204 research outputs found

    Mechanism of recycling of post-termination ribosomal complexes in eubacteria: a new role of initiation factor 3

    Get PDF
    Ribosome recycling is a process which dissociates the post-termination complexes (post-TC) consisting of mRNA-bound ribosomes harbouring deacylated tRNA(s). Ribosome recycling factor (RRF), and elongation factor G (EFG) participate in this crucial process to free the ribosomal subunits for a new round of translation. We discuss the overall pathway of ribosome recycling in eubacteria with especial reference to the important role of the initiation factor 3 (IF3) in this process. Depending on the step(s) at which IF3 function is implicated, three models have been proposed. In model 1, RRF and EFG dissociate the post-TCs into the 50S and 30S subunits, mRNAand tRNA(s). In this model, IF3, which binds to the 30S subunit, merely keeps the dissociated subunits apart by its anti-association activity. In model 2, RRF and EFG separate the 50S subunit from the post-TC. IF3 then dissociates the remaining complex of mRNA, tRNA and the 30S subunit, and keeps the ribosomal subunits apart from each other. However, in model 3, both the genetic and biochemical evidence support a more active role for IF3 even at the step of dissociation of the post-TC by RRF and EFG into the 50S and 30S subunits

    Geo-Skip List Data Structure ? Implementation and Solving Spatial Queries

    Get PDF
    A major portion of the queries fired on the internet have spatial keywords in them, the storage and retrieval of spatial data has become an important task in today?s era. Given a geographic query that is composed of query keywords and a location, a geographic search engine retrieves documents that are the most textually and spatially relevant to the query keywords and the location, respectively, and ranks the retrieved documents according to their joint textual and spatial relevance to the query. The lack of an efficient index that can simultaneously handle both the textual and spatial aspects of the documents makes existing geographic search engines inefficient in answering geographic queries. There are data structures which facilitate storage and retrieval of geographical data like R-trees, R* trees, KD trees etc. We propose Geo-Skip list data structure which is also one such data structure which is inspired from the skip list data structure. It is simple, dynamic, partly deterministic and partly randomized data structure. This structure brings out the hierarchy of administrative divisions of a region very well. Also it shows an improvement in the search efficiency as compared with R-trees. In this paper, we propose algorithms for the implementation of basic spatial queries with the help of Geo-Skip List data structure ? namely, point query, range query, finding the nearest neighbour query and kth nearest neighbour query

    Diet-dependent depletion of queuosine in tRNAs in Caenorhabditis elegans does not lead to a developmental block

    Get PDF
    Queuosine (Q), a hypermodified nucleoside, occurs at the wobble position of transfer RNAs (tRNAs) with GUN anticodons. In eubacteria, absence of Q affects messenger RNA (mRNA) translation and reduces the virulence of certain pathogenic strains. In animal cells, changes in the abundance of Q have been shown to correlate with diverse phenomena including stress tolerance, cell proliferation and tumour growth but the function of Q in animals is poorly understood. Animals are thought to obtain Q (or its analogues) as a micronutrient from dietary sources such as gut microflora. However, the difficulty of maintaining animals under bacteria-free conditions on Q-deficient diets has severely hampered the study of Q metabolism and function in animals. In this study, we show that as in higher animals, tRNAs in the nematode Caenorhabditis elegans are modified by Q and its sugar derivatives. When the worms were fed on Q-deficient Escherichia coli, Q modification was absent from the worm tRNAs suggesting that C. elegans lacks a de novo pathway of Q biosynthesis. The inherent advantages of C. elegans as a model organism, and the simplicity of conferring a Q-deficient phenotype on it make it an ideal system to investigate the function of Q modification in tRNA

    Metal-ion-dependent oxidative DNA cleavage by transition metal complexes of a new water-soluble salen derivative

