reporter at roughly equivalent levels in 

P5.p, P6.p, and P7.p and their descendants. These results were later contradicted by the 

dynamic pattern of GFP fluorescence in the lag-1::gfp CRISPR knock-in.  

 The low levels of fluorescence from the N-terminal mCherry fosmid reporter has many 

possible explanations, some of which are discussed further below.  An intriguing possibility 

emerged when the lag-1 gene structure was updated, and a new isoform was identified. The 

mcherry sequence was inserted immediately upstream of the lag-1a isoform (Fig. 2A), and this 

led to the formation of several hypotheses. This is discussed in further detail in Chapter 5. 

Another possibility though is that, in general, N-terminally tagged forms of LAG-1 are not stable in 

the VPCs, unlike C-terminally tagged LAG-1. 

The C-terminal GFP tag in both the fosmid reporter and the CRISPR knock-in are 

predicted to be identical, and therefore are not likely sources of the discrepancies. I based the 

lag-1::gfp knock-in template on the fosmid reporter sequence, and the two changes I introduced 

to the nucleotide sequence are not expected to affect the primary sequence of the LAG-1-GFP 

fusion protein product, and thus, are not likely to be the source of the discrepancy. First, I 

introduced a silent mutation in the final exon of the lag-1::gfp repair template to prevent 

endonuclease activity from Cas9, and this mutation exists in lag-1::mkate2 as well. While the 

possibility that this alternative codon led to a dramatic difference of observed LAG-1 levels is 
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hypothetically possible, there are more likely explanations. The second alteration to the lag-1::gfp 

repair template was the inclusion of a large Hygromycin selection cassette immediately 

downstream of the predicted lag-1 3’ UTR.  This was initially a cause for concern; however, lag-

1::mkate2 does not contain such a cassette, and the fact that the fluorescence pattern observed 

in both strains is in general agreement suggests that the presence of this Hygromycin resistance 

cassette does not affect the patterning of LAG-1-GFP.  This was only carefully examined in the 

VPCs and expression of lag-1::gfp could be affected in other tissues. 

One possibility is that the difference is an artifact of genetic background. The lag-1::gfp 

and lag-1::mkate2 alleles were both made in the wild-type N2 strain background. The LAG-1-GFP 

fosmid reporter contains an unc-119(+) selection marker, and transgenic lines were generated, 

maintained, and analyzed in a unc-119 mutant background. The unc-119(-) phenotype was 

completely rescued by the fosmid array, suggesting that loss of unc-119 activity is not the cause 

of the observed differences. Although the parental unc-119(-) strain was backcrossed several 

times, it remains possible that some other background mutation influenced LAG-1-GFP 

accumulation from the fosmid.  

Many other possibilities exist that would explain the differences of fluorescently-tagged 

LAG-1 accumulation in these different constructs. A critical concern is that important cis-

regulatory elements are missing in fosmid reporters. Although the lag-1 fosmid is large and 

contains the entire gene-to-gene region in excess, there may be cis-regulatory sequences that 

exist outside the fosmid.  The multi-copy extrachromosomal arrays are highly repetitive and 

contain a variable number of repeats from array to array. It is unknown how this might affect 

transcription of tagged lag-1 from a reporter transgene.  A caveat of transgenes that may explain 

the pattern from the LAG-1-GFP reporter, is that transgenic protein is in addition to the 

endogenous already present. This “extra” transgenic LAG-1-GFP may affect its own regulation if 

lag-1 is positively autoregulated and is discussed in more detail in Chapter 5.  The ability to 

create endogenous fusion proteins, like those described here, provides a way to address many of 
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these caveats associated with transgenes, which, as I learned first-hand during this project, can 

lead to erroneous conclusions. 

Use of endogenously-encoded reporters of LIN-12 activity 

The weak lin-12(d) allele, lin-12(n302), does not form an anchor cell and does not induce VPCs to 

adopt the 2o fate based on failure to form psuedovulvae (Greenwald et al. 1983a) and failure to 

activate transcription of the lin-12 target reporter arIs116[lst-5p::2xnls-yfp] (Chapter 2).  In a lin-

12(n302) background, I observed a number of animals in which LAG-1-mKate2 accumulation 

appeared to be higher in P5.p and P7.p, and their descendants compared to other VPCs in a 

number of animals similar the the LAG-1-mKate2 pattern seen in wild-type animals. This 

observation has two implications: there is continued production of the LIN-3/EGF inductive signal 

from one or both of the α cells, and that the protein encoded by lin-12(n302) can be activated 

through interaction with ligand. In other animals, LAG-1-mKate2 appeared to be uniformly 

increased in all VPCs relative to uninduced VPCs, indicative of lin-12(n302) activity.  

Similarly, LIN-12(intra) does not induce VPCs to adopt the 2o fate when expressed 

transgenically, unless enhanced by loss of a negative regulator (de la Cova and Greenwald 2012; 

Deng and Greenwald 2016). However, when I provided LIN-12(intra)-GFP transgenically, I 

observed that accumulation of LAG-1-mKate2 did not display the 2o pattern typically observed in 

wild-type animals during the Pn.p stage, but rather accumulation increased in all VPCs (Fig. 6B). 

This observation is an indication that LIN-12(intra)-GFP is active in all the VPCs during the Pn.p 

stge.  

LAG-1-mKate2 accumulation is sensitive to weak LIN-12 activation in the VPCs. It is 

unknown if LIN-12 activity is promoting transcription of lag-1::mkate2, or if the presence of LIN-

12(intra) is stabilizing LAG-1-mKate2; I discuss the regulation of LAG-1 in the next section. These 

observations are consistent with previously published results, and with the idea that VPCs require 

lin-12 activity above a certain threshold to adopt 2o fate. Certain aspects, like transcriptional 

activation of arIs116[lst-5p::2xnls-yfp] (Choi 2009) and formation of psuedovulvae (Greenwald et 
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al. 1983a), require strong lin-12(d) activity or the enchancement of weak lin-12(d) activity 

(Sundaram and Greenwald 1993)(Chapter 2). LIN-12(intra) activity is not sufficient to induce a 

Muv phenotype unless stabilized by the removal of negative regulators (de la Cova and 

Greenwald 2012; Deng and Greenwald 2016). LAG-1-mKate2 levels appear to be an indicator of 

low levels of LIN-12 activation, rather than reporting 2o fate. As discussed in Chapter 4, finding 

reporters for LIN-12 activity in the VPCs has been challenging, and endogenously tagged LAG-1 

may represent a useful reporter.  There is room for improvement, as mKate2 has, in my hands, 

proven to be a relatively dim fluorescent protein in the VPCs. Using the lag-1::gfp strain or making 

new endogenously tagged versions of LAG-1, discussed below, would be beneficial. If lag-1 is 

determined to be a transcriptional target of LIN-12, then an endogenous transcriptional reporter 

may be advantageous. The use of quantitative fluorescent microscopy would greatly improve 

precision and is discussed below.  

Regulating LIN-12 activity in the VPCs through control of LAG-1 levels or subcellular 

localization 

A key motivator for the construction and characterization of the LAG-1 translational reporters and 

endogenously tagged LAG-1 described above was to determine if resistance to activated LIN-12 

in the VPCs during the L2 stage (Li and Greenwald 2010), and in P6.p during the L3 stage 

(Shaye and Greenwald 2005; Li and Greenwald 2010)(Chapter 2) was mediated by regulation of 

LAG-1 proteins levels or its subcellular localization.  

In mammalian cells, it has been proposed that the RITA protein may attenuate Notch 

activity via the removal of Cbf1 from the nucleus (Wacker et al. 2011). I never observed LAG-1-

mKate2 or LAG-1-GFP to be localized anywhere in the VPCs but the nuclei. It could be that low 

cytoplasmic LAG-1-GFP or LAG-1-mKate2 fluorescence was obscured by background 

fluorescence and therefore not detectable.  Still, my observations provide no evidence that 

exclusion or export of LAG-1 from the nucleus is a mechanism by which LIN-12 activity is 

regulated in the VPCs.  
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My characterization of LAG-1-mKate2 and LAG-1-GFP during the L2 and L3 stage do not 

allow me to form a conclusion about whether LAG-1 levels are important for regulating LIN-12 

activity.  During the L2 stage, my assessment is that constitutive LIN-12 activity did not produce a 

substantial increase of LAG-1-mKate2 levels; however, I cannot reliably make this claim without a 

more quantitative approach like that discussed above. Furthermore, even if this claim is true, I do 

not know whether this would be a cause or a consequence of resistance to constitutive LIN-12 

activity in L2 VPCs.   

During the L3 stage I faced a similar chicken-or-egg problem.  My observations indicate 

that LAG-1 levels are positively regulated by LIN-12 activity, but I could not investigate whether 

this increase of LAG-1 accumulation is a requirement for LIN-12 activity. To properly address 

these hypotheses, I would require new reagents that allow me to control LAG-1 levels 

independently of LIN-12 activity. I discuss these ideas further in Chapter 5. 

Further investigation of LAG-1 regulation 

My colleague Katherine Luo will be continuing this investigation into the regulatory mechanisms 

of LAG-1 and how regulation of LAG-1 relates to lin-12 signaling in the VPCs. She has begun 

quantifying the fluorescence of LAG-1-GFP in the VPCs as discussed above.  This approach will 

allow for more precise comparisons of LAG-1 levels between the VPCs in the same animal, and 

between animals of different genotypes. My qualitative approach was not able to accurately 

determine if constitutive LIN-12 activity raised the baseline levels of LAG-1 in VPCs during the L2 

stage, or if constitutive LIN-12 activity increased LAG-1 levels equivalently across all cells during 

the L3 stage. Her preliminary results thus far indicate that this quantitative approach will be able 

to answer these questions. 

