1,216 research outputs found
Range expansion of the Red-billed Quelea, Quelea quelea, into the Western Cape, South Africa
The red-billed quelea, Quelea quelea, is a serious problem bird of cultivated grain throughout Africa. It has expanded its range in different parts of southern Africa. Recent sightings over the last seven years in the Western Cape indicate that this species is appearing more frequently here. If queleas do become established in the Western Cape as a breeding species, this could have a serious impact on the economy of the wheat farmers
Drivers of bird species richness within moist high-altitude grasslands in eastern South Africa
Moist high-altitude grasslands in South Africa are renowned for high avifaunal diversity and are priority areas for conservation. Conservation management of these areas conflicts with management for other uses, such as intensive livestock agriculture, which requires annual burning and leads to heavy grazing. Recently the area has become target for water storage schemes and renewable electricity energy projects. There is therefore an urgent need to investigate environmental factors and habitat factors that affect bird species richness in order to optimise management of those areas set aside for conservation. A particularly good opportunity to study these issues arose at Ingula in the eastern South African high-altitude grasslands. An area that had been subject to intense grazing was bought by the national power utility that constructed a pumped storage scheme on part of the land and set aside the rest for bird conservation. Since the new management took over in 2005 the area has been mostly annually burned with relatively little grazing. The new management seeks scientific advice on how to maintain avian species richness of the study area. We collected bird occurrence and vegetation data along random transects between 2006 and 2010 to monitor the impact of the new management, and to study the effect of the habitat changes on bird species richness. To achieve these, we convert bird transect data to presence only data to investigate how bird species richness were related to key transect vegetation attributes under this new grassland management. First we used generalised linear mixed models, to examine changes in vegetation grass height and cover and between burned and unburned habitats. Secondly, we examined how total bird species richness varied across seasons and years. And finally we investigated which habitat vegetation attributes were correlated with species richness of a group of grassland depended bird species only. Transects that were burned showed a larger decrease in vegetation cover compared to transects that were not burned. Grass height increased over time. Bird species richness was highest in summer compared to other seasons and increased over time. Overall bird species richness increased over the three summer surveys but species richness of birds that prefer heavily grazed habitat showed little change over the three years. Changes in bird species richness were best explained by the model with grass height for combined species richness of grassland depended birds but also for birds that prefer heavy grazing when treated alone. On one hand birds that prefer moderate grazing were best explained by a null model. However, overall bird species richness was better positively correlated to grass height than grass cover or dead grass. We conclude that frequent burning alone with relatively reduced grazing led to higher but less dense grass, which benefited some species and disadvantaged others. We suggest that management of this grassland use combination of fire and grazing and leave some areas unburned to accommodates birds of various habitat needs
Rare isotope production in statistical multifragmentation
Producing rare isotopes through statistical multifragmentation is
investigated using the Mekjian method for exact solutions of the canonical
ensemble. Both the initial fragmentation and the the sequential decay are
modeled in such a way as to avoid Monte Carlo and thus provide yields for
arbitrarily scarce fragments. The importance of sequential decay, exact
particle-number conservation and the sensitivities to parameters such as
density and temperature are explored. Recent measurements of isotope ratios
from the fragmentation of different Sn isotopes are interpreted within this
picture.Comment: 10 eps figure
Stellar Rotation in Young Clusters. II. Evolution of Stellar Rotation and Surface Helium Abundance
We derive the effective temperatures and gravities of 461 OB stars in 19
young clusters by fitting the H-gamma profile in their spectra. We use
synthetic model profiles for rotating stars to develop a method to estimate the
polar gravity for these stars, which we argue is a useful indicator of their
evolutionary status. We combine these results with projected rotational
velocity measurements obtained in a previous paper on these same open clusters.
We find that the more massive B-stars experience a spin down as predicted by
the theories for the evolution of rotating stars. Furthermore, we find that the
members of binary stars also experience a marked spin down with advanced
evolutionary state due to tidal interactions. We also derive non-LTE-corrected
helium abundances for most of the sample by fitting the He I 4026, 4387, 4471
lines. A large number of helium peculiar stars are found among cooler stars
with Teff < 23000 K. The analysis of the high mass stars (8.5 solar masses < M
< 16 solar masses) shows that the helium enrichment process progresses through
the main sequence (MS) phase and is greater among the faster rotators. This
discovery supports the theoretical claim that rotationally induced internal
mixing is the main cause of surface chemical anomalies that appear during the
MS phase. The lower mass stars appear to have slower rotation rates among the
low gravity objects, and they have a large proportion of helium peculiar stars.
