19 research outputs found

    Modeling tax evasion with genetic algorithms

    Get PDF
    The U.S. tax gap is estimated to exceed $450 billion, most of which arises from non-compliance on the part of individual taxpayers (GAO 2012; IRS 2006). Much is hidden in innovative tax shelters combining multiple business structures such as partnerships, trusts, and S-corporations into complex transaction networks designed to reduce and obscure the true tax liabilities of their individual shareholders. One known gambit employed by these shelters is to offset real gains in one part of a portfolio by creating artificial capital losses elsewhere through the mechanism of “inflated basis” (TaxAnalysts 2005), a process made easier by the relatively flexible set of rules surrounding “pass-through” entities such as partnerships (IRS 2009). The ability to anticipate the likely forms of emerging evasion schemes would help auditors develop more efficient methods of reducing the tax gap. To this end, we have developed a prototype evolutionary algorithm designed to generate potential schemes of the inflated basis type described above. The algorithm takes as inputs a collection of asset types and tax entities, together with a rule-set governing asset exchanges between these entities. The schemes produced by the algorithm consist of sequences of transactions within an ownership network of tax entities. Schemes are ranked according to a “fitness function” (Goldberg in Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Boston, 1989); the very best schemes are those that afford the highest reduction in tax liability while incurring the lowest expected penalty.Mitre Corporation (Innovation Program

    Mycobacterium tuberculosis progresses through two phases of latent infection in humans

    Get PDF
    Little is known about the physiology of latent Mycobacterium tuberculosis infection. We studied the mutational rates of 24 index tuberculosis (TB) cases and their latently infected household contacts who developed active TB up to 5.25 years later, as an indication of bacterial physiological state and possible generation times during latent TB infection in humans. Here we report that the rate of new mutations in the M. tuberculosis genome decline dramatically after two years of latent infection (two-sided p < 0.001, assuming an 18 h generation time equal to log phase M. tuberculosis, with latency period modeled as a continuous variable). Alternatively, assuming a fixed mutation rate, the generation time increases over the latency duration. Mutations indicative of oxidative stress do not increase with increasing latency duration suggesting a lack of host or bacterial derived mutational stress. These results suggest that M. tuberculosis enters a quiescent state during latency, decreasing the risk for mutational drug resistance and increasing generation time, but potentially increasing bacterial tolerance to drugs that target actively growing bacteria.publishersversionpublishe

    Structure-Activity Determinants in Antifungal Plant Defensins MsDef1 and MtDef4 with Different Modes of Action against Fusarium graminearum

    Get PDF
    Plant defensins are small cysteine-rich antimicrobial proteins. Their three-dimensional structures are similar in that they consist of an α-helix and three anti-parallel ÎČ-strands stabilized by four disulfide bonds. Plant defensins MsDef1 and MtDef4 are potent inhibitors of the growth of several filamentous fungi including Fusarium graminearum. However, they differ markedly in their antifungal properties as well as modes of antifungal action. MsDef1 induces prolific hyperbranching of fungal hyphae, whereas MtDef4 does not. Both defensins contain a highly conserved Îł-core motif (GXCX3–9C), a hallmark signature present in the disulfide-stabilized antimicrobial peptides, composed of ÎČ2 and ÎČ3 strands and the interposed loop. The Îł-core motifs of these two defensins differ significantly in their primary amino acid sequences and in their net charge. In this study, we have found that the major determinants of the antifungal activity and morphogenicity of these defensins reside in their Îł-core motifs. The MsDef1-Îł4 variant in which the Îł-core motif of MsDef1 was replaced by that of MtDef4 was almost as potent as MtDef4 and also failed to induce hyperbranching of fungal hyphae. Importantly, the Îł-core motif of MtDef4 alone was capable of inhibiting fungal growth, but that of MsDef1 was not. The analysis of synthetic Îł-core variants of MtDef4 indicated that the cationic and hydrophobic amino acids were important for antifungal activity. Both MsDef1 and MtDef4 induced plasma membrane permeabilization; however, kinetic studies revealed that MtDef4 was more efficient in permeabilizing fungal plasma membrane than MsDef1. Furthermore, the in vitro antifungal activity of MsDef1, MsDef1-Îł4, MtDef4 and peptides derived from the Îł-core motif of each defensin was not solely dependent on their ability to permeabilize the fungal plasma membrane. The data reported here indicate that the Îł-core motif defines the unique antifungal properties of each defensin and may facilitate de novo design of more potent antifungal peptides
    corecore