Together we designed experiments that utilize CRISPR/Cas9 techniqes to generate two 

new tagged lag-1 alleles to determine the level of regulation of LAG-1. First, a lag-1::gfp-t2a-

tdtomato-nls allele to investigate whether the level of regulation is post-translational.  The viral 

T2A peptide sequence induces ribosome skipping (Ahier and Jarriault 2014), leading to the 

translation of two separate proteins, in this instance LAG-1-GFP along with tdTomato-NLS. Since 
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both proteins are translated from the same mRNA, they will be controlled by the same 5’ and 3’ 

cis-acting regulatory sequences. Differences between the LAG-1-GFP and tdTomato-NLS 

patterns would be indicative of post-translational regulation. The second experiment is to make a 

lag-1::gfp-sl2-tdtomato-nls allele in order to investigate regulation of the lag-1 transcript. In this 

case the coding sequences for the two fluorescent proteins are seperated by an SL2 acceptor 

sequence [reviewed by Blumenthal (2005)], which produces a bicistronic primary transcript. 

Trans-splicing of this bicistronic primary transcript will produce two separate mRNA molecules: 

one that encodes LAG-1-GFP and the other that encodes tdTomato-NLS. The SL2 trans-splicing 

means that the tdtomato-nls mRNA will have the endogenous 3’ cis-acting regulatory sequence, 

while the lag-1::gfp mRNA will have the unregulated Ur element at the 3’ end. A difference 

between the LAG-1-GFP and tdTomato-NLS patterns here would be indicative of regulation at the 

level of mRNA as well as post-translational regulation.  Comparing results of these two alleles will 

allow us to determine between regulation at the levels of transcription, post-transcription, and 

post-translation.  

The dauer stage is an alternative developmental pathway induced by “harsh” conditions, 

such as overcrowding or lack of food [reviewed by Hu (2007)]. Constitutive LIN-12 activity is 

blocked in the VPCs by an unknown mechanism during the dauer larval stage (Karp and 

Greenwald 2013).  Katherine is extending this investigation of LAG-1 regulation into the context of 

VPC quiescence during the dauer stage. 
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Chapter 3. Figures
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Figure 1. Schematics of VPC specification and formation of LIN-12 transcriptional activation 
complex. (A) The EGF-like inductive signal from the AC activates EGFR in the nearest VPC, 
P6.p. EGFR activation leads to adoption of the 1o cell fate and expression of LIN-12 ligand genes. 
Ligands form a lateral signal and activate LIN-12 in the neighboring VPCS, P5.p and P7.p, 
leading to transcriptional activation of lin-12 target genes and adoption of the 2o fate. The outer 
VPCs, P3.p, P4.p and P8.p do not receive either signal and remain uninduced, eventually fusing 
with the hypodermis. (B) The CSL class transcription factor LAG-1 is a repressor of lin-12 target 
gene in the absence of activated LIN-12. Biochemical and structural studies indicate that LAG-1 
and other CSL proteins are dynamically associated with DNA while in repressor mode. Upon 
activation of LIN-12, the LIN-12 intracellular domain, LIN-12(intra), is translocated to the nucleus 
and forms a active transcriptional complex with LAG-1 and SEL-8, a protein analogous to 
Mastermind. The dynamics of the LAG-1-LIN-12 activation complex with DNA are not well known; 
however, evidence from several studies suggest that the LAG-1-LIN-12 activation complex is 
more stably associated with DNA than LAG-1 repressor complexes [reviewed by Kovall et al. 
(2017)]  
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Figure 2. Diagram of lag-1 genomic locus and mCherry-LAG-1 fosmid reporter. (A) Schematic of 
the predicted structure of the lag-1 genomic locus. Coding sequences are depicted as black 
boxes and spliced introns as angled black lines. Structure of the lag-1a isoform on top and the 
more recently predicted lag-1d isoform on bottom. The core domain, including the DNA-binding 
domain, is encoded by the distal exons of lag-1 which are common between the two isoforms.  
(B) Schematic showing mCherry-LAG-1 fosmid reporter. The sequence of an mcherry cassette 
was recombineered into the fosmid WRM0625aC01 immediately following the start codon of the 
lag-1a isoform. (C) Larval lethality of lag-1(0) can be rescued by two transgenes containing 
mCherry-LAG-1. Fosmid transgenes were combined with lag-1(0)/DnT1. DnT1 is a modified 
version of the translocation nT1 containing unc(n754), which causes a dominant Unc phenotype. I 
picked array-positive progeny of lag-1(0)/DnT1 and scored for the Unc phenotype. Chart shows 
percentage of non-Unc animals assayed. **P<0.0001 by Fisher’s exact test. 
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Figure 3. LAG-1-GFP from transgenic and endogenous sources. (A) Schematic showing LAG-1-
GFP fosmid reporter. The sequence of a gfp cassette was recombineered into the fosmid 
WRM0625aC01 immediately following the stop codon of all predicted lag-1 isoforms. (B) LAG-1-
GFP levels from transgenes containing fosmid reporter are equivalent in P5.p, P6.p, and P7.p.  
LAG-1-GFP levels from the lag-1::gfp allele are higher in the 2o VPCs, P5.p and P7.p, relative to 
the other VPCs. Graph showing percentage of animals with LAG-1-GFP levels in a 2o-fate 
pattern. *P<0.0003 Fishers’s Exact Test. (C) Image unc-119(ed3); arEx1860[lag-1-gfpfos] Pn.px-
staged animal. LAG-1-GFP levels are equivalent in descendants of P5.p, P6.p, and P7.p. Image 
obtained at exposure time of 500ms. (D) Image of lag-1(ar611[lag-1::gfp]) Pn.px-staged animal. 
LAG-1-GFP levels are lower in descendants of P6.p than descendants of P5.p, and P7.p. Images 
in C and D were both obtained at exposure time of 800ms.  
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Figure 4. LAG-1-mKate2 accumulation in the VPCs from L2 stage to Pn.pxx stage. (A) Images of 
lag-1(ar613 [lag-1::mkate2]). During the L2 stage, LAG-1-mKate2 is in all VPCs at a basal level. 
As development continues, the LAG-1-mKate2 levels increase in P5.p and P7.p relative to the 
other VPCs. This pattern of LAG-1-mKate2 accumulation remains higher in the descendants of 
P5.p and P7.p, during the Pn.px and Pn.pxx stages. All images in Figures 4, 5, and 6 were taken 
on the same microscope using the same settings, including exposure times.  
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Figure 5. LAG-1-mKate2 accumulation in the VPCs is dependent on lin-12 activity. (A) Images of 
lin-12(n941); lag-1(ar613[lag-1::mkate2]), top, and sur-2(ku9); lag-1(ar613[lag-1::mkate2]), 
bottom. Loss of lin-12 activation results in LAG-1-Kate2 levels remaining uniform in all VPCs at 
low levels comparable to non-2o VPCs in wild-type animals.  (B)  Images of lin-12(n137); lag-

1(ar613[lag-1::mkate2]), top, and arTi113[lin-31p::lin-12(intraΔP)-gfp]; lag-1(ar613[lag-

1::mkate2]), bottom. Constitutive LIN-12 activity results in increased LAG-1-mKate2 levels 
uniformly in all VPCs. All images in Figures 4, 5, and 6 were taken on the same microscope using 
the same settings, including exposure times.  
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Figure 6. LAG-1-mKate2 accumulation is sensitive to the presence of weak LIN-12. (A) Images of 
lin-12(n302); lag-1(ar613 [lag-1::mkate2]) showing LAG-1-mKate2 levels higher in descendants of 
P5.p and P7.p relative to other VPC descendants, this pattern was observed in (11/29). (B) 
Images of arTi43[lin-31p::lin-12(intra)-gfp]; lag-1(ar613[lag-1::mkate2]) showing differences In 
LAG-1-mKate2 accumulation between Pn.p- and Pn.px-stages animals. Top image shows a 
Pn.p-staged animal in which LAG-1-mKate2 levels are uniform in all VPCs and comparable to 2o 
VPCs in wild-type animals, this pattern was seen in (17/17) Pn.p-staged animals. Bottom image 
shows a Pn.px-staged animal in which LAG-1-mKate2 levels are higher in descendants of P5.p 
and P7.p relative to the other VPC descendants, this is the typical 2o-fate pattern seen in wild-
type animals and was observed in (15/17) Pn.px- or Pn.pxx-staged animals. All images in Figures 
4, 5, and 6 were taken on the same microscope using the same settings, including exposure 
times.   
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Figure 7. LAG-1-mKate2 accumulation increases in somatic gonadal cells that receive lin-12 
signaling during the AC/VU. (A) Diagram of AC/VU decision in the two α Z1.ppp and Z4.aaa 
taken from Wilkinson et al. (1994). In panel (1) the two cells are initially competent to adopt the 
anchor cell (AC) or ventral uterine (VU) precursor cell fate. Both cells express lin-12 and the DSL 
ligand gene lag-2. In panel (2), a small stochastic variation in LIN-12 activation between the two 
cells initiates positive feedback loops that amplify this difference. In panel (3), these feedback 
loops, including positive autoregulation of lin-12 in the presumptive VU, drive cell-fate 
commitment. (B) Lineage of α and β cells beginning from Z1.pp and Z4.aa. Horizontal lines 
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represent cell divisions and vertical lines represent lineage through development and are not to 
scale. Expression of arTi22[hlh-2(prox)p::gfp-h2b)] is indicated in green. (C) Images from lag-
1(ar613[lag-1::mkate2]); arTi22[hlh-2(prox)p::gfp-h2b)] animal depicting the four α and β cells 
(denoted by asterisks) during the AC/VU decision. Top, LAG-1-mKate2 levels are equal in the 
four cells. Middle, GFP-H2B. Bottom, channels merged. Images in C and D are maximum z-
pojections. (D) Images from lag-1(ar613[lag-1::mkate2]); arTi22[hlh-2(prox)p::gfp-h2b)] animal 
following commitment of the AC (denoted by dashed circle) and the VUs (denoted by asterisks). 
Top, LAG-1-mKate2 levels are elevated in the VUs and not visible in the AC. Middle, GFP-H2B. 
Bottom, channels merged.  
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Chapter 4: Characterization of cis-
regulatory sequences of the LIN-12 

target gene lst-5 and in vivo analysis 
of LAG-1 target binding in the VPCs: 

successes and complications 
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Abstract 

