
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

75
IJRITCC | January 2017, Available @ http://www.ijritcc.org

Geo-Skip List Data Structure – Implementation and Solving Spatial Queries

Mansi A. Radke

Visvesvaraya National Institute of

Technology,

Nagpur, India

mansiaradke@gmail.com

Vaibhav Varshney

3D PLM Software

Pune, India

vaibhavballi@gmail.com

Umesh A. Deshpande

Visvesvaraya National Institute of

Technology,

Nagpur, India

uadeshpande@gmail.com

Abstract—A major portion of the queries fired on the internet have spatial keywords in them, the storage and retrieval of spatial
data has become an important task in today‘s era. Given a geographic query that is composed of query keywords and a location, a
geographic search engine retrieves documents that are the most textually and spatially relevant to the query keywords and the
location, respectively, and ranks the retrieved documents according to their joint textual and spatial relevance to the query. The
lack of an efficient index that can simultaneously handle both the textual and spatial aspects of the documents makes existing
geographic search engines inefficient in answering geographic queries. There are data structures which facilitate storage and
retrieval of geographical data like R-trees, R* trees, KD trees etc. We propose Geo-Skip list data structure which is also one such
data structure which is inspired from the skip list data structure. It is simple, dynamic, partly deterministic and partly randomized
data structure. This structure brings out the hierarchy of administrative divisions of a region very well. Also it shows an
improvement in the search efficiency as compared with R-trees. In this paper, we propose algorithms for the implementation of
basic spatial queries with the help of Geo-Skip List data structure – namely, point query, range query, finding the nearest
neighbour query and kth nearest neighbour query.

Keywords-Spatial data, complexity, skip list, hierarchy, geo-skip list, efficiency, R-tree, kth nearest neighbor

__*****___

I. INTRODUCTION

A spatial data structure is used for storage and efficient access
of geographical data. R-trees [2] and its variants like R+ and
R* trees are most commonly used to store spatial data. In a k-
way R-tree with k entries in every node, the leaf node entry
consists of two fields, the first field is a minimum bounding
rectangle of a geographical region and the second field points
to the data or attributes of the region. An entry of an internal
node of the tree also has two fields, the first field is the
minimum bounding rectangle such that it encloses the
rectangles of all the entries of its children nodes and the
second field is a pointer to a child node. A major disadvantage
which we found in using these structures for accessing
spatial/geographical data is about finding geographical
hierarchy of a geoname. For example, the hierarchy of New
York City is Continent - North America, Country - United
States of America, and State - New York. However, the
internal nodes of an R-tree represent a fictitious bounding
rectangle rather than a true entity in the geographical
hierarchy. So, when a query - "Find the hierarchy of New
York City" is given, the R-tree will find the minimum
bounding rectangles which encompass NewYork City rather
than the hierarchy as stated above.

Typically a geographical location is represented as a tuple
<latitude, longitude>. The types of queries most commonly
observed over the web are:

1. Find the hierarchy of a place
2. Find all places (e.g. restaurants, malls etc.) within say ―x‖
km radius of a place
3. Find a place whose coordinates are given as say (x, y)
4. List all the subdivisions falling under list of all states of
country India.

We need a structure that nicely represents hierarchy and at the
same time also has an efficient search complexity. In this
work, we propose a data structure, called Geo-skip list, for
storing, indexing and searching the geographical places in the
world. In our structure, each node corresponds to a real entity
and the concept of bounding rectangles is removed. The data
structure is inspired from skip lists proposed by Pugh [3]. One
important feature of this data structure is that it is partly
deterministic and partly randomized and gives efficient search
time complexity. In Geo-skip list, the search is fast and keeps
on focusing progressively. It overcomes the complex
procedures like node splitting, balancing and restructuring
which is necessary in R-trees. Also this data structure is overly
simple with the salient feature that it brings out the hierarchy
naturally. Other salient features of Geo-Skip List are that it is
easy to add, delete new entry from Geo-skip list without extra
overhead of splitting and merging. Not that for answering
queries like - ―Find all cities in India‖ Geo-skip list is better
structure to use. Also we prove that the geo-skip list gives a
search time that is comparable to R-tree.

The paper is structured as follows. The next section reviews
the currently existing data structures for spatial data. This is
followed by section 3 in which we explain the proposed
approach in detail. The experimental results are presented in
section 4. Section 5 concludes the paper and points out some
directions for future work.

II. LITERATURE REEVIEW

While searching for documents over the web, quite often a

user is interested in getting the information about some entity
specific to a location. For example, a user may fire a query say
―Schools in Nagpur city‖. To address this, we need to create an

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

76
IJRITCC | January 2017, Available @ http://www.ijritcc.org

index for both textual and spatial information using the
following two approaches.

a. Use separate indices for both textual and spatial

information.
b. Use a hybrid index[10] for both textual and spatial index

i.e. inverted file on top of R tree, R tree on top of
inverted file, KR* tree [14] , IR tree[8] etc.

In the first approach we used separate indices for the textual
and the spatial information. In this, the result for a query
containing geonames is obtained by the following steps:

i. Retrieve textually relevant documents by

searching on the textual index using the textual
keywords.

ii. Filter the obtained result obtain from step one
through a spatial index (R-tree, kd-tree, quad-tree
etc.) by matching the spatial keywords present in
the query.

iii. Rank the documents obtained.

Drawback of above approach is that the results obtained
from step one might have many irrelevant results since it uses
only text and does not consider the location.