We suggest that both properties are due to their youth. The low gravity stars
are probably pre-main sequence objects that will spin up as they contract.
These young objects very likely host a remnant magnetic field from their natal
cloud, and these strong fields sculpt out surface regions with unusual chemical
abundances.Comment: 50 pages 18 figures, accepted by Ap
Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians
Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct population
Properties of the H-alpha-emitting Circumstellar Regions of Be Stars
Long-baseline interferometric observations obtained with the Navy Prototype
Optical Interferometer of the H-alpha-emitting envelopes of the Be stars eta
Tauri and beta Canis Minoris are presented. For compatibility with the
previously published interferometric results in the literature of other Be
stars, circularly symmetric and elliptical Gaussian models were fitted to the
calibrated H-alpha observations. The models are sufficient in characterizing
the angular distribution of the H-alpha-emitting circumstellar material
associated with these Be stars. To study the correlations between the various
model parameters and the stellar properties, the model parameters for eta Tau
and beta CMi were combined with data for other Be stars from the literature.
After accounting for the different distances to the sources and stellar
continuum flux levels, it was possible to study the relationship between the
net H-alpha emission and the physical extent of the H-alpha-emitting
circumstellar region. A clear dependence of the net H-alpha emission on the
linear size of the emitting region is demonstrated and these results are
consistent with an optically thick line emission that is directly proportional
to the effective area of the emitting disk. Within the small sample of stars
considered in this analysis, no clear dependence on the spectral type or
stellar rotation is found, although the results do suggest that hotter stars
might have more extended H-alpha-emitting regions.Comment: 24 pages, 16 figures, accepted for publication in Ap
Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI
Interferometric observations of two well-known Be stars, gamma Cas and phi
Per, were collected and analyzed to determine the spatial characteristics of
their circumstellar regions. The observations were obtained using the Navy
Prototype Optical Interferometer equipped with custom-made narrowband filters.
The filters isolate the H-alpha emission line from the nearby continuum
radiation, which results in an increased contrast between the interferometric
signature due to the H-alpha-emitting circumstellar region and the central
star. Because the narrowband filters do not significantly attenuate the
continuum radiation at wavelengths 50 nm or more away from the line, the
interferometric signal in the H-alpha channel is calibrated with respect to the
continuum channels. The observations used in this study represent the highest
spatial resolution measurements of the H-alpha-emitting regions of Be stars
obtained to date. These observations allow us to demonstrate for the first time
that the intensity distribution in the circumstellar region of a Be star cannot
be represented by uniform disk or ring-like structures, whereas a Gaussian
intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A
Energy Expenditure of Free-Ranging Chicks of the Cape Gannet Morus capensis
The Cape gannet Morus capensis, a large fish-eating seabird, is endemic to southern Africa. To study the energetics of nestling growth, we used the doubly labeled water technique to measure field metabolic rate (FMR) of nestlings, from hatchings to large partly feathered chicks (n =17) at Malgas Island, Saldanha Bay, South Africa. At the same time, the growth rate of a large sample of chicks was measured (n = 338). These data, together with literature values on resting metabolic rate and body composition, were used to construct and partition the nestling energy budget. Nestling FMR (kJ d(-1)) increased with body mass according to FMR = 1.23m(0.923), r(2) = 0.944. Mass-specific FMR (FMRratio; kJ d(-1) g(-3/4)) was independent of chick age (r(2) = 0.20, P > 0.05); mean mass-specific FMR was 4.11 +/- 1.28, n = 17. Peak daily-metabolized energy (DME), which represents the maximum rate at which parents must supply their nestlings, occurred at age 71 d and was 2,141 kJ d(-1). Between the ages 51 and 92 d (43% of the fledging period), the DME of Cape gannet chicks was equal to or surpassed 90% of adult FMR at the nest. Energy demand during this period of peak DME represented 58% of the total metabolized energy, which was estimated at 150.1 MJ for an average chick during a 97-d period, from hatching to fledging. Sensitivity analysis of the energy budget indicated that the model was robust; the biggest source of error (+15%) was for the mass-FMR equation used in the model
- …