The specification of the vulval precursor cells (VPCs) provides a powerful paradigm to study the 

regulation of LIN-12/Notch. Here I describe attempts to investigate the molecular mechanism 

behind a resistance to LIN-12 activity in P6.p due to EGFR-Ras-ERK activity. I attempted 

mutational and deletion analysis on the regulatory sequence of lst-5, a direct transcriptional target 

of LIN-12. I identified a 354 bp cis-regulatory region required for repression of lst-5 in P6.p during 

the L3 stage; however, the multi-copy arrays used at that time made follow-up experiments 

difficult to interpret. I found that a single-copy lst-5 transcriptional reporter was expressed in all 

VPCs rather than in P5.p and P7.p, the pattern expected for  LIN-12-dependent transcriptional 

reporter. I attempted to visualize the LIN-12-LAG-1 transcriptional activation complex in vivo to 

determine if negative regulation of lin-12 targets was achieved through post-translational 

regulation of this complex. Ultimately, these attempts were unsuccessful, but the experiments 

described here led to the production of useful reagents. 

 

Introduction 

The development of the adult C. elegans vulva provides an excellent system to study to cell 

specification and the regulation of LIN-12/Notch. Six vulval precursor cells (VPCs) are initially 

equally competent to adopt one of three fates, until an EGF-like “inductive signal” is produced by 

a cell in the somatic gonad. The inductive signal triggers activation of a canonical EGFR-Ras-

ERK signaling pathway in P6.p, the nearest VPC, causing it to adopt the 1o fate and activates 

transcription of LIN-12 ligand genes. These ligands comprise a “lateral signal” which activates 

LIN-12 in the flanking VPCs, P5.p and P7.p, causing these cells to adopt the 2o-cell fate. 

Activation of LIN-12 is achieved through two sequential proteolytic cleavage events, 

which release the intracellular domain of LIN-12 from its transmembrane tether. This “intra” 

domain is translocated to the nucleus where it will activate target gene transcription; 

transcriptional activation is achieved through a protein-protein interaction between LIN-12(intra) 
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and the DNA-binding protein LAG-1. LAG-1 is a well-conserved protein of the CSL class, so 

named for orthologs in other organisms, CBF1 in mammals and Suppressor of Hairless (Su(H)) in 

Drososphila. Generally, in the absence of LIN-12(intra), LAG-1 functions as a co-repressor, but 

when complexed with LIN-12(intra), the LAG-1-LIN-12(intra) complex functions as a 

transcriptional activator. 

In Chapter 2, I describe resistance to a form of LIN-12 that is constitutively active and 

stable, LIN-12(intraΔP), in P6.p due to EGFR-Ras-ERK activation. Observations indicated that 

the genes lin-1, sur-2, and cdk-8 are all required for this resistance, but the molecular 

mechanisms that mediate this form of lin-12 negative regulation remain unknown. In chapter 3 I 

describe my observations of LAG-1-GFP translational fosmid reporter. Briefly, this reporter 

indicated that LAG-1-GFP was not patterned in VPCs and was present in P5.p, P6.p, and P7.p at 

uniform levels. This observation suggested that resistance to LIN-12 activity may be at the level 

of the LIN-12-LAG-1 transcriptional activation complex.  

To investigate this possibility, I decided upon two strategies that would be done in parallel 

and could share reagents. I would perform deletion and mutational analysis using a LIN-12 

transcriptional target to identify cis-acting regulatory sequences that mediate these forms of 

regulation. Additionally, I designed a variation of the “Nuclear Spot Assay” (NSA) to visualize 

whether trans-acting factors, such as LAG-1, were bound to regulatory sequences of LIN-12 

target transgenes. NSAs have been utilized and described in many publications, e.g. (Carmi et al. 

1998; Fakhouri et al. 2010; Meister et al. 2011; Cochella and Hobert 2012; Patel and Hobert 

2017), and I discuss this in further detail below. I generated a suite of fluorescent transcriptional 

reporter transgenes designed to identify cis- and trans- acting factors that mediate these blocks to 

LIN-12 activity. I identified cis-regulatory elements required for these forms of negative regulation, 

including evidence of a region that is required for transcriptional repression in P6.p. Unfortunately, 

these lines of experiments could not be continued due to technical issues; however, during my 

attempts to perform these experiments I produced reagents useful for other projects, such as the 

endogenously-tagged LAG-1 protein fusions described in Chapter 3. I describe these efforts here. 
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Materials and methods 

C. elegans genetics 

All strains were raised according to standard practices at 20o or 25o degrees (Brenner 1974). 

The following transgenes were used in this section: arEx1080[lin-31p::lin-12(intraΔP)] (Li 

and Greenwald 2010); oxTi414 (Frøkjær-Jensen et al. 2014) was used to mark the lag-1 locus 

during crosses; arTi207[lin-31p::scfv-sfgfp] (Justin Shaffer). 

The recipient strain making transgenes described below was GE24 pha-1(e2123) unless 

otherwise noted. Strains carrying pha-1(+) transgenes were maintained at 25o.  

Transgenic arrays 

The following transgenes were generated by injecting PCR products or fusion PCR products 

using the plasmids as templates p766 or p767 (Choi 2009). PCR products were injected at 

10ng/ul with linearized pBX (pha-1(+)) at 1ng/uL, pCW21 (ceh-22p::gfp) at 1ng/uL and OP50 

genomic DNA at 50ng/uL. 

arEx1709-1713 [lst-5(566)p::2xnls-yfp::unc-54 3’UTR] 

arEx1767-1771 [lst-5(566 ΔLBS)p::2xnls-yfp::unc-54 3’UTR] 

The following transgenes were generated by injecting PCR products at 10ng/ul with 

linearized pBX (pha-1(+)) at 3ng/uL, ttx-3p::gfp at 5ng/uL and OP50 genomic DNA at 50ng/uL. 

arEx1865-1868 [lst-5(535)p::2xnls-yfp::unc-54 3’UTR] 

arEx1868-1872 [lst-5(535ΔLBS)p::2xnls-yfp::unc-54 3’UTR] 

arEx1887-1889 [lst-5(181)p::2xnls-yfp::unc-54 3’UTR] 

The following transgenes were generated by injecting PCR products at 10ng/ul with pBX 

(pha-1(+)) at 20ng/uL, ttx-3p::gfp at 20ng/uL and pBS KS(+) at 40ng/uL. 
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arEx1865-1868 [lst-5(535)p::2xnls-yfp::unc-54 3’UTR]  

arEx2161 [lst-5(181)p::2xnls-yfp::unc-54 3’UTR] 

arEx2096-2097 [lst-5(535Δ194…144)p::2xnls-yfp::unc-54 3’UTR] 

arEx2102-2104 [lst-5(535…112)p::2xnls-yfp::unc-54 3’UTR]  

arEx2105-2106 [lst-5(535…243)p::2xnls-yfp::unc-54 3’UTR] 

arEx2108-2107 [lst-5(425…354)p::2xnls-yfp::unc-54 3’UTR] 

arEx2109-2110 [lst-5(461…354)p::2xnls-yfp::unc-54 3’UTR] 

The following transgenes were generated by injecting PCR products at 10ng/ul with pBX 

(pha-1(+)) at 20ng/uL, ttx-3p::gfp at 20ng/uL and LacO repeats (SphI-KpnI fragment from pSV2-

DHFR-8.32 (Robinett et al. 1996)) at 40ng/uL.  

arEx2490-2492 [lst-5(535)p::2xnls-yfp::unc-54 3’UTR] 

arEx2493-2495 [lst-5(181)p::2xnls-yfp::unc-54 3’UTR] 

Generation of miniMos based transgenes 

The arT153, arTi154 and arTi155 transgenes were made by injecting pRSU79. Single-copy 

transgenes were generated by germline injection into N2 animals and insertions were isolated as 

described by Frøkjær-Jensen et al. (2014). 

Plasmid construction 

pRSU79: eft-3p::tagBFP-LacI-tbb2 3’UTR was made using Gibson assembly. The eft-3p 

regulatory region was amplified from the pCFJ1209 vector (Frøkjær-Jensen et al. 2014); lacI 

sequence from bSEM669 (Updike and Mango 2006).  

Reporter scoring 

All lst-5 reporters were scored on Zeiss Axio Imager Z1 with a Hamamatsu Orca-ER camera and 

an X-Cite 120Q light source (EXFO photonics solutions) at 100% power. YFP expression was 

scored at an exposure time of 800 ms. Individual VPCs were scored for expression and rated “on” 
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or “off”. For experiments with arEx1080, myo-3p::mcherry was simultaneously imaged using an 

exposure time of 50 ms.  

The nuclear spot assay experiments were performed using a Zeiss spinning disk confocal 

microscope system. Red and Blue fluorescence was taken simultaneously using a dual camera 

set-up. Images were processed using Fiji distribution of ImageJ.   