In the second approach, we combine textual keywords and

spatial location of query term together to create an index. For
the above example, we combine the textual and spatial
keyword to form a new word like school_nagpur where the
prefix indicates a textual keyword followed by the location or
geoname. Now inverted index will be created on
school_nagpur to get relevant results. On the other hand we can
create hybrid index by combining textual and spatial index, like
inverted file on R tree called HybridI and R tree on top of
inverted file called HybridR. For searching results in HybridI,
search is first made on textual keyword on inverted index and
then search will be made on location keyword based on the R
tree. In case of HybridR, it is vice a versa.

Various approaches used to store spatial data can be

classified as - Tree base methods[11], and Space filling
methods [12] [13].

Tree base methods can further subdivided into two types -

space partitioning and data partitioning. In the space
partitioning approach, the space is divided into tiles and in data
partitioning the data object is divided into subsets. Examples of
the space partitioning method are KD-tree and quad tree. A
drawback of these algorithms is that a data object might span
across the border between tiles and hence it needs to be stored
twice. This problem occurs when the data objects are very
large. The most common data-partitioning approach is R-tree
family of indexing. It stores each object only once but has
problem of node merging and splitting.

Space filling methods plot the regions on a continuous

curve. The idea behind this approach is that set of points which
are close to each other in space will also be close to each other
on the curve. The most widely used space filling algorithm is
Z-curve filling and Hilbert curve filling algorithm.

R-tree has good average logarithmic time complexity for

searching any location. R tree is B tree based structure and it

defines minimum and maximum number of entries in the node.
If the number of entries goes beyond the maximum limit
specified, then node splitting needs to be done. The splitting
needs to be done in such a way that it should form two
minimum sized rectangles that contain all the entries which
were present in the overflow node. If we want optimum
solution for splitting then there is Exhaustive algorithm where
we try all the possible combination of rectangles and select the
optimum sized rectangles. The number of possible feasible
solutions for this approach will be 2

M-1
where M is the

maximum number of entries in the page.There are other
approaches for splitting with less cost like Quadratic cost
algorithm where total cost is quadratic in M and linear in the
number of dimensions. Linear cost algorithm which is linear in
M.But these algorithms do not guarantee optimal size of
rectangles.

There are few variants of R tree which try to solve these

problems by minimizing both coverage and overlapping.
Examples of such trees are R* Tree, R+ Tree.

The structure which is based on binary tree based indexing

technique is KD-tree. KD-tree is an extension of binary tree
where discriminating attribute is used to divide entries.
Discriminating attribute will be different at different levels of
tree. Suppose the data is two dimensional, then at the root node
data will be divided into two parts depending on the value of
the X co-ordinate and in next subsequent level, entries will be
divided into its left and right child depending on the values of
Y co-ordinates. KD-tree has a problem when internal node of
tree gets deleted. Say node ‗P‘ is an internal node in the tree
and ‗P‘ is deleted then ‗P‘ should be replaced by one of sub tree
whose root is ‗P‘. Let ‗j‘ be the discriminating attribute of node
‗P‘. Then replacement would be either a node which is in the
right sub tree with smallest value of jth attribute or a node
which is in left sub tree with largest value of jth attribute. This
replacement may also cause many successive replacements .

As mentioned earlier, R-trees do not represent the hierarchy

very well. The rectangles encompassing a particular
region/regions is a fictitious rectangle, and does not represent
an entity in the overall hierarchy. In order to overcome the
disadvantages of the existing approaches, we propose a new
data structure called Geo-skip list for storage, indexing of
spatial data and efficient search of geonames. The proposed
data structure is explained in the following section.

III. PROPOSED WORK

A. Geo-Skip List Data structure

The proposed data structure, Geo-skip list, consists of
multiple levels of linked structures. It is a combination of a
linear list and a skip list. Every level represents a hierarchy of a
geographical region. The world is divided into administrative
groups such as continents, countries, states etc. Hence, we have
defined five levels - continents, countries, states, cities, and
localities. Every level can potentially be represented as a
collection of skip lists. However, since the number of entries at
the first three levels is less, these can be represented as simple
linked lists. Minimum number of entries required to represent a
level using a skip list can be treated as a design parameter. For
the Getty database [10], which we have used for
experimentation, we have represented the continents (less than
10), the countries (around 200), and the states (around 1000), as

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

77
IJRITCC | January 2017, Available @ http://www.ijritcc.org

simple linked lists. The other two levels of cities and localities
are represented using a collection of skip lists. This makes the
data structure partly deterministic and party randomized, since
skip lists are randomized structures.

The data structure is shown in the figure 1. Here the maroon

colored nodes represent continents, green ones represent
countries, yellow nodesrepresent states, dark blue ones
represent cities in the worldand light blue nodes are the
localities in various cities. Every node in the linked lists (i.e. at
the first three levels) contains the following fields –

i) The minimum latitude, the maximum latitude, the
minimum longitude and the maximum longitude of the
region.

ii) Right and left pointer point tothe next and previous
node in the linked list at the same level.

iii) Down pointer to point to a node in the list which is one
level below in the hierarchy.

For example, the right pointer in the ‗America Continent‘
node points to ‗Europe Continent‘ node. The down pointer in
the ‗America Continent‘ node points to the first node that
represents a country in ‗America Continent‘.

The last two levels are represented by a collection of skip

lists as explained below. Every node in a skip list consists of
the following fields.

i) The minimum latitude, the maximum latitude, the

minimum longitude and the maximum longitude of the
region.

ii) Right and left pointer which points to a node at the same
sub-level of the skip list. A skip list itself is made up of
multiple sub-levels. These sub-levels should not be
confused with the levels of the Geo-skip list data
structure itself.

iii) Down pointerwhich points to a node at a lower sublevel
of the skip list. Thelast node at the lowest sublevel of a
skip list points back to anode at the above level of the
Geo-skip list.

