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Abstract The U.S. tax gap is estimated to exceed $450 billion, most of which arises
from non-compliance on the part of individual taxpayers (GAO 2012; IRS 2006).
Much is hidden in innovative tax shelters combining multiple business structures
such as partnerships, trusts, and S-corporations into complex transaction networks
designed to reduce and obscure the true tax liabilities of their individual shareholders.
One known gambit employed by these shelters is to offset real gains in one part of
a portfolio by creating artificial capital losses elsewhere through the mechanism of
“inflated basis” (TaxAnalysts 2005), a process made easier by the relatively flexible
set of rules surrounding “pass-through” entities such as partnerships (IRS 2009). The
ability to anticipate the likely forms of emerging evasion schemes would help auditors
develop more efficient methods of reducing the tax gap. To this end, we have devel-
oped a prototype evolutionary algorithm designed to generate potential schemes of
the inflated basis type described above. The algorithm takes as inputs a collection of
asset types and tax entities, together with a rule-set governing asset exchanges between
these entities. The schemes produced by the algorithm consist of sequences of trans-
actions within an ownership network of tax entities. Schemes are ranked according
to a “fitness function” (Goldberg in Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley, Boston, 1989); the very best schemes are those
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that afford the highest reduction in tax liability while incurring the lowest expected
penalty.

Keywords Tax evasion · Genetic algorithms · Agent-based modeling

JEL classification K340 · C630 · C730

1 Background and introduction

The U.S. tax gap, defined as the aggregate sum of the difference between the true tax
liability and what is paid on time by all taxable entities, has recently been estimated
to exceed $450 billion annually. The bulk of this difference (approximately 2/3) is
attributable to individual taxpayer non-compliance, some of which originates from
understated income hidden in “innovative” tax shelters comprising complex trans-
actions among multiple business entities (GAO 2012; IRS 2006). Partnerships and
other so-called “pass-through” entities are known to play a disproportionate role in
these structures due to the relative flexibility of the tax rules governing transactions to
which they are a party; in fact, the GAO estimates that at least $91 billion of the gap
associated with individual non-compliance comes from this sector alone (GAO 2014).

Tax shelters are marketed to high net worth individuals by promoters. Promoters
include banks, accounting firms, investment boutiques, and law firms that scour the
tax code looking for exploitable loopholes. They then arrange and execute a sequence
of transactions designed to reduce their client’s tax liability. On the surface these
transactions satisfy all relevant tax laws; on occasion, however, it becomes apparent
that the transactions in question can have had no other purpose than the reduction of tax
liability. Schemes1 of this typehave longbeendisallowedunder a common lawdoctrine
requiring that the associated transactions have “economic substance” (Robertson et al.
2010). They are now explicitly illegal under the provisions of the 2010Affordable Care
Act (IRS 2011).

These schemes come in a variety of shapes and sizes. Herewe focus on an important
subclass that rely on a mechanism called “inflated basis”. “Basis” is the set point from
which gains or losses are assessed for tax purposes; usually the basis of an asset is
just the cost of acquiring it. There are, however, a complex set of rules governing how
basis is computed or otherwise adjusted in the course of different transactions. By
arranging for a sequence of these transactions among a commonly owned network
of entities it is sometimes possible to enhance the basis of certain assets and thereby
create artificial losses when these assets are ultimately sold. Such losses can then be
used to offset gains elsewhere in a portfolio, thus reducing overall tax liability.

The sheer complexity of a typical tax shelter poses significant challenges to govern-
ment enforcement efforts. Audits have traditionally been directed at single financial
entities, whereas the most advanced schemes are conducted within vast networks of

1 By “scheme” we shall mean a sequence of transactions arranged for the purposes of illegal tax evasion.
It is worth noting, however, that in some instances the distinction between tax avoidance (which is legal)
and tax evasion is not always clear.

123



Modeling tax evasion with genetic algorithms 167

these entities. Teasing out the detailed transaction flow associated with a particular
scheme can therefore be prohibitively expensive or difficult, especially when that
scheme is a new or previously unknown variant. The growing number and prevalence
of pass-through entities such as partnerships hasmade this problem increasingly urgent
(GAO 2010). An algorithm like the one we are proposing here would go a long way
towards mitigating this problem by providing auditors with exemplars of potentially
suspicious patterns of activity.