 

Results and Discussion 

The regulatory sequence of lst-5 as a tool to study regulation of lin-12 signaling 

LAG-1 binding sites (LBSs) can be predicted computationally using consensus binding motifs 

derived from known targets of Su(H) (Yu et al. 2004). This approach led to the identification of a 

set of lateral signal target (lst) genes (Yoo et al. 2004; Yoo and Greenwald 2005), and additional 

genes, including lst-5 and lst-6 (Choi 2009).  Initially, three LBSs were predicted in the 

approximately 1 kb sequence upstream of lst-5 and lst-6 (Fig. 1A; Choi 2009). The predicted 

gene structure of lst-5 was updated during validation of lst-5 transcriptional reporters. A new 5’ 

exon of lst-5 was predicted to exist in the 1 kb upstream region, and this prediction was validated 

by RT-PCR experiments which provided evidence for the existence of at least two isoforms of lst-

5 (Choi 2009). Transcriptional reporters containing the “new” upstream region (lst-5p “new”) were 

tested, and expression in the 2o VPCs and their descendants was not observed (Fig. 1B). It was 

concluded that regulatory information critical for expression in 2o VPCs was contained in the 

sequences of the 5’ exon and first intron of lst-5 (Choi 2009). 

Transcriptional reporters of the 1 kb upstream sequence of the “old” lst-5 prediction (lst-

5(FL)p), were found to be expressed in 2o VPCs and their descendants (Fig. 1B). When 

combined with a lin-12(d) allele, expression was observed in all VPCs (Choi 2009). This 

expression was lost when the three LBSs were mutated (lst-5(FLΔ3xLBS)p) (Fig. 1B). These 

observations suggested that lst-5 was a bona fide lin-12 target. Additionally, it was observed that 

lst-5 transcriptional reporters had a relatively “clean” expression pattern in comparison to 
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transcriptional reporters of other lst genes. For example, lst-3 transcriptional reporters are 

expressed in all VPCs during the L2 stage and expression resolves to P5.p and P7.p  during VPC 

specification (Yoo et al. 2004), whereas lst-5 transcriptional reporters are typically only expressed 

in P5.p and P7.p and their descendants in the L3 stage. An integrated lst-5 reporter, arIs116, has 

since been used extensively to mark 2o VPCs (Choi 2009; Li and Greenwald 2010; Li 2011; Karp 

and Greenwald 2013; Keil et al. 2017), and appeared to be regulated during the L2 and L3 stages 

in the expected manner. These reasons led me to decide that lst-5(FL)p was ideal for use as a 

LIN-12 target sequence. 

The first exon and first intron of lst-5 are sufficient to drive expression in 2o VPCs 

Since the 5’ exon and first intron of lst-5 were required to drive expression in P5.p and P7.p, I 

asked if these regions were sufficient to drive expression in 2o VPCs. I generated transcriptional 

reporters containing a 566 bp fragment that contained the entirety of the 5’ exon and first intron of 

lst-5, and a small portion of the upstream region (lst-5(566)p) (Fig. 2 A-B). Analysis of reporters 

made from this construct showed expression in P5.p and P7.p and their descendants, indicating 

that the sequences of the 5’ exon and first intron were sufficient to be transcriptionally activated 

by LIN-12. Mutating the sole LBS lead to decreased expression in P5.p and P7.p and their 

descendants (Fig. 2A, C).  

The lst-5(566)p::2xnls-yfp reporter contained the start codon of the 5’ exon and 29 bps of 

the flanking 5’ region, including the entire 5’UTR of lst-5a. This indicated that this region may 

contain cis-regulatory sequences important of expression in 2o VPCs. To determine this, I 

generated a new set of transcriptional reporters that truncated the upstream region further and 

eliminated the “AT” of the start codon to generate lst-5(535)p. Analysis of this reporter showed 

expression in P5.p and P7.p and their descendants (Fig. 3A-B). Mutating the sole LBS in this 

construct produced diminished expression in P5.p and P7.p and their descendants (Fig. 3A-C). 

These observations are consistent with the conclusion that the 5’ exon and first intron of lst-5 

contains the necessary regulatory information required for activation by LIN-12 in VPCs.  
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Deletion analysis of lst-5p transcriptional reporters 

The transgene arEx1080[lin-31p::lin-12(intraΔP)] expresses a constitutively active form of LIN-

12(intra) that has been stabilized by the removal of the PEST domain (see Chapter 2). Adult 

hermaphrodites carrying this transgene possess an anchor cell and are Multivulva. When the 

integrated reporter array arIs116[lst-5(FL)p::2xnls-yfp] is combined with arEx1080[lin-31p::lin-

12(intraΔP)], YFP expression is seen in all VPCs with the exception of P6.p, which is resistant to 

LIN-12 activity (Chapter 2).  

To identify cis-acting regions required for resistance to LIN-12 activity during the L3 stage 

I performed deletion analysis of the lst-5 regulatory region (Fig.4). I generated transgenic reporter 

arrays of containing truncations or deletions of the lst-5 regulatory sequence, and combined them 

with arEx1080[lin-31p::lin-12(intraΔP)]. Expression of YFP in P6.p in the presence of 

arEx1080[lin-31p::lin-12(intraΔP)] suggests that a cis-acting sequence contained in the deleted 

region may be required for transcriptional repression of lst-5 reporters in P6.p.  

My observations indicate that a 354 bp region in the distal element of lst-5(535)p is 

required to repress transcription in P6.p and descendants. The lst-5(181)p::2xnls-yfp reporters 

(Fig. 4G) showed the highest penetrance of YFP fluorescence in P6.p of any truncated lst-5 

reporter tested. The two transgenic arrays shown in Fig. 4G were made at different times using 

different transgenic conditions, indicating that this result is reproducible. Truncations at the 5’ end 

of lst-5(181)p::2xnls-yfp, in the coding region, resulted in ectopic reporter transcription in P6.p, 

without the requirement for arEx1080[lin-31p::lin-12(intraΔP)] (Fig. 4 H-I).  

Other reporters with truncations in the 3’ region showed relief of transcriptional repression 

in P6.p as well (Fig. 4 D-E); however, expression from these transgenes was generally much 

dimmer and much more variable in all VPCs than the expression from lst-5(181)p::2xnls-yfp 

transgenes. The low and variable levels of fluorescence made scoring animals challenging and 

led me to question the reproducibility of these observations. I therefore attempted to generate 

new transgenes that had more consistent expression. 
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Two single-copy miniMos random-insertion transgenes of lst-5(535)p::2xnls-yfp and three 

of lst-5(181)p::2xnls-yfp produced either no expression or dim expression. A site-directed single-

copy insertion of lst-5(FL)p::2xnls-yfp into a characterized site on LG1 did not produce visible 

expression. I attempt to amplify the signal using a protein multimerization system known as 

“SunTag” (Tanenbaum et al. 2014). An LG1 site-directed single-copy insertion lst-5(FL)p::2xnls-

yfp-suntag reporter into the enabled visualization of expression from a (Fig. 5A-B); however, this 

reporter was expressed in P6.p as well as P5.p and P7.p, indicating that it was not useful as a 2o-

fate marker. I discuss this further in Chapter 5. 

Nuclear Spot Assay 

In Chapter 3, I observed that a LAG-1-GFP fosmid reporter was expressed in the nuclei of all 

VPCs during the L2 stage and in the nucleus of P6.p during the L3 stage. Thus, I concluded that 

resistance to LIN-12 signaling in these contexts was not due to the absence of nuclear LAG-1, 

although was discovered to be incorrect after beginning the following experiment. At that time, an 

alternative hypothesis was that the LAG-1-LIN-12 activation complex was prevented from forming 

or prevented from binding to DNA.  

The Nuclear Spot Assay (NSA) is a versatile method that has been used in C. elegans to 

visualize compaction states of transgenic arrays (Yuzyuk et al. 2009; Meister et al. 2010; 

Cochella and Hobert 2012) and the binding-states of transcription factors on target sequences 

(Carmi et al. 1998; Fakhouri et al. 2010). My strategy was to perform an NSA that was entirely 

modular to permit components to be swapped out one at a time and used in different 

combinations, allowing for greater consistency and better comparisons between the different 

experiments. I required three reagents to perform the initial experiment: first, an 

extrachromosomal array containing a lin-12 target gene reporter and LacO repeats; second, a 

transgenic source of fluorescently tagged LacI; third, a fluorescently labeled transcription factor. 

Generating these reagents proved challenging with a major obstacle being the desire to use three 

fluorophores simultaneously. I discuss my efforts in assembling these reagents here. 
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The lst-5(535)p::2xnls-yfp reporter described above was an ideal candidate for use as a 

LIN-12 target sequence. The expression pattern suggested that it was transcribed only in 

response to activated LIN-12 and it was regulated in P6.p and descendants  as expected. Since I 

could visualize a green LAG-1 fosmid translational fusion reporter but not a red one (Chapter 3), I 

constructed new lst-5(535)p reporters that drove expression of red fluorescent proteins. At the 

time, I considered this more expedient than making a red LAG-1 C-terminal translational fusion. I 

generated extrachromosomal arrays containing lst-5(535)p::2xnls-mcherry and LacO repeats 

using a variety of injection conditions, but I did not observe mCherry expression in the VPCs.  

I attempted to remedy this by using two alternative red-spectrum proteins. Again, I 

generated extrachromosomal arrays containing LacO repeats and either lst-5(535)p::2xnls-tagrfp 

or lst-5(535)p::2xnls-mkate2 using different transgenic conditions. I established many new 

transgenic arrays, but none consistently expressed in 2o VPCs, and none were useable for the 

NSA. A possible explanation for these negative results is that a cryptic splice site or some other 

regulatory sequence was introduced at the new junctions; an analysis of the sequences used for 

these arrays did not reveal anything informative. I made new arrays containing lst-5(535)p::2xnls-

yfp and LacO repeats and established three independent transgenic line that had YFP expression 

in 2o VPCs and their descendants as expected. The use of lst-5p(535)p:2xnl-yfp as a LIN-12 

target precluded the use of the LAG-1-GFP fosmid reporter. I generated the red lag-1::mkate2 

“knock-in” allele ar613 discussed in Chapter 3. 