Figure1: Geo skip list data structure

B. Inserting a new location into the Geo-Skip List

The Geo-skip list data structure will be updated very rarely
as the places in the world and their information do not change
frequently. Also, when we need to insert a new location, we
assume that we know its hierarchy. For e.g. if we want to add
a state say ‗Illinois‘, we would already have the information
with us that this belongs to country USA of continent North
America. The following algorithm is used for insertion.

1) Suppose we need to add new location ‗P‘ into Geo-skip
list. ‗P‘ will get added to appropriate level depending
on information about that location.

2) If ‗P‘ is continent then start searching for position for
adding ‗P‘ from start (Starting node in continent). The
continents are stored in a linear link list. To add ‗P‘ in
linear list, traverse the list from start, using the right
pointers in the node till,

i. Right pointer is not equal to null and

ii. least latitude value of node is less than least

latitude value of ‗P‘ or

iii. the node having same least latitude value

but its least longitude value is less than ‗P‘.

Once we get such node, add ‗P‘ to the right of that node

if its right pointer is equal to null and its latitude value

is less than ‗P‘ or having same latitude value but its

longitude value less than ‗P‘ else add ‗P‘ to the left of

that node.

3) If ‗P‘ is country (level two location) then find out to

which continent it belongs. The countries are stored in
a linear link list. Linearly search for that continent in
level one and follow down pointer of that continent.
Then in level two search for the position of ‗P‘ in the
same way as we did in level 1. Once we get the
required position, add ‗P‘ as in step 2.

4) If ‗P‘ is a state (level three location) then the steps
similar to step 3 are executed.

5) If ‗P‘ is a district/city (level four location), then find
out from which state, country and continent it belongs.
Suppose we need to add district/city ‗Chicago‘ in Geo-
skip list. City ‗Chicago‘ belongs to continent ‗North
America‘, country ‗United states of America (USA)‘
and state ‗Illinois‘. To add ‗Chicago‘ in Geo-skip list
we follow following steps.

i. Traverse the first level list till we find the
continent North America.

ii. In the node for North America, follow the
down pointer and start traversing the list.
Keep following the right pointer till we find
the country USA.

iii. Now, follow the down pointer and start
traversing the list till we get State Illinois.

iv. In Illinois follow the down pointer and start
traversing the skip list. First check for
sublevel information of node, if sublevel of
node is not equal to 1 then keep following the
right pointer, to locate the appropriate
position of the node. Once the appropriate
location is found, follow the down pointer of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

78
IJRITCC | January 2017, Available @ http://www.ijritcc.org

node. Repeat above procedure till sublevel of
node is not equal to 1.

v. If sublevel is ‗1‘, we follow the right pointer
till right pointer is not equal to ‗USA‘ and
find the appropriate place for the node to be
inserted. When this is located, we insert
Chicago at appropriate position. If Chicago is
the last node of sublevel one then we set its
right pointer to Maharashtra (third level
entry).

vi. Now we toss a coin, and decide whether to
promote Chicago to higher sub-levels in the
skip list. If the value is yes, we create a copy
of Chicago and start with Illinois and follow
down pointer of node till we reach sublevel 2
i.e. (previous sublevel + 1) and insert the
node. We again toss a coin, and if we need to
promote Chicago to level 3, we repeat the
same procedure and this goes on. We might
even have to create a new sublevel if the coin
toss keeps promoting Chicago to higher and
higher levels.

6) If ‗P‘ is any locality/town/village of any district/city
then it needs to be added in level five as per the steps
similar to those of 5).

C. Searching a location in the Geo-Skip List

Suppose Geo-skip list is ready to use and we want to
search a particular location ‗P‘ in Geo-skip list then we need to
follow following steps.

1) Start Searching from leftmost node of the first level of

the Geo-skip list. Keep comparing node value with the
value of ‗P‘ in each level of Geo-skip list, if it is same
then return that node information. Follow the right
pointer and locate the appropriate position using the
key of comparison. When we find the appropriate node
where we can search ‗P‘, follow its down pointer.

2) In second and third level repeat the same steps that we
followed in 1.

3) Compare the key values of the node with those of all
the entries in level four. If it is same, then return else
follow skip list search technique at this level. Check for
sublevel information of node if it is not equal to one
then follow right pointer of node till right pointer of
node is not equal to null and <least latitude, least
longitude> pair of node is less than <least latitude,
least longitude> pair of ‗P‘. If we find ‗P‘ then return
else follow down pointer of appropriate node. Repeat
this procedure till sublevel of node is not equal to one.
If sublevel of node is equal to one then follow right
pointer of node till right pointer of node is not equal to
state (level three entry) of that node and remaining
comparisons are same. If we find that entry then return
else follow down pointer.

4) If location was not found in level four then search in
level five. Repeat the same search step as of searching
in level four.

5) If we did not find the location yet then go back to
district/city where we have searched last and check if
we can search in the previous node of that district/city

node. If yes then search for all the localities of that
district/city. If we find ‗P‘ then return else go back to
district/city node and repeat same procedure for node
previous to current district/city. Jump to upper level if
we did get that entry in present level of Geo-skip list.

6) Repeat back-searching of node till threshold number of
times which is 4. Every time we search in level five
increments the number of attempts made for searching
entry ‗P‘ in Geo-skip list by one. If search condition
fails while following back pointer then jump to the
upper level of Geo-skip list.