2 Approach and methodology

Allingham and Sandmo (1972) pioneered the application of microeconomic theory
to the problem of tax compliance. Since then, the field has grown into a very active
area of research involving practitioners from across a wide array of disciplines. Recent
years have seen the introduction of computational methods like agent based modeling
to the problem domain; these methods go beyond standard microeconomic models
by treating individual taxpayers as discrete interacting entities embedded in complex
social networks (Bloomquist 2006). Some notable examples of this kind of work
include studies of changes in taxpayer reporting behavior under different audit scenar-
ios (Hokamp and Pickhardt 2010), investigations of the impact of taxpayer network
structures on tax compliance (Andrei et al. 2013) and the identification of critical audit
rates at which whole populations suddenly shift their equilibrium level of compliance
(Davis et al. 2003). In the present study, we propose an alternative formulation of
the problem that treats tax evasion schemes, rather than individual taxpayers, as the
fundamental objects of interest.

Tax evasion schemes are constantly changing. Whenever one is uncovered and
measures are taken to eliminate it, others spring up to take its place. These others
are often variations of the same underlying idea, though the flow of assets and the
arrangement of involved entitiesmay appear quite different than in the original scheme.
One notable example of this phenomenon is the so called Son of BOSS tax shelter,
which emerged in the mid-90s after its immediate predecessor, a strategy known as
“shorting against the box”, was rendered defunct by changes in the tax code (Wright
2013).

While there does not, as yet, exist a systematic method to anticipate the emergence
of these schemes, they clearly share a basic formal structure. In fact we hypothesize
that all such schemes are ultimately reducible to sequences of pairwise transactions
between distinct financial entities. As these transactions are themselves governed by
a finite set of rules, it is plausible to suppose that a computational model capable
of generating candidate schemes automatically could be devised. We propose that a
properly designed genetic algorithm (GA) is just such a model.

GAs are search heuristics, like hill climbing or simulated annealing, that can be
applied to optimization problems.What distinguishes them from other searchmethods
is their formal similarity to Darwinian evolution; the search process itself is mediated
by a population of bit strings, or “chromosomes”, which map to elements of the search
space and can bemanipulated in amanner reminiscent of their biological counterparts.
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Fig. 1 Diagram of the the canonical genetic algorithm

We here undertake a brief overview of genetic algorithms and then explain our appli-
cation of this methodology to the problem at hand.

2.1 Genetic algorithms

All GAs require a genetic representation (Goldberg 1989). This is a method for encod-
ing solutions in a basicmathematical structure like a bit string or parse tree. For the sake
of simplicity, we focus here on bit strings of fixed length K , which form the “chromo-
somes” of the representation. The representation itself consists of these chromosomes
(the genotype), together with a deterministic mapping from each chromosome to an
element of the search space (the phenotype). Further, all GAs require a measure of fit-
ness on these phenotypes—loosely speaking, this constitutes the objective function of
the problem at hand. The only formal requirement of the method of fitness evaluation
is that it allow for an ordinal ranking of solutions. Finally, all GAs feature somemethod
of selection and genetic variation. Selection involves choosing chromosomes in the
population for reproduction according to the relative fitness of each member of the
population—the higher the fitness, the higher the probability of being selected. Vari-
ation is introduced through the use of genetic operators like crossover and mutation.
Crossover is the process whereby corresponding segments of two different chromo-
somes are chosen at random by some method and then transposed. Mutation consists
of a bitwise flip of each element of the selected bit string with some probability p. We
expand somewhat on these capsule definitions in what follows.

The canonical GA exhibits the following iterative structure, which we here describe
in seven steps (Brabazon and O’Neill 2010). These steps are depicted in Fig. 1. First,
an initial population of N chromosomes is generated, usually randomly. Second, each
member of this population is subjected to an evaluation of its fitness. The process of
fitness evaluation may be so simple it needs only the computation of a basic formula,
as in the traveling salesman problem, or so complex that it requires its own simulation,
as in the design of a bridge or a jet engine. In the third step, pairs of chromosomes
are selected from the population for crossover and mutation. The selection method
must favor the fitter members of the population; one popular approach, and the one
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Modeling tax evasion with genetic algorithms 169

we adopt here, is called tournament selection. In tournament selection, k members
are drawn at random from the population, and the fittest of these is selected. Fourth,
the crossover and mutation operators are applied to the selected pair. Steps three and
four are repeated until N − e children have been produced, where e is the size of the
elite population (that is, the group composed of the e fittest members of our original
population). Fifth, the old population is replaced by the new; this latter is composed
of the N −e children that were produced by iterating steps 3 and 4, together with the e
fittest members of the old population. Sixth, a test condition is evaluated to determine
whether to halt. Seventh, assuming the test condition is false, we return to step 2 with
our new population.