 For this strategy, it was necessary to tag LacI with a blue-spectrum protein. Initially I 

attempted to used CFP::LacI (Updike and Mango 2006; Fakhouri et al. 2010), but these attempts 

were unsuccessful for a variety of reasons. Ultimately, I generated single-copy insertions of 

tagbfp-lacI driven by the strong ubiquitous promoter eft-3p. These transgenes produced nuclear 

tagBFP-LacI in all cells including the VPCs. 

Expression from eft-3p::tagbfp-lacI transgenes was dim and diffuse in nuclei in the 

absence of a LacO containing target array. When combined with the transgenes containing lst-

5(535)p::2xnls-yfp and LacO repeats, tagBFP-LacI condensed into puncta, or “dots”,  along the 
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periphery of the VPC nuclei, generally one dot per VPC, indicating that tagBFP-LacI was binding 

to the LacO repeats contained in the target transgene.  

I then combined the eft-3p::tagbfp-lacI, lst-5(535)p::2xnls-yfp and LacO repeats, and lag-

1::mkate2. When I simultaneously imaged tagBFP-LacI and LAG-1-mKate2, I observed they 

formed overlapping dots in the VPCs, suggesting that both fusion proteins were binding to the 

target arrays. However, when I removed eft-3p::tagbfp-laci from this strain and imaged animals 

containing just lst-5(535)p::2xnls-yfp and LacO repeats, and lag-1::mkate2, the LAG-1-mKate2 

protein no longer condensed into dots, and instead remained diffuse in VPC nuclei, suggesting 

that association with tagBFP-LacI was responsible for formation of LAG-1-mKate2 dots. I 

hypothesize this is because mKate2 and tagBFP are derivatives of the same wild-type red 

fluorescent protein (Subach et al. 2008; Shcherbo et al. 2009), which is naturally multimerized.   

I attempted to troubleshoot this experiment by generating new LacO target transgenes 

that contain LIN-12 target sequences that do not drive fluorescent protein expression. I combined 

these new transgenes with eft-3p::tagbfp-lacI and the lag-1::gfp allele. When I imaged tagBFP-

LacI and LAG-1-GFP simultaneously, I observed tagBFP dots, but did not observe LAG-1-GFP 

dots. This indicated that LacI was able to bind to the LacO repeats in the transgene, but LAG-1-

GFP did not bind at sufficient concentration to produce a visible dot. It is consistent with my 

prediction that tagBFP and mKate2 interact due to their common ancestry, as GFP has a distinct 

lineage.   

The foundational assumption of these experiments, that LAG-1 was present in all VPCs 

at uniform levels, was invalidated by observations made using the lag-1(ar613) allele, described 

in Chapter 3. These experiments were not pursued further as a result.
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Chapter 4. Figures
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Figure 1. The gene lst-5 is a direct target of LIN-12. (A) Schematic of the upstream region of lst-5 
and lst-6. Top shows the original gene prediction, lst-5 “old”, with a roughly 1 kb intergenic region 
(denoted by gray line) that contained three predicted LAG-1 binding sites (denoted by black 
triangles)(Choi 2009). Middle shows the updated prediction of the lst-5 gene structure, lst-5 “new” 
that included a new 5’ exon (exons denoted by black boxes), and RT-PCR experiments revealed 
at least two different isoforms (angled lines denote spliced introns) (Choi 2009). Below, 
transcriptional reporters corresponding to the lst-5 genomic loci. The 1 kb upstream sequence 
corresponding to the old lst-5 prediction is called lst-5(FL)p. (B) Top, transcriptional reporters of 
lst-5p “new” did not express in P5.p and P7.p or their descendants. Middle, lst-5p(FL)p 
transcriptional reporters express in P5.p and P7.p and their descendants. Bottom, expression in 
P5.p and P7.p is lost when the three LBSs in lst-5(FL)p are mutated (denoted by X over LBS) 
(Choi 2009).      
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Figure 2. 5’ exon and first intron of lst-5 are sufficient to drive expression in P5.p and P7.p. (A) 
Top, schematic showing lst-5(FL)p::2xnls-yfp transcriptional reporter. Middle and bottom show 
truncations of the lst-5(FL)p. “ATG” in black exon indicate that the start codon and ORF of this 
exon are still intact. Bottom shows mutation of single LBS (B) Graph of YFP fluorescence from 
lst-5(566)p::2xnls-yfp in VPCs and their descendants. (C) Graph of YFP fluorescence from lst-
5(566ΔLBS)p::2xnls-yfp in VPCs and their descendants.  
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Figure 3. Deletions analysis of lst-5 5’ exon and first intron. (A) Top, schematic showing lst-
5(FL)p::2xnls-yfp transcriptional reporter and truncations of the lst-5(FL)p. “ATG” in black exon 
indicate that the start codon and ORF of this exon are still intact. The “AT” of the start codon in 
the 5’ exon were deleted, indicated by the “G” and dashed white box. Middle shows mutation of 
single LBS. Bottom shows deletion of 354 distal bps. (B) Graph of YFP fluorescence from lst-
5(535)p::2xnls-yfp in VPCs and their descendants. (C) Graph of YFP fluorescence from lst-
5(535ΔLBS)p::2xnls-yfp in VPCs and their descendants. (D) Graph of YFP fluorescence from lst-
5(181)p::2xnls-yfp in VPCs and their descendants. 
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Figure 4. Deletion analysis of lst-5 5’ exon and first intron in the presence of LIN-12(intraΔP). (A-
I) Left column contains schematics of the lst-5 regulatory fragment being test. The left-hand 
graphs show YFP expression in P6.p and descendants in otherwise wild-type animals. The right-
hand graphs show YFP expression in P6.p and descendants in the presence of arEx1080[lin-
31p::lin12(intra)ΔP]. The parental strain for all animals was pha-1(e2123); arEx1080; arEx[lst-
5yfp]. I scored progeny for lst-5yfp expression and for presence of arEx1080.   
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Figure 5. lst-5p transcriptional reporter with SunTag. (A) Top, schematic of lst-5(FL)p reporter 
driving 2xnls-YFP fused to 10xGCNv4 repeats (Tanenbaum et al. 2014). (B) Images showing 
arSi9[lst-5p::2xnls-yfp-10xgcnv4]; arTi207[lin-31p::scFv-gfp] expression in P5.p and P7.p (top) 
and descendants (bottom). (C) Images showing arSi9[lst-5p::2xnls-yfp-10xgcnv4] expression 
(top) and arTi207[lin-31p::scFv-gfp] expression (bottom). Neither transgene produces visible 
expression on their own. 
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Figure 6. Nuclear Spot Assay. (A-C) Images of arTi153[eft-3p::tagbfp-lacI]pha-1; lag-1::mKate2; 
arEx[lst-5p::yfp + LacO] in P5.p, P6.p and P7.p (A’-C’) Shows LAG-mKate2 expression. (A’’-C’’) 
Shows tagBFP-LacI expression. (A’’’-C’’’) Shows merged image. Dots are indicated by arrow. 
Nucleus is shown by dashed circle. (D) Representative VPC of lag-1::mKate2; arEx[lst-5p::yfp + 
LacO]. No LAG-1-mKate2 dots are formed in the absence of tagBFP-LacI. Images were taken as 
z-stacks with a spinning disc confocal microscope using similar settings. Images shown are z-
projections. 
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Table 1. Summary of target arrays used in dot experiments and results. 

LIN-12 target arrays analyzed LacI dot LAG-1 dot 

lst-5(535)p::2xnls-yfp 3 yes LAG-1-mKate2 and LIN-
12(intraΔP)-mKate2 formed 
dots w/ tagBFP-LacI. LAG-1-
mKate2 did not form dots on 
without tagBFP-LacI being 
present 

lst-5(181)p::2xnls-yfp 3 yes One array showed LAG-1-
mKate2 dots in the presence 
of tagBFP-LacI 
Other arrays were not 
analyzed. 

lst-1 1.5 kb 5’ region 4 yes LAG-1-GFP – no dot 
formation 

mir-61 1 kb 5’ region 2 yes LAG-1-GFP – no dot 
formation 

lst-5(FL)p  2 yes LAG-1-GFP – no dot 
formation 

lst-5(FL3xΔLBS)p 1kb 5’ 
region 

2 yes LAG-1-GFP – no dot 
formation 
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Chapter 5. Discussion
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Summary 

In this thesis, I have described my investigation into the regulatory mechanisms that help 

integrate signaling events in the VPCs. The six VPCs receive many intercellular signals during 

their lifetime which cause them to be specified in an invariable spatial pattern. Two important 

signaling events are the activation of a canonical EGFR pathway to specify 1o fate and activation 

of LIN-12/Notch to specify the 2o fate. Several forms of crosstalk between EGFR and LIN-

12/Notch have been previously observed in C. elegans. EGFR activation can inhibit LIN-12/Notch 

signaling by endocytic downregulation of LIN-12 (Levitan and Greenwald 1998b; Shaye and 

Greenwald 2002), and LIN-12/Notch activity can antagonize the EGFR-Ras-ERK pathway (Berset 

et al. 2001; Yoo and Greenwald 2005). My investigation adds to this body of work.  

 In Chapter 2, I investigated an EGFR-mediated mechanism that inhibits LIN-12/Notch 

activity in P6.p (Shaye and Greenwald 2005; Li and Greenwald 2010). I showed that this 

inhibition was not absolute, and that strong constitutive activation of LIN-12 produced by 

transgenes could inhibit transcriptional output of EGFR. I found that the resistance to 

comparatively weaker transgenic LIN-12/Notch activity required the combined activity of three 

factors: LIN-1, an Elk1-like Ets transcription factor; the Mediator subunit Med23 ortholog SUR-2, 

and the Mediator-regulatory module, the CKM (Fig. 1). I show that loss of lin-1 results in 

expression of 1o and 2o reporters in all VPCs. 

