734 research outputs found

    Look at Me: Early Gaze Engagement Enhances Corticospinal Excitability During Action Observation

    Get PDF
    Direct gaze is a powerful social cue able to capture the onlooker's attention. Beside gaze, head and limb movements as well can provide relevant sources of information for social interaction. This study investigated the joint role of direct gaze and hand gestures on onlookers corticospinal excitability (CE). In two experiments we manipulated the temporal and spatial aspects of observed gaze and hand behavior to assess their role in affecting motor preparation. To do this, transcranial magnetic stimulation (TMS) on the primary motor cortex (M1) coupled with electromyography (EMG) recording was used in two experiments. In the crucial manipulation, we showed to participants four video clips of an actor who initially displayed eye contact while starting a social request gesture, and then completed the action while directing his gaze toward a salient object for the interaction. This way, the observed gaze potentially expressed the intention to interact. Eye tracking data confirmed that gaze manipulation was effective in drawing observers' attention to the actor's hand gesture. In the attempt to reveal possible time-locked modulations, we tracked CE at the onset and offset of the request gesture. Neurophysiological results showed an early CE modulation when the actor was about to start the request gesture looking straight to the participants, compared to when his gaze was averted from the gesture. This effect was time-locked to the kinematics of the actor's arm movement. Overall, data from the two experiments seem to indicate that the joint contribution of direct gaze and precocious kinematic information, gained while a request gesture is on the verge of beginning, increases the subjective experience of involvement and allows observers to prepare for an appropriate social interaction. On the contrary, the separation of gaze cues and body kinematics can have adverse effects on social motor preparation. CE is highly susceptible to biological cues, such as averted gaze, which is able to automatically capture and divert observer's attention. This point to the existence of heuristics based on early action and gaze cues that would allow observers to interact appropriately

    Overt orienting of spatial attention and corticospinal excitability during action observation are unrelated

    Get PDF
    Observing moving body parts can automatically activate topographically corresponding motor representations in the primary motor cortex (M1), the so-called direct matching. Novel neurophysiological findings from social contexts are nonetheless proving that this process is not automatic as previously thought. The motor system can flexibly shift from imitative to incongruent motor preparation, when requested by a social gesture. In the present study we aim to bring an increase in the literature by assessing whether and how diverting overt spatial attention might affect motor preparation in contexts requiring interactive responses from the onlooker. Experiment 1 shows that overt attention-although anchored to an observed biological movement-can be captured by a target object as soon as a social request for it becomes evident. Experiment 2 reveals that the appearance of a short-lasting red dot in the contralateral space can divert attention from the target, but not from the biological movement. Nevertheless, transcranial magnetic stimulation (TMS) over M1 combined with electromyography (EMG) recordings (Experiment 3) indicates that attentional interference reduces corticospinal excitability related to the observed movement, but not motor preparation for a complementary action on the target. This work provides evidence that social motor preparation is impermeable to attentional interference and that a double dissociation is present between overt orienting of spatial attention and neurophysiological markers of action observation

    Congruent and Incongruent Corticospinal Activations at the Level of Multiple Effectors

    Get PDF
    Motor resonance is defined as the subliminal activation of the motor system while observing actions performed by others. However, resonating with another person's actions is not always an appropriate response: In real life, people do not just imitate but rather respond in a suitable fashion. A growing body of neurophysiologic studies has demonstrated that motor resonance can be overridden by complementary motor responses (such as preparing a precision grip on a small object when seeing an open hand in sign of request). In this study, we investigated the relationship between congruent and incongruent corticospinal activations at the level of multiple effectors. The modulation of MEPs evoked by single-pulse TMS over the motor cortex was assessed in upper and lower limb muscles of participants observing a soccer player performing a penalty kick straight in their direction. Study results revealed a double dissociation: Seeing the soccer player kicking the ball triggered a motor resonance in the observer's lower limb, whereas the upper limb response afforded by the object was overridden. On the other hand, seeing the ball approaching the observers elicited a complementary motor activation in upper limbs while motor resonance in lower limbs disappeared. Control conditions showing lateral kicks, mimicked kicks, and a ball in penalty area were also included to test the motor coding of object affordances. Results point to a modulation of motor responses in different limbs over the course of action and in function of their relevance in different contexts. We contend that ecologically valid paradigms are nowadays needed to shed light on the motor system functioning in complex forms of interaction