    Get PDF
    A new water-soluble, salen [salen = bis(salicylidene) ethylenediamine]-based ligand, 3 was developed. Two of the metal complexes of this ligand, i.e., 3a, [Mn(III)] and 3b, [Ni(II)], in the presence of cooxidant magnesium monoperoxyphthalate (MMPP) cleaved plasmid DNA pTZ19R efficiently and rapidly at a concentration ≈ 1 μM. In contrast, under comparable conditions, other metal complexes 3c, [Cu(II)] or 3d, [Cr(III)] could not induce any significant DNA nicking. The findings with Ni(II) complexes suggest that the DNA cleavage processes can be modulated by the disposition of charges around the ligand

    Chimeras of Escherichia coli and Mycobacterium tuberculosis Single-Stranded DNA Binding Proteins: Characterization and Function in Escherichia coli

    Get PDF
    Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (mβ1, mβ1′β2, mβ1–β5, mβ1–β6 and mβ4–β5) by transplanting β1, β1′β2, β1–β5, β1–β6 and β4–β5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, mβ1′β2ESWR SSB was generated by mutating the MtuSSB specific ‘PRIY’ sequence in the β2 strand of mβ1′β2 SSB to EcoSSB specific ‘ESWR’ sequence. Biochemical characterization revealed that except for mβ1 SSB, all chimeras and a control construct lacking the C-terminal domain (ΔC SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, mβ1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that mβ1–β6, MtuSSB, mβ1′β2 and mβ1–β5 SSBs complemented E. coli Δssb in a dose dependent manner. Complementation by the mβ1–β5 SSB was poor. In contrast, mβ1′β2ESWR SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function

    Eugene L. Opie, 1910

    Get PDF
    Eugene L. Opie, M.D. Inflammation Lecture delivered February 10th, 1910https://digitalcommons.rockefeller.edu/harvey-lectures/1014/thumbnail.jp

    Left ventricle hydatid cyst of heart removed under cardiopulmonary bypass: anesthesia management

    Get PDF
    Hydatid cyst uncommon in heart, echinococcosis is endemine in our country. Hydatid cyst in a heart may causes disturbances in conducting system, Pericarditis congestive cardiac failure. The surgery and anesthetic management become very challenging in this case. We are describing the successful management of such a case of left ventricle hydatid cyst remove under cardio pulmonary bypass in a middle age female

    Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose

    Get PDF
    Wild-type strains of Escherichia coli are normally unable to metabolize cellobiose. However, cellobiose-positive (Cel+) mutants arise upon prolonged incubation on media containing cellobiose as the sole carbon source. We show that the Cel+ derivatives carry two classes of mutations that act concertedly to alter the regulation of the chb operon involved in the utilization of N,N'-diacetylchitobiose. These consist of mutations that abrogate negative regulation by the repressor NagC as well as single base-pair changes in the transcriptional regulator chbR that translate into single-amino-acid substitutions. Introduction of chbR from two Cel+ mutants resulted in activation of transcription from the chb promoter at a higher level in the presence of cellobiose, in reporter strains carrying disruptions of the chromosomal chbR and nagC. These transformants also showed a Cel+ phenotype on MacConkey cellobiose medium, suggesting that the wild-type permease and phospho-β-glucosidase, upon induction, could recognize, transport and cleave cellobiose respectively. This was confirmed by expressing the wild-type genes encoding the permease and phospho-β-glucosidase under a heterologous promoter. Biochemical characterization of one of the chbR mutants, chbRN238S, showed that the mutant regulator makes stronger contact with the target DNA sequence within the chb promoter and has enhanced recognition of cellobiose 6-phosphate as an inducer compared with the wild-type regulator

    Crucial contribution of the multiple copies of the initiator tRNA genes in the fidelity of tRNAfMet selection on the ribosomal P-site in Escherichia coli

    Get PDF
    The accuracy of the initiator tRNA (tRNAfMet) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G–C base pairs in the anticodon stem of tRNAfMet contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNAfMet mutant wherein the three G–C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNAfMet mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNAfMet levels. Low cellular abundance of the chromosomally encoded tRNAfMet allows efficient initiation with the tRNAfMet mutant and an elongator tRNAGln, revealing that a high abundance of the cellular tRNAfMet is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNAfMet abundance in proteome remodeling
    corecore