 In Chapter 3, I investigated the regulation of the CSL protein, LAG-1. Endogenous 

CRISPR-engineered LAG-1 fusions were observed in a dynamic pattern in VPCs during 

specification (Fig. 2). During the L2 stage I observed that LAG-1 protein is present at a basal level 

uniformly in all VPCs. LAG-1 accumulation increases in P5.p and P7.p relative to the other VPCs, 

a pattern that I propose to be due to activation of LIN-12.  

 In Chapter 4, I attempted two different experimental techniques to determine the 

molecular mechanism of the EGFR-mediated resistance of LIN-12 activity in P6.p. I performed a 

deletion analysis of the 5’ cis-regulatory region of lst-5, a direct LIN-12 target, and identified a 

portion required for transcriptional repression in P6.p. I attempted to directly visualize the 
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formation and DNA-binding activity of the LIN-12-LAG-1 transcriptional activation complex in vivo. 

Ultimately, both approaches were stymied by technical issues; however, the single-copy 

transgenes arTi102[lin-31p::lin-12(intraΔP)] and arTi190[lin-31p::lin-12(intraΔP)-mkate2] used in 

Chapter 2, and the lag-1(611[lag-1::gfp]) and lag-1(ar613[lag-1::mkate2]) alleles used in Chapter 

3 were originally generated for use in these experiments.  

EGFR-mediated resistance to LIN-12 activity in P6.p 

Previous studies have reported that activation of EGFR-Ras causes P6.p to be refractory to 

constitutive LIN-12/Notch activity (Greenwald et al. 1983a; Sternberg and Horvitz 1989; Shaye 

and Greenwald 2005; Li and Greenwald 2010). These include observations that the 1o-fate 

reporter, ayIs4[egl-17p::gfp], continued to be expressed in the presence of constitutive LIN-

12/Notch activity (Shaye and Greenwald 2005). These data suggested that a block to LIN-12 

activity was established in P6.p by EGFR activity.  

In Chapter 2, we characterized this phenomenon further using three different transgenes 

to provide constitutively active LIN-12(intraΔP) to the VPCs. When we used the multi-copy 

transgene arEx1080[lin-31p::lin-12(intraΔP)] we saw expression of a 1o-fate marker, while a 2o-

fate marker was not expressed in P6.p. These observations were consistent with the previous 

reports of an EGFR-mediated block of LIN-12 activity. However, when we used the single-copy 

transgenes arTi102[lin-31p::lin-12(intraΔP)], and arTi190[lin-31p::lin-12(intraΔP)-mkate2], we saw 

that 1o-fate marker expression was inhibited, while a 2o-fate marker was expressed in P6.p. 

These results suggested that the EGFR-mediated block had been overwhelmed and led us to 

recharacterize the phenomenon as “resistance” to LIN-12 activity to better describe our 

observations.  It also suggested that resistance in P6.p is part of a mechanism for ensuring robust 

lateral signaling. 

We interpreted these observations as indicating that overwhelming of the resistance in 

P6.p by the single-copy transgene was due to higher LIN-12(intraΔP) activity. It would be 

interesting to compare “activity” of LIN-12(intraΔP) to levels of LIN-12(intraΔP) protein. Typically 

in our hands, single-copy transgenes express at lower levels than multi-copy extrachromosomal 
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arrays do--for examples see (Deng 2016) or (Chapter 4)--and it could be possible that arEx1080 

represents a “sweet spot” of LIN-12(intraΔP) levels. The lin-12(d) alleles are dosage dependent 

(Greenwald et al. 1983a), and we could test the resistance to LIN-12 activity in P6.p using 

arTi102/+ or arTi190/+, to see if the LIN-12 activity decreases when these transgenes are 

heterozygous, although it is not clear that this would necessarily result in lower expression from 

the transgene, and a negative result would provide much information. The timing of LIN-12 

expression is also potentially relevant, and it could be that the single-copy transgenes express 

LIN-12(intraΔP) sooner and more consistently than the multi-copy transgene, arEx1080, which 

allows LIN-12-dependent negative EGFR-Ras-ERK regulators to activate before resistance to 

LIN-12 is able to be established. 

These are difficult questions to answer with our current complement of transgenes. An 

ideal way to address this would be to generate new transgenes, or endogenously tag the lin-12 

locus, with an auxin-inducible degradation (AID) tag (Zhang et al. 2015). This system allows for 

inducible and efficient removal of tagged proteins in a tissue specific manner. Using this system, 

we could better understand how absolute levels and timing of activated LIN-12 affects VPC fate 

specification. 

Interactions of EGFR and LIN-12/Notch signaling in other contexts 

EGFR and LIN-12/Notch signaling are repeatedly used in developmental processes. It is 

unsurprising then that these two signaling mechanisms intersect in a variety of developmental 

contexts. Elucidating the mechanisms behind these interactions has been challenging because 

they are highly context dependent. Ultimately, we would like to understand the factors that govern 

the outcome of an interaction between EGFR and LIN-12/Notch. Below, I discuss several 

contexts in which EGFR and Notch signaling interact.  

EGFR and Notch signaling often interact in series, where EGFR or Notch signaling in one 

cell leads to activation of the other pathway in a neighboring cell. In the VPCs, the LIN-3/EGF 

signal received by P6.p alleviates transcriptional repression of LIN-12/Notch ligands, thus 

activating LIN-12 in neighboring cells (Chen and Greenwald 2004; Zhang and Greenwald 2010). 



 

118 
 

The reverse interaction occurs during C. elegans excretory tube development:  LIN-12/GLP-

1/Notch signaling is required to specify the canal cell which subsequently produces LIN-3/EGF 

ligand leading to specification of the excretory duct cell via EGFR-Ras activation (Abdus-Saboor 

et al. 2011).  

It is unknown whether lin-3 is a direct target of LIN-12/GLP-1/Notch activity in the canal 

cell; however, it is informative to contrast this interaction with AC/VU development. Expression 

from the transcriptional reporter syIs107, containing a lin-3 enhancer element driving gfp, is 

upregulated in the canal cell (Abdus-Saboor et al. 2011) and the AC, but not seen in the VUs 

(Hwang and Sternberg 2004). The simplest explanation for these observations is that syIs107 is 

not transcriptionally regulated via direct binding of LAG-1, and therefore suggests that lin-3 is not 

a direct target of LIN-12 or GLP-1 in the canal cell. Further testing is required to determine 

whether syIs107 accurately reports lin-3 expression and to validate this hypothesis. 

The developing Drosophila eye ommatidia is another paradigm for studying the 

intersection of Notch and EGF signaling. Ommatidia develop within clusters of evenly spaced 

precursor cells. A mature ommatidium consists of eight photoreceptors (R1-R8), four cone cells, 

several pigment cells, and a mechanosensory complex [reviewed in Kumar 2012]. Prior to 

differentiation, Notch signaling in uncommitted cells inhibits expression of proneuronal genes, 

such as the bHLH gene atonal (ato), until a single cell is specified to become R8 via Notch lateral 

inhibition. Expression of ato in R8 leads to the transcriptional activation of genes that allow for the 

secretion of the EGF-Ligand Spitz (Spi). This is analogous to the AC/VU decision, in which the 

cell that does not receive LIN-12/Notch signaling produces EGF ligand.  

Following R8 specification, the remaining photoreceptors are specified in a stereotyped 

pattern. Spi/EGF induces the immediate neighbors of R8 to differentiate into the R2 and R5 

photoreceptor pair. R2 and R5 then secrete Spi which induces their immediate neighbors to 

differentiate into R3 and R4, respectively. Following a round of division by undifferentiated cells, 

R1 and R6 are specified in an EGFR dependent manner.  
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The differentiation of R1-R6 are, in general, examples of sequential signaling events: 

Notch signaling is initially required to prevent precocious photoreceptor differentiation followed by 

iterative EGFR signaling events which promote photoreceptor fate. The specification of R7, 

however, requires parallel input from EGFR and Notch, along with input from the RTK Sevenless 

(sev) (Cooper and Bray 2000; Tomlinson and Struhl 2001). A loss of Notch signaling in a R7 

precursor causes it to be specified as a R1/R6 cell, whereas ectopic Notch activation in R1/R6 

precursors promotes R7 differentiation (Tomlinson et al 2011).  

Signaling by the Notch ligand Delta (Dl) on the adjacent R1/R6 cells activates Notch in 

the presumptive R7 cell, promoting R7 differentiation (Cooper and Bray 2000; Tomlinson and 

Struhl 2001). Interestingly, in contrast to the VPCs, EGFR activity in photoreceptors drives 

upregulation of Dl by relieving Su(H)-mediated repression of Dl transcription (Tsuda et al. 2002). 

In this instance, it was proposed that EGFR activity, together with the nuclear protein Strawberry 

Notch and F-box protein Ebi, causes the corepressor SMRTER to be translocated from the 

nucleus.  

It is conceivable that EGFR activity could upregulate genes via relief of LAG-1-mediated 

repression in C. elegans, although the available evidence is circumstantial. My analysis in 

Chapter 3 showed that LAG-1 is present in P6.p during induction along with SEL-10, which 

shares homology with Ebi. An investigation of let-765, a C. elegans Strawberry Notch homolog, 

found that a fosmid-based let-765 transcriptional reporter was expressed in all VPCs and 

provides evidence that let-765 promotes vulval induction (Simms and Baillie 2010); however, the 

investigators did not determine a cellular focus of action for let-765 in vulval induction, and the 

loss-of-function vulval phenotype may be related to let-765 activity in the AC. Additionally, 

SMRTER is not conserved in C. elegans and a LAG-1-associated corepressor that acts in the 

VPCs has not yet been identified. Interestingly, a computational screen identified a candidate 

gene that could be regulated by such a mechanism.  

A screen for LIN-12/Notch target genes identified conserved LAG-1 binding sites (LBSs) 

in the 2 kb 5’-flanking region of the gene Y46G5A.1/tbc-17. A transcriptional reporter, containing 
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the immediate 4.9 kb 5’-flanking region of tbc-17 driving 2xnls-yfp, was reported to be expressed 

at a basal level in all VPCs and upregulated specifically in P6.p following induction (Choi 2009). 