2.2 An application of genetic algorithms to tax evasion

Figure 2 illustrates the major functional components used in the GAmethodology. For
the purpose of representing a tax evasion scheme our algorithm begins by instantiating
a number of Asset and Entity objects. The Asset class may include stocks, promissory
notes, loans, cash, options or whatever other securities or instruments are deemed
necessary. Entities include individual taxpayers, partnerships, trusts, corporations,
banks, etc. These objects track all the book-keeping associated with transactions,
including ownership, the market value of assets, the basis of assets, debt obligations,
and tax owed on any particular exchange.

Next, we devise a transaction plan that details the sequence of Asset flows between
Entities. For this purposewe employ a variant of the genetic algorithmapproach known
as grammatical evolution (GE) (Brabazon and O’Neill 2010). The principal difference
between this method and other similar algorithms is in the genetic representation. In
GE, chromosomes consist of lists of integers (called “codons”), whereas phenotypes
are lists of executable instructions. Themapping from genotype to phenotype proceeds
bymeans of a context-free grammar. A grammar consists of two sets of symbols, called
“terminal” and “non-terminal”, together with a set of overwrite or production rules.
The non-terminal set always includes a “start” symbol. Production rules prescribe how
particular non-terminal symbols are to be replaced by combinations of terminal and
non-terminal symbols. In our case, the output of production rules results in a list of

Fig. 2 Overview of tax simulator
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Fig. 3 Example of amapping fromgenotype to phenotype through a grammar.An integer string is converted
into a transaction between the entities ‘NewCo’ and ‘Brown’ in which Brown gives Cash to NewCo in
exchange for a Hotel

executable instructions (or “schemes”) which act on previously instantiated Asset and
Entity objects to produce a sequence of transactions.

Whenever a particular chromosome is being evaluated for fitness, a parser looks at
the leftmost non-terminal symbol and replaces it using a production rule determined
by the value of the corresponding codon. When only terminal symbols are left, they
form a list of instructions which is then passed to an interpreter module for execution.
The interpreter uses the Asset and Entity objects to carry out the instructions, most of
which involve pairwise exchanges of Asset objects between Entities, and makes sure
to apply whatever tax rules may be applicable to the exchange.

A simple example of our genetic representation is depicted in Fig. 3. Here the
genotype consists of an arbitrary input string [3, 11, 10, 5, 40, 7], which
is mapped to the output function

Transaction(NewCo,Brown,Material(200,Hotel,1),Cash(200)).

This output function instructs the interpreter module to remove a single Hotel asset
worth $200 from the inventory of an entity called “NewCo” and to place it in the
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inventory of an entity called “Brown”, while simultaneously removing a Cash asset
worth $200 from Brown’s inventory and placing it in NewCo’s. The output function is
constructed from the input string through a sequence of steps involving a grammar. As
mentioned above, a grammar consists of two types of symbols, “terminal” and “non-
terminal”. By convention, non-terminal symbols are enclosed by pointy brackets <>,
and the parser always beginswith a “start” symbol, in this case< transactions >.

In addition to these symbols, a grammar consists of a set of overwrite rules that
prescribe how to replace any particular non-terminal symbol with other symbols. Our
own set of overwrite rules is shown in Fig. 3 under the heading “Grammar”. In each
line, the left hand side of the “::=” sign is a particular non-terminal symbol, while the
right hand side contains a list of the allowed symbol combinations it can be replaced
with. The elements of this list are separated by vertical bars ‘|’.

To illustrate, we begin with the designated “start” symbol < transactions >

and the first codon value 3. From the figure it is clear that our start symbol can be
replaced by two possible combinations of symbols. To decide which overwrite rule
to use, it is usual to follow the following protocol. First, divide the codon value c by
the number of possible overwrite rules r , and compute the remainder (here c = 3 and
r = 2, so the remainder is 1). Second, add 1 to this value, and choose the corresponding
rule in the list. As shown in the figure, applying this formula to overwrite the leftmost
non-terminal symbol at each iteration of the process leads eventually to the set of
terminal symbols under the heading “Phenotype”.

As discussed in Sect. 2.1, all genetic algorithms require a means to rank candidate
solutions according to fitness. In the present context, the simplest nontrivial functional
form for the fitness function F of a scheme is just F = G, where G is the difference
between the tax owed before any transactions, and the tax that is assessed afterwards.
Under this measure, fitter schemes are those which afford the greatest reduction in
tax liability. In the real world, however, it is clear that some schemes are riskier than
others, or else cost more to implement, and hence carry a lower expected return. Such
considerations will almost certainly affect the likelihood that any particular scheme
survives.