    Testing rTMS-Induced Neuroplasticity: A Single Case Study of Focal Hand Dystonia

    Get PDF
    Focal hand dystonia in musicians is a neurological motor disorder in which aberrant plasticity is caused by excessive repetitive use. This work's purposes were to induce plasticity changes in a dystonic musician through five daily thirty-minute sessions of 1\u2009Hz repetitive transcranial magnetic stimulation (rTMS) applied to the left M1 by using neuronavigated stimulation and to reliably measure the effect of these changes. To this aim, the relationship between neuroplasticity changes and motor recovery was investigated using fine-grained kinematic analysis. Our results suggest a statistically significant improvement in motor coordination both in a task resembling the dystonic-inducing symptoms and in a reach-to-grasp task. This single case study supports the safe and effective use of noninvasive brain stimulation in neurologic patients and highlights the importance of evaluating outcomes in measurable ways. This issue is a key aspect to focus on to classify the clinical expression of dystonia. These preliminary results promote the adoption of kinematic analysis as a valuable diagnostic tool

    Reach-To-Grasp Movements: A Multimodal Techniques Study

    Get PDF
    The aim of the present study was to investigate the correlation between corticospinal activity, kinematics, and electromyography (EMG) associated with the execution of precision and whole-hand grasps (WHGs). To this end, motor-evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS), EMG, and 3-D motion capture data have been simultaneously recorded during the planning and the execution of prehensile actions toward either a small or a large object. Differences in the considered measures were expected to distinguish between the two types of grasping actions both in terms of action preparation and execution. The results indicate that the index finger (FDI) and the little finger (ADM) muscles showed different activation patterns during grasping execution, but only the FDI appeared to distinguish between the two types of actions during motor preparation. Kinematics analysis showed that precision grips differed from WHGs in terms of displayed fingers distance when shaping before object\u2019s contact, and in terms of timing and velocity patterns. Moreover, significant correlations suggest a relationship between the muscular activation and the temporal aspects concerned with the index finger\u2019s extension during whole-hand actions. Overall, the present data seem to suggest a crucial role played by index finger as an early \u201cmarker\u201d of differential motor preparation for different types of grasps and as a \u201cnavigator\u201d in guiding whole-hand prehensile actions. Aside from the novelty of the methodological approach characterizing the present study, the data provide new insights regarding the level of crosstalk among different levels concerned with the neuro-behavioral organization of reach-to-grasp movements

    Gaze and Body Cues Interplay during Interactive Requests

    Get PDF
    Although observing other\u2019s gaze and body movements provides a crucial source of information to successfully interact with other people, it remains unclear whether observers weigh differently these cues and whether the convergence of gaze and body\u2019s directions determines facilitation effects. Here we aim to shed more light on this issue by testing the reliance upon these cues from both a behavioral and a neurophysiological perspective in a social interactive context. In Experiment 1, we manipulated the convergence between the direction of an actor\u2019s upper limb movement and gaze direction while he attempts to socially interact with the participants observing the scene. We determined the direction of gaze as well as the duration of participants\u2019 ocular fixations during the observation of the scene. In Experiment 2, we measured and correlated the effect of the body/gaze manipulation on corticospinal excitability and on the readiness to interact\u2014a disposition to engage in social situations. Eye-tracking data revealed that participants fixated chiefly the actor\u2019s head when his hand and gaze directions were divergent. Possibly a strategy to disambiguate the scene. Whereas participants mainly fixated the actor\u2019s hand when he performed an interactive request toward the participants. From a neurophysiological point of view, the more participants felt involved in the interaction, the lower was motor preparation in the muscle potentially needed to fulfill the actor\u2019s request. We contend that social contexts are more likely to elicit motor preparation compared to non-social ones, and that muscular inhibition is a necessary mechanism in order to prevent unwanted overt reactions during action observation tasks

    Social Motor Priming: when offline interference facilitates motor execution

    Get PDF
    Many daily activities involve synchronizing with other people\u2019s actions. Previous literature has revealed that a slowdown of performance occurs whenever the action to be carried out is different to the one observed (i.e., visuomotor interference). However, action execution can be facilitated by observing a different action if it calls for an interactive gesture (i.e., social motor priming). The aim of this study is to investigate the costs and benefits of spontaneously processing a social response and then executing the same or a different action. Participants performed two different types of grips, which could be either congruent or not with the socially appropriate response and with the observed action. In particular, participants performed a precision grip (PG; thumb-index fingers opposition) or a whole-hand grasp (WHG; fingers-palm opposition) after observing videos showing an actor performing a PG and addressing them (interactive condition) or not (non-interactive condition). Crucially, in the interactive condition, the most appropriate response was a WHG, but in 50 percent of trials participants were asked to perform a PG. This procedure allowed us to measure both the facilitator effect of performing an action appropriate to the social context (WHG)\u2014but different with respect to the observed one (PG)\u2014and the cost of inhibiting it. These effects were measured by means of 3-D kinematical analysis of movement. Results show that, in terms of reaction time and movement time, the interactive request facilitated (i.e., speeded) the socially appropriate action (WHG), whereas interfered with (i.e., delayed) a different action (PG), although observed actions were always PGs. This interference also manifested with an increase of maximum grip aperture, which seemingly reflects the concurrent representation of the socially appropriate response. Overall, these findings extend previous research by revealing that physically incongruent action representations can be integrated into a single action plan even during an offline task and without any training