This observation is consistent with EGFR-dependent relief of LAG-1-mediated repression. An 

alternative explanation is that EGFR activity upregulate or activates some transcription factor 

required for tbc-17 upregulation. Elk1 is a potential candidate, and a scan of the 2kb 5’-flanking 

region reveals a number of Elk1 consensus sequences. This explanation does not necessarily 

rule out a repressive role for LAG-1, and there are other examples of genes that are 

transcriptionally regulated by downstream effectors of both Notch and EGFR signaling. 

Transcriptional activation of D-Pax2 (also known as shaven and sparkling) in Cone Cell 

precursors requires parallel input of EGFR and Notch. In the absence of Notch and EGFR 

signaling D-Pax2 is inhibited by Su(H) activity and the Ras-MAPK-target Ets factor Yan (Flores et 

al. 2000). Expression of D-Pax2 requires Notch input to remove Su(H)-mediated repression, and 

EGFR input to alleviate Yan-mediated repression; EGFR activity also the stimulates the activator 

Pointed-P2, another Ets factor (Flores et al. 2000; Swanson et al. 2010). While this type of 

regulatory mechanism has not been described in C. elegans, I discuss an example that shares 

some similarities below.  

VPC expression from a transcriptional reporter, a 2.8 kb region upstream of let-502 

driving nls-gfp, was reported to be restricted to 2o VPCs. Like D-Pax2, this reporter required the 

presence of LIN-12/Notch activity and direct binding by an Ets-factor, LIN-1, for transcriptional 

activation (Farooqui et al. 2012). This investigation left many unanswered questions. For 

instance, it remains unclear what the mechanism for LIN-1-dependent transcriptional activation of 

this let-502 reporter is, given that LIN-1 is predicted to be unphosphorylated and in repressor 

mode in a 2o VPC (Leight et al. 2015). A more thorough investigation into the transcriptional 

regulation of let-502 and tbc-17 may provide insight into how downstream targets of LIN-12/Notch 

and EGFR signaling are regulated. 
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LIN-1 function in VPC specification 

We found LIN-1 to be a critical factor in the establishment of resistance to LIN-12 activity in P6.p, 

and more generally for integrating LIN-12 and EGFR activity in the VPCs to produce discrete 

fates (discussed in more detail below). Our findings implicate SUR-2 and the CKM in the 

establishment of this resistance to LIN-12 activity as well; however, the mechanism of this 

resistance remains unknown. 

One potential mechanism would be that these three factors function together to drive 

expression of a transcription factor that directly represses LIN-12 targets. My deletion analysis 

experiments of lst-5 cis-regulatory sequences, described in Chapter 4, identified a 354 bp region 

in the first intron of lst-5 that is required for repression of lst-5 in P6.p. Unfortunately, I could not 

continue this line of experiments to identify a more specific region, or any specific motifs 

(discussed later). A cursory scan of the 354 bp repressive region for transcription factor 

consensus motifs (Weirauch et al. 2014), reveals several candidate transcription factors that 

could be tested. If our hypothesis is correct, that a LIN-1-SUR-2-CKM complex transcriptionally 

activates a repressor that acts via a site in the 354 bp region, then we can narrow the list of 

candidate transcription factors by searching for putative LIN-1 binding sites, using the conserved 

Elk1 consensus sequences (Wei et al. 2010), or the less-stringent Ets core binding motif (Miley et 

al. 2004). We hypothesize that a LIN-1-SUR-2 complex is necessary for endocytic 

downregulation of LIN-12 in P6.p (Shaye and Greenwald 2002; Shaye and Greenwald 

2005)(Chapter 2), and a comprehensive search for genes that contain LIN-1/Elk1 motifs may also 

help identify genes involved in this process. 

Another possibility is that LIN-12 targets are repressed by LAG-1. Recent studies have 

identified phosphorylation sites in Su(H) that reduce DNA-binding affinity (Nagel et al. 2017), and 

ERK-directed phosphorylation sites that reduce the ability of Su(H) to transcriptionally activate 

target gene (Auer et al. 2015) when phosphorylated. These sites are conserved in LAG-1, and 

represent candidates for mutational analysis; however, transcriptional repression mediated by 

post-translational modification of LAG-1 does not account for the requirement of LIN-1, SUR-2, 
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and the CKM in the EGFR-mediated block in P6.p. A LIN-12-SUR-2-CKM complex could 

transcriptionally activate a co-repressor that interacts with LAG-1, and provides an additional 

reason to identify genes that are positively regulated by LIN-1. 

LIN-1 integrates EGFR and LIN-12/Notch signaling in the VPCs 

lin-1 has many roles in VPC specification. Lineage analysis of lin-1 null mutants suggested that 

VPCs might be specified in an alternating 1o-2o pattern (Ferguson et al. 1987; Beitel et al. 1995), 

consistent with the pattern caused by mutations that ectopically activate the EGFR pathway. 

Beitel et al. (1995), however, noted the ambiguous nature of many lineages they observed, and 

indicated the presence of many “hybrid” fates. Transcriptional activation of lateral signal genes in 

1o VPCs, does not require positive input from lin-1 (Zhang and Greenwald 2011). While other 

studies showed that lin-1 activity was required for expression of the 1o-fate marker ayIs4[egl-

17::gfp] (Tiensuu et al. 2005), this requirement does not appear to be direct (Cui and Han 2003). 

Genetic experiments revealed a positive role for lin-1 in 1o-fate adoption redundant with the 

transcription factors eor-1 and eor-2 (Howard and Sundaram 2002).  

We found two different 2o-fate reporters, both direct transcriptional targets of LIN-12, to 

be expressed in all VPCs in the absence of LIN-1. Expression of 2o-fate markers was not 

observed in a lin-12(0); lin-1(0) background, indicating that this expression in a lin-1 mutant 

background still depends on LIN-12 activity. Additionally, normal endocytic downregulation of LIN-

12-GFP in P6.p was not observed in lin-1 mutants. Combined with the observations that 1o-fate 

markers are expressed in all VPCs (Zhang and Greenwald 2011), this suggests that VPCs have 

1o- and 2o-fate characteristics in a lin-1(0) background, and is consistent with the hybrid fates 

described by (Beitel et al. 1995). We interpret this as indication that lin-1 is a critical component 

for integration of EGFR and LIN-12 signaling.  

Potential for autoregulation of lag-1 

In Drosophila bristle cell development, high levels of Su(H) in the socket cell were found to be 

important for bristle physiology (Barolo et al. 2000). They found that levels of Su(H) above a 

certain threshold were required to initiate positive autoregulation, that is where high levels of 
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Su(H) could drive its own expression, without the requirement of activated Notch (Barolo et al. 

2000; Liu and Posakony 2014). In C. elegans two cells are equally competent to adopt the fate of 

the AC or the VU (Sulston and Horvitz 1977). This is a stochastic decision determined by LIN-12 

activity (Seydoux and Greenwald 1989).  It has been observed that lin-12 expression increases in 

the presumptive VU due to LIN-12 activation (Wilkinson et al. 1994), and lag-1 and lin-12 have 

been predicted to postively regulate each other and themselves (Wilkinson et al. 1994; 

Christensen et al. 1996). I observed LAG-1 protein levels to be low prior to AC/VU specification, 

and to rise in the presumptive VU rise and fall in the presumptive AC. This observation mirrors 

the expression pattern of lin-12 and is consistent with LAG-1 autoregulation. Similarly, I observed 

that during VPC specification, LAG-1 accumulation correlated with LIN-12 activation. What is not 

known is whether the high levels of LAG-1 are sufficient to continue driving expression of lag-1 

without continued input from LIN-12 signaling.  

An investigation of a transcriptional reporter of a roughly 1.5 kb sequence from the first 

intron of lag-1 was reported to show an expression pattern (Choi et al. 2013) similar to the 

accumulation pattern of LAG-1-mKate2 in the AC/VU decision that I described in Chapter 3. This 

group showed that a cluster of LBSs in this transcriptional reporter was required for increased 

expression in the VUs, and reported similar observations using a lin-12 transcriptional reporter. 

They proposed that LAG-1 represses lin-12 and lag-1 expression in the AC and promotes 

expression in the VU due to Notch activation (Choi et al. 2013; Park et al. 2013). This mirrors my 

observations of LAG-1-mKate2 accumulation in the AC/VU, and is consistent with my 

observations of LAG-1-mKate2 accumulation during VPC fate specification and with Su(H) 

accumulation in Drosophila lateral inhibition and socket cell specification. We could investigate 

this by generating an AID tag into the endogenous lag-1 locus. This would allow us to knock-

down LAG-1 specifically in the VUs or VPCs after specification has occurred, and test whether 

high LAG-1 levels need to be maintained in the VUs and 2o VPCs.  

Another way to examine LAG-1 autoregulation, would be to generate a transgene that 

produces background levels of LAG-1. In their work dissecting the cis-regulatory regions of Su(H) 
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(Barolo et al. 2000), they removed a cluster of Su(H) sites in the 3’ cis-regulatory region of a 

Su(H) rescue transgene. This transgene was able to rescue the Su(H) null phenotype, but was 

not expressed at high levels in the socket cell, thus allowing them to separate transcriptional 

upregulation of Su(H) from Notch activation. It would be possible to perform a similar experiment 

in C. elegans. The 5’ cis-regulatory sequence of let-858 is ubiquitously expressed, including in the 

germline, at a low level compared to other ubiquitously expressed regulatory elements. We could 

generate a single-copy transgene into the LGI or LGII site, chromosomal loci known to be germ-

line permissive, that drives LAG-1 cDNA expression using the let-858 regulatory sequence and 

test for rescue of a lag-1 mutant. If this transgene rescued the mutant, we would be able to delete 

endogenous regulatory elements of lag-1 without produces lethality, and we could test different 

lag-1 cis-regulatory elements for their requirement in VPC and AC/VU specification.  

Potential for different LAG-1 isoforms to affect VPC 

The first set of transgenic LAG-1 translational reporters I constructed contained mcherry inserted 

in-frame at the 5’ end of what is now known to be the LAG-1a isoform. Two transgenes I 

examined did not produce a consistent expression pattern and was rarely visible in the VPCs or 

their descendants; however, both transgenes rescued lag-1 null lethality. As discussed in Chapter 

3, the inability to visualize LAG-1a could be due to issues with expression from multi-copy arrays 

or could suggest that N-terminally tagged LAG-1 is not stable in the VPCs. 

After I conducted these experiments, the lag-1 gene structure prediction was updated 

and presented an intriguing new possibility: a new isoform, LAG-1d, was predicted, which has 

been partially confirmed through cDNA (WormBase)(Chapter 3, Fig. 1A). The 5’ exon of lag-1d is 

approximately 7kb downstream of the transcriptional start site of lag-1a. The two isoforms share 

the seven distal-most exons, and the first lag-1d exon is spliced directly to these common exons. 

This gene structure suggests that transcription of the different isoforms is due to alternate 

promoter choice [reviewed by (Zahler 2005)]. In this instance, only the LAG-1a isoform would be 

tagged. Thus, if the untagged LAG-1d is the most abundant isoform, it would explain lack of 

visible mCherry and the observed rescue by this fosmid reporter. 
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Analysis of the protein sequence of LAG-1a and LAG-1d reveal that the common distal 

exons encode 535 amino acids and contain functional core domains, i.e. the BTD, CTD, and 

NTD. These core domains are well-conserved, in both primary-sequence and structure, amongst 

members of the CSL family (Kovall and Blacklow 2010). The N-terminal region of LAG-1a is 138 

aa while the N-terminal region of LAG-1D is 255 aa; sequence alignment of these two regions 

shows little similarity. A similar gene structure has not been predicted at the lag-1 homolog 

genomic locus of other nematode species. That is to say, the first exon of lag-1d is not predicted 

in other nematode species; however, there is some evidence that this may be conserved: 

multiple-sequence alignment of the lag-1 genomic locus of several nematode species (UCSC 

genome browser) shows the first exon of lag-1d has an increased level of conservation, at the 

nucleotide sequence level, compared to surrounding intronic regions; the consensus “GU” splice-

donor dinucleotide of the 5’ lag-1d exon is absolutely conserved across seven nematode species; 

and the top hits of tblastn searches of the LAG-1d N-terminal 255 aa sequence in the genomes of 

C. brenneri, C. briggsae, and C. japonica indicate the presence of an analogous lag-1d 5’ exon in 

these species. (A tblastn searches a nucleotide database using a protein query.) These data 

provide evidence that the lag-1d isoform has been conserved in nematodes. I did not analyze the 

lag-1 genomic loci of other species for the presence of ORFs in the putative lag-1d region.  

The LAG-1d cDNA has been partially confirmed in WormBase. To verify this isoform, 

conventional methods like RT-PCR and 5’ RACE could be used to isolate cDNA from whole 

animals; however, with the CRISPR techniques, the most efficient method may be to 

endogenously tag lag-1d at the 5’ end. In general, the self-excising cassette (SEC) method 

described by (Dickinson et al. 2015) generates a conditional null allele when used to generate N-

terminal tags, prior to excision of the SEC. In cases like lag-1 which I suspect may have isoforms 

with different transcriptional start sites, this method would generate an isoform specific null. This 

approach would allow us to analyze the accumulation pattern of LAG-1d, and to query whether 

lag-1d is an essential isoform of lag-1. 
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Whether a LAG-1d isoform would be regulated differently or function differently than the 

LAG-1A isoform is difficult to predict. The N-terminal regions of CSL proteins in general are highly 

divergent in sequence, and there is no structural information (Kovall and Blacklow 2010). 

Consistent with this, there is little sequence conservation found the N-terminal regions of 

nematode LAG-1 homologs. This rapid divergence could indicate that the N-terminal regions 

have no important function, or it could indicate a regulatory region. The N-terminal regions of 

metazoan CSL proteins have not been found to have a function. Although Notch signaling is not 

conserved in fungus, homologous CSL genes and proteins have been identified in many fungal 

species, including Schizosaccharomyces pombe (Převorovský et al. 2007). Two CSL homologs in 

S. pombe have been shown to bind to a similar recognition motif and, notably, their N-terminal 

regions are enriched for phosphorylation sites and degradation domains, i.e. PEST domains 

(Převorovský et al. 2011).  

Cursory bioinformatic searches for regulatory features, e.g. ubiquitination sites, nuclear 

localization signals (NLSs), PEST domains, phosphorylation sites, have not yielded any 

convincing results. For instance, I used two online NLS prediction tools, seqNLS and NLS 

mapper. NLS mapper predicts a strong monopartite NLS in the LAG-1A N-terminal region, and a 

weak bipartite NLS in LAG-1d; neither of these sites were predicted by seqNLS. A more 

comprehensive bioinformatic scan may reveal some motif of interest; however, confirming that 

the different LAG-1 isoforms are regulated differently, or have different requirements in 

development should be determined first. 

Issues resulting from use of multi-copy arrays 

My experiments using fosmid-based LAG-1 translational reporters did not see LAG-1 

accumulation in the same pattern as the endogenous tags. The inability to visualize N-terminal 

mCherry-LAG-1 fusion may have other explanations, as discussed above. The C-terminal LAG-1-

GFP fusion, however, consistently produced high levels of LAG-1-GFP in P6.p. As discussed 

earlier, the repetitive nature and other variables inherent to extrachromosomal arrays could be a 

factor here. Another possibility could be that, since the fosmid-produced LAG-1-GFP in addition 
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to endogenous LAG-1, the “extra” LAG-1-GFP could be ectopically activating LIN-12 target 

genes, including the lag-1-gfp fosmid gene itself, leading to high levels of LAG-1-GFP in P6.p. In 

Drosophila, it has been reported that repression of Notch targets by Hairless can be overcome by 

overexpression of Su(H) (Maier et al. 2013). It is interesting to note that animals carrying the 

LAG-1-GFP reporter fosmid arrays did not exhibit any noticeable defect in vulval induction, 

indicating that higher levels of LAG-1 in P6.p may not be deleterious to vulval induction. 

Additionally, it could suggest that LAG-1 levels are not regulated post-translationally, although it 

could be that the high levels of LAG-1-GFP are swamping a degradation system. 

The dissection of the lst-5 regulatory sequences was also hindered by the use of multi-

copy repetitive arrays. The reporter arrays exhibited many problems, most prominent were the 

variability of fluorescent reporter expression from transgene to transgene, and animal to animal. 

These variabilities made it difficult to score fluorescent expression in a consistent manner and to 

make accurate comparisons of different transgenes. This may be due to the lst-5 regulatory 

sequence itself. Fosmid-based LST-5-GFP reporter arrays did not produce visible expression. 

Single-copy lst-5p-2xnls-yfp reporters, first miniMos, and then using site-directed insertion 

methods, reporters were extremely dim or not visible at all. In an attempt to boost the signal from 

single-copy insertion transgenes, I used a method called “SunTag” (Tanenbaum et al. 2014) to 

allow for detection of weak expression. The SunTag amplification method worked, however a 

site-directed lst-5p::2xnls-yfp-10xsuntag was expressed in all VPCs and not in the LIN-12 

dependent 2o-fate pattern, effectively ending this experimental pathway. The uniform pattern may 

be the result of the SunTag single-chain antibody stabilizing the epitope-tagged YFP. A CRISPR 

based method to tag lst-5 at the endogenous locus may be helpful, but my experiences thus far 

with endogenously tagged genes, and lst-5 reporters suggest that expression of an endogenous 

lst-5 reporter would be exceedingly dim. Due to this, I would endogenously tag LST-5 with a 

SunTag epitope to amplify the signal. 
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Chapter 5. Figures
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Figure 1. Summary of arIs116[lst-5p::2xnls-yfp] expression pattern in the absence and presence 
of activated LIN-12 provided by arEx1080[lin-31p::lin-12(intraΔP)] for different mutant 
backgrounds. The following alleles were used: lin-1(n304), lin-1(n1790), sur-2(ku9), cdk-
8(tm1238), cic-1(tm3740), let-19(os33), mdt-28(tm1704), mdt-29(tm2893), mdt-26(tm6272), lin-
31(n301), lin-31(cp1), lin-31(cp3)  
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Figure 2. Summary of LAG-1-mKate2 accumulation during development in different mutant 
backgrounds. (A) Summary of LAG-1-mKate2 accumulation in wildtype VPCs. During the L2 
stage, LAG-1-mKate is initially equivalent in all VPCs at a basal level. During the L3 stage 
following induction, LAG-1-mKate2 levels in P5.p and P7.p are elevated in comparison to the 
remaining VPCs. This LAG-1-mKate2 accumulation pattern is maintained in the VPC daughters. 
Following the fusion of non-vulval VPC daughters with Hyp7, LAG-1-mKate2 levels remains 
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elevated in descendants of P5.p and P7.p compared to those of P6.p.(B) Summary of LAG-1-
mKate2 accumulation patterning in VPCs compared to VPC descendants in several mutant and 
transgenic backgrounds. The following alleles were used: sel-10(ok1632), sur-2(ku9), cdk-
8(tm1238), lin-12(n137), lin-12(n302), lin-12(n941). The following transgenes were used: 
arTi120[lin-12(intraΔP)-gfp], arTi54[lin-12(intra)-gfp]. lin-12(n941) animals were maintained over a 
derivative of qC1 containing a GFP marker; lin-12(n941) homozygotes were selected by loss of 
GFP marker. 
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