If the number of attempts equals to threshold value then
return that location was not found.

D. Deletion of location from geo skip list

1) Let ‗P‘ be the entry which we want to delete from
Geo-skip list.

2) Search for ‗P‘ by using searching algorithm for any
location in Geo-skip list.

3) If the location was not found then return.
4) If location was found then check the level to which it

belongs. If it is in level one, two or three then delete
that entry from Geo-skip list. If there is an entry
previous to ‗P‘ then set its right pointers to the right
pointer of ‗P‘.

If ‗P‘ is from level four or five then then delete ‗P‘ from all the
sublevels in that level. If there is an entry previous to ‗P‘ then
set its right pointer to the right pointer of ‗P‘ in all the
sublevels.

We explain the search procedure in a later section. However,
to briefly explain the working of our structure let us consider
the following example. Suppose we want to find the hierarchy
of a locality named ‗Times Square‘. We first find the latitude
and longitude from a thesaurus and use it for search. The
search always begins from the top leftmost corner. It traverses
the list sequentially using the right pointers, until the latitude
of the place lies in between the least and most latitude of the
current node being traversed. If it does, then the down pointer
is followed. The next level is searched in the same manner and
when the latitude value lies in between the least and most
latitude of the current node, the down pointer is followed. The
process is repeated until the node is found. The node at each
level at which the down pointer is followed is remembered and
that gives the hierarchy of the place. When we travel right
(with the right pointer) in this data structure, we are essentially
walking over the world map from left to right. When we travel
down (with a down pointer) we are going one level down in
the geographical hierarchy. The search complexity is linear at
the first three levels (since they are simple linked lists). At the
lower two levels, the search complexity is logarithmic with
respect to the number of nodes present in a particular linked
list (since a skip list ensures logarithmic search complexity
with high probability [3]). The search will require the
complexity of the order of number of continents + number of
countries + number of states + log(number of cities in the
particular state) + log(number of localities in the particular
city). Since, the number of entries in level four and level five
are much more than total number of entries in first three
levels, we can say that total time complexity for any operation
on Geo-skip list is logarithmic. In the worst case, when there is
overlap between two regions, then more than one node needs
to be searched at a particular level and the complexity will

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

79
IJRITCC | January 2017, Available @ http://www.ijritcc.org

increase by a constant factor. The search using Geo-skip list is
fast as it keeps on focusing progressively. Apart from this, it
overcomes the complexprocedures like node splitting,
balancing and restructuring which are necessary in R-trees.
Moreover, a Geo-skip list brings out the hierarchy naturally.

For example, the right pointer in the ‗America Continent‘
node points to ‗Europe Continent‘ node. The down pointer in
the ‗America Continent‘ node points to the first node that
represents a country in ‗America Continent‘.

The last two levels are represented by a collection of skip

lists as explained below. Every node in a skip list consists of
the following fields.

i) The minimum latitude, the maximum latitude, the

minimum longitude and the maximum longitude of
the region.

ii) Right and left pointer which points to a node at the
same sub-level of the skip list. A skip list itself is
made up of multiple sub-levels. These sub-levels
should not be confused with the levels of the Geo-
skip list data structure itself.

iii) Down pointer which points to a node at a lower

sublevel of the skip list. The last node at the lowest
sublevel of a skip list points back to a node at the
above level of the Geo-skip list.

E. Geo-Skip List on Disk

Structure like R tree uses one complete page size to store
entries in one node. R tree is not a completely main memory
structure it uses disk space to store its information. There are
various approaches to store objects on disk and retrieve them.
We use serialization to store our Geo-skip list on the disk. We
calculate the size of single node in Geo-skip list and
depending on that we find out the maximum number of nodes
that we can safely store in given free main memory.

 Let maximum number of nodes that we can store in given

free main memory is max_nodes. We start building our list
from level 1, i.e. the continents and go on adding data for each
level. Once we reach level 3 i.e. level at which states are
stored, we serialize the data. After adding state entry, we
create index for all districts/city in that particular state and
then all the localites/towns of that district/city. We calculate
total number of nodes required for creation of this index and if
we can store this information in available space i.e. number of
nodes is less than the max_nodes, then we serialize this object
and store it on disk. If we cannot store the complete state
information in one file then we store all objects in level five
(localities) of particular state in different file after checking
their size requirement. While adding entries in Geo-skip list,
we take a record of total number of nodes which we have
added. If we add one complete structure (complete skip list) in
Geo-skip list and count is less than max_nodes then we store
that structure on disk. For retrieving Geo-skip list structure, we
need to use object file for a state entry from a disk if that state
information stored in single file. If the state information stored
in different files on disk then we need to use particular file
from a disk depend on key of comparison of that entry.

Suppose we are not storing objects on disk file. In that case
we calculate total amount of main memory used by Geo-skip
list. Total number of continents in the word is 7. Continents
having maximum number of country is Africa having 53
countries. Different countries are sub-divided differently
depending on their administrative subdivisions. We will be
using respective subdivision of a country at corresponding
level in Geo-skip list. Countries like India have state and
territories in its first level, districts in second level and cities in
third level. Russia has federal subject in level one, district in
level two and rural in level three. Romania has counties in
level one, communes in level two and villages in level three.
We treat division of all countries at respective level in the
same way in a Geo-skip list i.e. State, Federal Subject,
Counties of India, Russia and Romania respectively will be
come in third level of Geo-skip list. Depending on their
latitude and longitude information entries will get sorted in
respective levels.

The country having maximum number of states or the

country having maximum number of subdivision at first level
is Russia. Russia is divided into 83 Federal Subjects. In level
four of Geo-skip list maximum number of entries is present for
Country Romania. Romania is divided into 41 Counties in
level one. County (First level division of Romania) Suceava of
Romania has maximum number of districts 113. In level five
of Geo-skip list we are storing the information about
city/districts of different states. Spain is administratively
divided into Autonomous communities at first level then it
gets divided into Provenance at level second then into
Municipalities at level third. These municipalities will be at
level five of Geo-skip list. Municipalities of Spain have the
maximum number of entries than any other entries in level
five of Geo-Skip list. Burgos Provenance of Spain having total
371 numbers of Municipalities. Division of each locality i.e.
level four division of any country is very less. Each locality is
generally divided into few (10 to 20) villages and tehsil/town
will have some important locations like Hospital, Bus-stop,
Library, Railway Station, Temple, Theatre, Market Area,
Damp, River, and Lake etc. For a place like New York City,
the number of such important landmarks is likely to be very
high.

Suppose we have ‗M Bytes‘ free RAM in our system.

When we store data of ‗N‘ nodes in a linked list, then space
utilized to store these ‗N‘ data node will be C1*‗N‘ bytes
where C1 is the number of bytes required to store every node.
When we store ‗N‘ data items in skip list then total ‗N‘ data
item will be present in level one and higher level will also
contain few elements. We are using non-deterministic
approach for storing data item in higher level with probability
of 0.5 that the element will be promoted to next higher level.
We can say that total ‗N/2‘ elements will present in level two.
‗N/4‘ elements will be present in level three and so on. If we
add all this values then we will get total 2*N elements we are
adding into skip list.

Total number of entry stored in skip list for storing ‗N‘

data node will be
= ∑ (N+ (N/2) + (N/4) + (N/8) + (N/16) …)

= N ∑ (1+ ½ + ¼ + 1/8 + 1/16……)

= N * 2
Now we can calculate the maximum number of nodes that

we can store in Geo-skip list after level three such that

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

80
IJRITCC | January 2017, Available @ http://www.ijritcc.org

memory required by all these objects will not exceed the total
free main memory size. Once we reach to the maximum
number we will store that (state or city) object on disk.
Following equation will calculate maximum number of nodes
that we can store on disk after level three of Geo-skip list
without exceeding total free main memory size.

 C1*C2*(113+113*(371*C3+371*C3)) <= M

Where,

C1: Memory in bytes required by a node in Geo-skip
 list.
C2: Maximum number of nodes that we in Geo-skip
 list without exceeding total free main memory.
C3: Maximum number of important location in any
 localities of Geo-skip list.
M: Total free main memory size in Bytes.

F. Answering point query with Geo-Skip List

For answering point query, suppose we need to search for a
location P in Geo-Skip list we always start searching from
starting node i.e. leftmost node of level one (continent). As the
data is stored in secondary memory, for searching node ‗P‘ in
geo-skip list we need to follow following steps:

1. Coordinates of the point P say <Latp,Longp> is fetched

from the query.

2. Relevant portion of the index from the is fetched from
secondary memory and each index entry is directly
inserted in doubly linked list (modified skip list structure
below level three) in main memory.

3. Compare present level nodes which are fetched from the
secondary memory and check if the Maximum Bounding
Rectangle range encompasses the point P.

a. If node range encompasses point P (we call it as a
probable node), then fetch the next level index for the
present parent node and repeat step 3 till level 4 is
reached.

b. Else traverse to the next node on the present level
and repeat step 3 till all the nodes fetched on present
level are checked once and then follow the backward
pointer to the parent node recursively till all the
probable nodes are traversed.

4. From level 4 skip list pattern is used for storing the data, so
from this level we need to follow skip list searching technique.
Check if the present node or next node is the required point we
are looking for,

a. If required point P is found then return all the
information about this point and skip to the end.

b. Else if the latitude of point P lies in between
latitudes of these two nodes then follow the down
pointer of first node and repeat step 4 on the sublevel
of skip list, else follow the right pointer and repeat
step 4 till all the nodes are checked once and then

follow the backward pointer to the parent node
recursively till all the probable nodes are traversed.

5. If point P is not yet found in the fetched data stored in skip
list pattern then traverse back using the backward pointer to
the parent node on the previous level and repeat step 3.

6. If no such point P is found after traversing all the probable
nodes, then return result that location is not found.

G. Answering range query with Geo-skip List

For answering range query, suppose we need to search for
locations falling in a particular range x around a location point
P in Geo-Skip list, we always start searching from starting
node in level one (continent). All probable parent/ancestor
nodes to P will be first searched in level one (continent) then
level two (country) then level three (state) and so on and node
P will be searched among child nodes of the probable ancestor
nodes. As the data is stored in secondary memory, for
searching node ‗P‘ in geo-skip list we need to follow
following steps:

1. Coordinates of given point say <Latp, Longp> and range

‗x‘is fetched from the query.

2. Relevant portion of the index from the is fetched from
secondary memory and each index entry is directly
inserted in doubly linked list (modified skip list structure
below level three) in main memory.

3. Compare present level nodes which are fetched from the
secondary memory and check if even one of the following
conditions stands true, a. Point P lies in MBR of the
present node b. Perpendicular distance calculated using
haversine formula between latitude of P and latitude of
either minimum or maximum coordinate of present node
is less than or equal to given range x. Then the present
node is a probable node, then we fetch the next level
index for the present parent node and repeat step 3 till
level 4 is reached.

4. If no condition mentioned in step 3 stands true then follow

the right pointer to the next node and repeat step three. If
all probable nodes in present level are traversed then
follow the back pointer to the parent level repeat step 3
with the right pointer node.

5. From level 4 skip list pattern is used for storing the data,

so from this level we need to follow skip list searching
technique. On this level we only have coordinates of the
locations and no MBR coordinates. Compare present skip
list sub level node and check perpendicular distance
calculated using haversine formula between latitude of P
and latitude of coordinate of present node.

a. If the calculated distance falls in range x then

follow the down pointer of the node till the last
sublevel of skip list is reached.

b. Else follow the right pointer to the present node

in present sublevel of skip list. If all probable nodes
in skip list are traversed then follow the back pointer

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

81
IJRITCC | January 2017, Available @ http://www.ijritcc.org

to the parent level and then repeat step 3 with the
right pointer node.

6. On last sublevel of skip list find distance between point P
and all fetched nodes

a. If distance falls in range x, then output the location

pointed by present node, follow the right pointer of
the present node and repeat step 6.

b. Else follow the right pointer of the present node
and repeat step 6. If all nodes in this sublevel of skip
list are traversed then follow the back pointer to the
parent level repeat step 3 with the right pointer node.

7. If no known location in given range to point P is found after
traversing all the probable nodes, then return result that no
locations exist in the given range.

H. Answering nearest neighbour query with Geo-Skip List

For answering nearest neighbor query, we need to search for a
location which is nearest in terms of distance to point P in
Geo-Skip list. Firstly we need to find the point P in Geo-Skip
list. We have used algorithm for answering point query to find
the point P. The node P and its nearest neighbor will be
searched among child nodes of the probable ancestor nodes.
As the data is stored in secondary memory, for searching node
‗P‘ and its nearest neighbor in geo-skip list we need to follow
following steps:

1. Coordinates of given point say <Latp, Longp> fetched

from the query.

2. Relevant portion of the index from the is fetched from
secondary memory and each index entry is directly
inserted in doubly linked list (modified skip list structure
below level three) in main memory.

3. Compare present level nodes which are fetched from the

secondary memory and check if the Maximum Bounding
Rectangle range encompasses the point P.

a. If node range encompasses point P (we call it as a
probable node), then fetch the next level index for the
present parent node and repeat step 3 till level 4 is
reached.

 b. Else traverse to the next node on the present level
and repeat step 3 till all the nodes fetched on present
level are checked. Then follow the backward pointer
to the parent node recursively till all the probable
nodes are traversed.

4. From level 4 skip list pattern is used for storing the data,
so from this level we need to follow skip list searching
technique. Check if the present node or next node is the
required point we are looking for,

a. If required point P is found skip to step 6.

b. Else,

i. If the latitude of point P lies in between
latitudes of present and its next right node

then follow the down pointer of first node
and repeat step 4 on the sublevel of skip list.

ii. Else follow the right pointer and repeat
step 4 till all the nodes are checked once and
then follow the backward pointer to the
parent node recursively till all the probable
nodes are traversed.

5. If point P is not yet found in the fetched data stored in

skip list pattern then traverse back using the backward
pointer to the parent node on the previous level and repeat
step 3. If no such point P is found after traversing all the
probable nodes, then return result that location is not
found.

6. Follow the left and right pointer of the point P and

calculate distance between P and the left and right nodes
of P. Store the minimum between distance calculated and
previous Min. If P does not have a left or right pointer,
then skip to step 10.

7. Calculate the perpendicular distance between latitudes of

P and its left and right nodes and store minimum value
lat_Min.

8. If Min is the distance between P and its left node, then

repeat step 6 and 7 with point P, left of the current_left
node and current_right node. Else with point P,
current_left and right of the current_right node, while
lat_Min < Min on both sides of node p.

9. Traverse back to the parent level and calculate the

perpendicular distance between latitude of P and
consecutive left and right node to the previously visited
left and right nodes of the parent node (If there are no
previously visited left or right node then parent node will
be considered as left and right node) and store minimum
values lat_Min_left and lat_Min_right. a. If, lat_Min_left
< Min, then connect the skip lists of left node and parent
node. Repeat step 6 and 7 with point P, left of the
current_left and current_right node. Similar steps will be
followed if lat_Min_right < Min. While lat_Min_left <
Min && lat_Min_right < Min. b. Else, skip to step 10.

10. Return that node in the output which is at distance Min

from point P.

11. If point P does not have a node to its left, then follow the

back pointer to the previous level and check for node to
the left of the parent node.

a. If a node present to the left of the parent node, then
find out the extreme right node in the consecutive
children levels and connect the rightmost node in
lowest sublevel of skip list to the left of node P.
Repeat step 6.

b. Else follow the back pointer to the previous level
and repeat step 7.

Similar steps are followed if point P does not have a node
to its right.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

82
IJRITCC | January 2017, Available @ http://www.ijritcc.org

I. Answering kth nearest neighbour query with Geo-Skip List

For answering Kth nearest neighbor query, we need to search
for location which is Kth nearest in terms of distance to point
P in Geo-Skip list. Firstly we need to find the point P in Geo-
Skip list and then we will find 1st nearest neighbor of point P,
then 2nd nearest neighbor and so on. We have used algorithm
for answering nearest neighbor query to search for consecutive
K nearest neighbors of point P. As the data is stored in
secondary memory, for searching node ‗P‘ and its nearest
neighbor in geo-skip list we need to follow following steps:

1. Coordinates of given point say <Latp, Longp> fetched

from the query.

2. Relevant portion of the index from the is fetched from

secondary memory and each index entry is directly
inserted in doubly linked list (modified skip list structure
below level three) in main memory.

3. Compare present level nodes which are fetched from the

secondary memory and check if the Maximum Bounding
Rectangle range encompasses the point P.

a. If node range encompasses point P (we call it as a
probable node), then fetch the next level index for the
present parent node and repeat step 3 till level 4 is
reached.

b. Else traverse to the next node on the present level
and repeat step 3 till all the nodes fetched on present
level are checked. Then follow the backward pointer
to the parent node recursively till all the probable
nodes are traversed.

4. From level 4 skip list pattern is used for storing the data,
so from this level we need to follow skip list searching
technique. Check if the present node or next node is the
required point we are looking for,

a. If required point P is found skip to step 6.

b. Else,

i. If the latitude of point P lies in between
latitudes of present and its next right node
then follow the down pointer of first node
and repeat step 4 on the sublevel of skip list.

ii. Else follow the right pointer and repeat
step 4 till all the nodes are checked once and
then follow the backward pointer to the
parent node recursively till all the probable
nodes are traversed.

5. If point P is not yet found in the fetched data stored in
skip list pattern then traverse back using the backward
pointer to the parent node on the previous level and repeat
step 3. If no such point P is found after traversing all the
probable nodes, then return result that location is not
found.

6. Start a counter K. Follow the left and right pointer to the

point P and calculate distance between the P and left and
right nodes to P. Store the minimum between distance

calculated and previous Min. If either of the left or right
nodes are not present to point P then skip to step 11.

7. Calculate the perpendicular distance between latitudes of

P and its left and right nodes and store minimum value
lat_Min.

8. If Min is the distance between P and its left node, then

repeat step 6 and 7 with point P, left of the current_left
node and current_right node. Else with point P,
current_left and right of the current_right node, while
lat_Min < Min on both sides of node p.

9. Traverse back to the parent level and calculate the

perpendicular distance between latitude of P and
consecutive left and right node to the previously visited
left and right nodes of the parent node (If there are no
previously visited left or right node then parent node will
be considered as left and right node) and store minimum
values lat_Min_left and lat_Min_right.

a. If, lat_Min_left < Min, then connect the skip lists
of left node and parent node. Repeat step 6 and 7 with
point P, left of the current_left and current_right
node. Similar steps will be followed if lat_Min_right
< Min. While lat_Min_left < Min && lat_Min_right
< Min.

b. Else, skip to step 10.

10. Decrement the counter K by one. Exclude the node which

is at a distance Min from P. Reset the Min to minimum
distance of the left and right marked nodes of the point P.
Go back to step 6. Repeat this step till the counter reaches
zero.

11. When counter reaches zero, return the node in output

which is at distance Min from point P.

12. If point P does not have a node to its left, then follow the

back pointer to the previous level and check for node to
the left of the parent node.

a. If a node present to the left of the parent node, then
find out the extreme right node in the consecutive
children levels and connect the rightmost node in
lowest sublevel of skip list to the left of node P.
Repeat step 6.

b. Else follow the back pointer to the previous level

and repeat step 7.

Similar steps are followed if point P does not have a node to

its right.

IV. EXPERIMENTATION

We have compared Geo-skip list data structure with R tree
for disk and main memory implementation.Data which we used
for comparing Geo-skip list with R tree is random data
generated by us and Getty TGN database. The data of
minimum and maximum latitude and longitude is missing in
TGN database for many entries as the population of this
information is underway. For experimentation, we have

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

83
IJRITCC | January 2017, Available @ http://www.ijritcc.org

currently used self-generated approximate data for minimum
and maximum latitude and longitude of node.

Table1: JSI Library (Main memory implementation of R tree)

VS Main memory implementation of Geo-skip list.

Sr.

No.

Operation Time taken by

Geo-skip list

(microsecond)

Time taken

by JSI

Library

(microsecon

d)

1. Searching for an

entry present at

the last level.

(location inside

District)

239.325 823.065

2. Searching for an

entry Present at

top level.

(Continent)

118.999 896.927

3. Searching For

location which is

not present.

159.783 843.445

4. Time for creating

index.

1284000 137000

Table2: Disk Implementation of R tree VS Disk

Implementation of Geo-skip List.

Sr.

No.

Operation Time taken by

Geo-skip list

(millisecond)

Time taken

by R tree

(millisecond

)

1. Searching for an

entry present at

the last level.

(location inside

District)

87.477253 64.010905

2. Searching for an

entry present at

the 2nd last

level.

(District)

84.668321 46.762833

2. Searching for an

entry Present at

top level.

(Continent)

0.125871 25.029153

3. Searching for

location present

at level

two(country)

0.168839 36.476122

4. Searching For

location which

is not present.

88.079405 11.953245

5. Time for

creating index.

1323 548

We have compared Geo-skip list with JSI Library. JSI is

java library which is simple main memory implementation of
R-tree. While comparing with JSI Library we have not used

disk space to store the objects of Geo-skip list. When we have
compared Geo-skip list with R-tree (disk implementation) we
have used disk space for storing the objects using serialization.

As, we can see in tables 1 and 2, the time taken by Geo skip

list is less than that of an R-tree in some cases. By the use of
cache we can decrease time taken by Geo-skip list to search
particular location. Index creation in Geo-skip list takes more
time than in R tree. But the index is created only once and that
same index will be used for future work. Deletion and insertion
operations are very rare in spatial location so we can consider
that same index structure will be used for long time for
performing search operation.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an efficient data structure,
called Geo-skip list, for representing geographic / spatial data.
It represents geographic hierarchy very well since it does not
uses fictitious bounding boxes like- in R trees. It represents
any geographical region by its least and most co-ordinates
rather than a single point. Search complexity of our structure
on disk is better than R-trees in some cases while the one time
index creation activity takes longer time for our structure.

We have successfully implemented the Geo-skip List data
structure. Now, we have also proposed how various spatial
queries can be solved using the data structure Geo-skip List.

We have successfully implemented Geo-Skip list data
structure and proposed and proposed algorithms for insertion,
deletion, searching in the proposed data structure. Also we
have proposed and successfully implemented algorithms for
answering four basic spatial queries i.e. point, range, nearest
neighbor and kth nearest neighbor.

In future we can use geo-skip list to create hybrid index for
answering queries based on geographical location. Combining
geo-skip list with textual keyword based index will yield good
results as compared to current hybrid structures in use. Geo-
skip list can also be used in web applications like ‗Google
Maps‘ where we need to search for particular location on
earth. With the help of Geo-skip list we can get hierarchy of
any particular location in efficient manner.

We have stored Geo-skip list data in secondary memory along
with index. Many optimization algorithms can be applied on
index to further enhance the performance of this data structure.
Also different storage methods and tools can be used to reduce
the latency for fetching data from secondary memory to
primary memory.

A spatial database is typically too large to even fit on an
average-sized secondary storage device and data spills over to
tertiary storage. So there is need for ways to use such
distributed data efficiently. Algorithms exploiting parallel
computation for answering spatial queries can boost up the
overall performance of the Geo-Skip list to great extent. We
suggested the means to divide the objects and strategy to store
them on the disk. We have mentioned that while dividing
those objects, it is important that objects should have complete
meaningful structure i.e. we can‘t store half of the structure of
skip list in one file and other half in other file.

Suppose we are storing information about city New York.
New York is highly populated and developed city. There will

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 1 75 – 84

84
IJRITCC | January 2017, Available @ http://www.ijritcc.org

be many locations to store in New York. If the total number of
nodes required to store geographical location of New York
City exceeds free main memory, in that case we will not be
able to store information about New York City in a single
disk. To overcome this drawback we need to provide solution
to divide skip list into different subparts such that it will regain
its original structure after storing in different files on hard disk
and later fetching them back into main memory.

VI. ACKNOWLEDGEMENT

We sincerely thank Getty [15] team for providing us their
database TGN of geographical place names.

REFERENCES

[1] Barewar, A., Radke M.A., Deshpande, U.A. ―Geo Skip

List Data Structure - storing spatial data and efficient

search of geographical locations‖ in Advances in

Computing, Communications and Informatics (ICACCI,

2014 International Conference)

[2] A. Guttman, ―R-Trees: A Dynamic Index Structure for

Spatial Searching,‖ Proc. ACM SIGMOD ‘1984,pp.

47-57.

[3] William Pugh. Skip list a probabilistic lternative to

balanced tree. Publish in: MagazineCommunications of

the ACM CACM Homepagearchive. Volume 33 Issue

6, June 1990, Pages 668-676.

[4] ChanopSilpa-Ana, Richard Hartley: Optimized KD-tree

for fast image description matching. CVPR 2008.

[5] G. Brent Hall, Michael G. Leahy, Open Source

Approaches in Spatial Data Handling, pp.105-129,

2008

[6] Rosie Jones,Ahmed Hassan and Fernando Diaz.

Geographic Features in Web Search Retrieval. GIR‘ 08

Proceedings of the 2nd international workshop on Geo-

graphical information retrieval page 57-58.workshop

on Geo-graphical information retrieval page 5758.

[7] Ramaswamy Hariharan, Bijit Hore, Chen Li, Sharad

Mehrotra, Processing SpatialKeyword (SK) Queries in

Geographic Information Retrieval (GIR) System

SSDBM 2007, Banff, Canada.

[8] Xin Cao, Gao Cong, Christian S. Jensen, Beng Chin

Ooi.Collective Spatial Keyword querying. Published in:

SIGMOD '11 Proceedings of the 2011 ACM SIGMOD

International Conference on Management of data Pages

373-384.

[9] http://www.getty.edu/research/tools/vocabularies/tgn/

[10] Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.Y.:

Hybrid index structures for locationbased web search.

In: CIKM ‘05: Proceedings of the 14th ACM

international conference onInformation and knowledge

management, New York, NY, USA, ACM Press (2005)

155–162

[11] M. de Berg, M. van Krefeld, M. Overmars, andO.

Schwarzkopf.Computational Geometry: Algorithmsand

Applications. Springer, 2000.

[12] V. Gaede and O. G unther. Multidimensional access

methods. ACM Comput. Surv, 1998, 30(2):170-231.

[13] C. B. Ohm, G. Klump, and H.-P. Kriegel. XZ-

Ordering: A Space-Filling Curve for Objects with

Spatial Extension,1999. In SSD, pages 75-90.

[14] Ramaswamy Hariharan, Bijit Hore, Chen Li, Sharad

Mehrotra, Processing Spatial-Keyword (SK) Queries in

Geographic Information Retrieval (GIR)

System.SSDBM 2007, Banff, Canada.

http://www.ijritcc.org/
http://cacm.acm.org/
http://cacm.acm.org/
http://www.getty.edu/research/tools/vocabularies/tgn/