It is relatively inexpensive to set up partnerships or other pass-through entities.
Since promoters typically charge a percentage ofG (Hamersley 2004), this is by far the
dominant cost of implementing a scheme. Cost is therefore only a very weak function
of scheme structure; as such, it is unlikely to exert much influence on the success
or failure of any particular scheme. By contrast, risk of detection (and hence fines)
depends rather strongly on the precise manner in which a scheme is implemented, and
will therefore tend to determine its long-term viability. These considerations suggest
the following refinement of the above fitness measure to account for risk:

F = G − E(P) (1)

where G is the “tax gap” defined above, P is a penalty assessed upon detection
of the scheme, and E(· · · ) denotes expected value. In the real world, for a particular
scheme k, P = P(G) = φkG, where the coefficient φk > 1 is a factor determined
by the nature of the scheme (for simplicity, we here ignore fixed fines and limits to
penalties that may apply in certain cases). If pk is the probability that scheme k is
detected, then E(P) = pkφkG, and
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F = G(1− pkφk). (2)

The E(P) term has the effect of reducing the expected return, and hence fitness, of
riskier schemes. Over time, as auditors gradually become more aware of a particular
scheme k, pk increases to the point that the scheme becomes unviable, and promoters
are forced to innovate. We model the effect of this term in our genetic algorithm by
flagging a set of n suspicious transactions and assigning each of them an ‘audit score’
ai such that

∑n
i=1 ai = 1. The ai can loosely be considered as capturing the relative

probability that a particular flagged transaction will be detected. We then count the
number of times fi that each flagged transaction i occurswithin a scheme, and compute
the fitness F as F = G(1−∑n

i=1 ai fi ). This captures the essence of the “real world”
situation described above by penalizing instances of suspicious transaction activity in
proportion to their frequency and likelihood of detection.

This approach affords us the flexibility to include all kinds of transactions regardless
of their strict legality; it is only necessary to assess the degree to which the associated
activity is likely to attract the attention of auditors. It also gives us the ability, by
manual variation of the audit scores, to determine the kinds of schemes that are likely
to proliferate under changes to audit priorities. Such a feature has enormous potential
to shape audit policy by helping decision makers explore the implications of proposed
changes to existing priorities.

3 Experiments

As an initial step, we applied the genetic algorithm methodology to search for tax
evasion schemes involving artificial basis step-up transactions. One such scheme,
called Installment Sale Bogus Optional Basis or IBOB (GAO 2010), is illustrated in
Fig. 4.

This figure shows the simplest possible version of IBOB capturing all the essential
elements required to implement the scheme. It depicts a notional tax evader, Mr. Jones,
who controls a network of entities consisting of two partnerships, JonesCo andNewCo,
and a trust called FamilyTrust. Mr. Jones has become aware that an outside party, Mr.
Brown, wishes to buy a Hotel asset owned by a member of his network. The Hotel
has accumulated considerable value since its purchase, creating a sizable mismatch
between its fair market value and its basis. In order to reduce this mismatch, Mr. Jones
manufactures a sequence of trades between some of the entities in his network, trades
designed to trigger upward basis adjustments in the Hotel. These adjustments enable
Mr. Jones to claim a reduction in the tax owed on his share of the proceeds from the
eventual sale of the Hotel to Mr. Brown.

The scheme is structured as follows. Mr. Jones owns a 99% share of JonesCo,
which in turn owns a 99% share of NewCo. The $198 value of this latter share derives
from the assets owned by NewCo, which for simplicity we assume consists of a single
Hotel worth $200. The basis of the hotel is $120; if NewCo were to sell this asset
straightaway to Mr. Brown, the owners of JonesCo, and Mr. Jones in particular, would
be obliged to recognize their share of the $80 gain. Instead, Mr. Jones arranges for the
following sequence of transactions to occur.
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First, he causes JonesCo to sell its share of NewCo to an entity called FamilyTrust,
of which Mr. Jones is the sole trustee, in exchange for a promissory note with a face
value of $198. This event triggers the possibility for a Section 754 Election (CPA
2005) on the part of NewCo. A Section 754 Election is made possible whenever a
partnership share is sold by an existing partner to an outside party; since the outside
party is essentially paying fair market value for their share of all the assets owned
by the partnership, they are not obliged to pay tax on any gains realized with respect
to the original basis of those assets. Assuming there is gain, the associated tax will
presumably be paid by the selling partner.

To remedy any potential accounting difficulties associated with this fact, the part-
nership may elect, under Section 754, to adjust the share of inside basis in these assets
upward for the purchasing partner. Since Mr. Jones owns a controlling interest in
NewCo, he can force the 754 Election and adjust FamilyTrust’s share of the Hotel’s
inside basis upward to $198. FamilyTrust then defaults on its promissory note. Since
JonesCo receives no payments, it reports no gain. