30 research outputs found

    Estrogen treatment prevents gray matter atrophy in experimental autoimmune encephalomyelitis

    Get PDF
    Gray matter atrophy is an important correlate to clinical disability in multiple sclerosis (MS), and many treatment trials include atrophy as an outcome measure. Atrophy has been shown to occur in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The clinical severity of EAE is reduced in estrogen-reated mice, but it remains unknown whether estrogen treatment can reduce gray matter atrophy in EAE. In this study, mice with EAE were treated with either estrogen receptor (ER)-α ligand or ER-β ligand, and diffusion tensor images (DTI) were collected and neuropathology was performed. DTI showed atrophy in the cerebellar gray matter of vehicle-treated EAE mice compared with healthy controls but not in ER-α or ER-β ligand-treated EAE mice. Neuropathology demonstrated that Purkinje cell numbers were decreased in vehicle-treated EAE mice, whereas neither ER ligand-treated EAE groups showed a decrease. This is the first report of a neuroprotective therapy in EAE that unambiguously prevents gray matter atrophy while sparing a major neuronal cell type. Fractional anisotropy (FA) in the cerebellar white matter was decreased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Inflammatory cell infiltration was increased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Myelin staining was decreased in vehicle-treated EAE mice and was spared in both ER ligand-treated groups. This is consistent with decreased FA as a potential biomarker for inflammation rather than myelination or axonal damage in the cerebellum in EAE

    Phosphorylation by Dyrk1A of Clathrin Coated Vesicle-Associated Proteins: Identification of the Substrate Proteins and the Effects of Phosphorylation

    Get PDF
    Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV) preparations obtained from rat brains. Mass spectrometric analysis identified MAP1A, MAP2, AP180, and α- and β-adaptins as the phosphorylated proteins in the CCVs. Each protein was subsequently confirmed by [32P]-labeling and immunological methods. The Dyrk1A-mediated phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated phosphorylation of α- and β-adaptins led to dissociation of the AP2 complex, and released only β-adaptin from the CCVs. AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but α- and β-adaptins were not. Dyrk1A was detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Characterisation of a 'blanch-blush' mechano-response in palmer skin

    Get PDF
    Palmar finger skin reacts to extension under mechanical load – blanching over proximal (intercrease skin, ICS) and middle phalanges, while blushing in crease skin (CS), which we have called the Blanch-Blush Reaction (BBR). The idea that the BBR is a result of surface capillary blood flow changes that relate to predictable deformation of aligned collagen matrices under applied uniaxial loads was tested. Nondestructive techniques, digital image analysis (DIA), laser Doppler scanning, and elastic scatter spectroscopy (ESS) were used to measure color and blood flow changes in healthy fingers when at rest and extended. Skin strain increased directly with applied load and DIA identified blanching (loss of redness) in the ICS, reflected by a decrease in hemoglobin (by ESS). Laser Doppler flowmetry identified an increase in blood flow in the CS zone on extension, with a minor increase in blood flow in the ICS zone, apparently due to diversion of flow to deeper vessels, when monitored by this technique. These changes correlated with the BBR, owing to altered capillary flow in the ICS and CS. The histology of orientation of collagen fibers and vessels in the two zones was consistent with this mechanism. This study demonstrates the interdependence between matrix orientation, applied load, and flow. It represents an elegant demonstration of collagenous tissue function through an everyday tissue reaction, which has not been described previously

    Dynamic development of glucocorticoid resistance during autoimmune neuroinflammation

    No full text
    CONTEXT: Glucocorticoids (GC) are powerful endogenous and therapeutic modulators of inflammation and play a critical role for controlling autoimmunity. GC resistance can be seen in patients with cell-mediated autoimmune disorders, but it is unknown whether this represents a stable trait or a state. OBJECTIVE: The objective of the study was to determine whether GC resistance of T cell responses is dynamically regulated in experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). DESIGN: This was a translational observational study. PATIENTS AND ANIMALS: EAE was induced in C57BL/6 mice. A cross-sectional sample of 25 patients with relapsing-remitting MS was included as well as four MS patients during pregnancy and postpartum. MAIN OUTCOME MEASURES: Outcome measures included GC sensitivity of T cell proliferation and GC-mediated apoptosis. RESULTS: GC resistance was seen in both autoantigen-specific and nonspecific responses of T cells obtained from mice with EAE. GC resistance preceded clinical symptoms and central nervous system infiltration of immune cells. T cells obtained during EAE were resistant to GC-induced apoptosis, and this was linked to down-regulation of GC receptor-α expression. GC resistance in T cells was also seen in MS patients with radiological evidence for ongoing inflammation. GC resistance was absent in the MS patients during pregnancy, when relapse risk is decreased, but recurred postpartum, a time of increased relapse risk. CONCLUSIONS: These data demonstrate that GC resistance during autoimmune neuroinflammation is dynamically regulated. This has implications for the timing of steroid treatments and provides a putative pathway to explain the observed association between psychological stress and exacerbation of autoimmune diseases
    corecore