    The multiform motor cortical output: kinematic, predictive and response coding

    Get PDF
    Observing actions performed by others entails a subliminal activation of primary motor cortex reflecting the components encoded in the observed action. One of the most debated issues concerns the role of this output: Is it a mere replica of the incoming flow of information (kinematic coding), is it oriented to anticipate the forthcoming events (predictive coding) or is it aimed at responding in a suitable fashion to the actions of others (response coding)? The aim of the present study was to disentangle the relative contribution of these three levels and unify them into an integrated view of cortical motor coding. We combined transcranial magnetic stimulation (TMS) and electromyography recordings at different timings to probe the excitability of corticospinal projections to upper and lower limb muscles of participants observing a soccer player performing: (i) a penalty kick straight in their direction and then coming to a full stop, (ii) a penalty kick straight in their direction and then continuing to run, (iii) a penalty kick to the side and then continuing to run. The results show a modulation of the observer's corticospinal excitability in different effectors at different times reflecting a multiplicity of motor coding. The internal replica of the observed action, the predictive activation, and the adaptive integration of congruent and non-congruent responses to the actions of others can coexist in a not mutually exclusive way. Such a view offers reconciliation among different (and apparently divergent) frameworks in action observation literature, and will promote a more complete and integrated understanding of recent findings on motor simulation, motor resonance and automatic imitation

    Fatality rate and predictors of mortality in an Italian cohort of hospitalized COVID-19 patients

    Get PDF
    Clinical features and natural history of coronavirus disease 2019 (COVID-19) differ widely among different countries and during different phases of the pandemia. Here, we aimed to evaluate the case fatality rate (CFR) and to identify predictors of mortality in a cohort of COVID-19 patients admitted to three hospitals of Northern Italy between March 1 and April 28, 2020. All these patients had a confirmed diagnosis of SARS-CoV-2 infection by molecular methods. During the study period 504/1697 patients died; thus, overall CFR was 29.7%. We looked for predictors of mortality in a subgroup of 486 patients (239 males, 59%; median age 71 years) for whom sufficient clinical data were available at data cut-off. Among the demographic and clinical variables considered, age, a diagnosis of cancer, obesity and current smoking independently predicted mortality. When laboratory data were added to the model in a further subgroup of patients, age, the diagnosis of cancer, and the baseline PaO2/FiO2 ratio were identified as independent predictors of mortality. In conclusion, the CFR of hospitalized patients in Northern Italy during the ascending phase of the COVID-19 pandemic approached 30%. The identification of mortality predictors might contribute to better stratification of individual patient risk

    NT-proB natriuretic peptide, risk factors and asymptomatic left ventricular dysfunction: Results of the SCReening Evaluation of the Evolution of New Heart Failure Study (SCREEN-HF)

    Get PDF
    BackgroundWe assessed left ventricular dysfunction in a population at high risk for heart failure (HF), and explored associations between ventricular function, HF risk factors and NT-proB natriuretic peptide (NT-proBNP).Methods and results3550 subjects at high risk for incident HF (≥60 years plus ≥1 HF risk factor), but without pre-existing HF or left ventricular dysfunction, were recruited. Anthropomorphic data, medical history and blood for NT-proBNP were collected. Participants at highest risk (n = 664) (NT-proBNP highest quintile; >30.0 pmol/L) and a sample (n = 51) from the lowest NT-proBNP quintile underwent echocardiography. Participants in the highest NT-proBNP quintile, compared to the lowest, were older (74 years vs. 67 years; p ConclusionA high burden of ventricular dysfunction was observed in this high risk group. Combining NT-proBNP and HF risk factors may identify those with ventricular dysfunction. This would allow resources to be focused on those at greatest risk of progression to overt HF.Michele McGrady, Christopher M. Reid, Louise Shiel, Rory Wolfe, Umberto Boffa, Danny Liew, Duncan J Campbell, David Prior, Simon Stewart, Henry Kru
    corecore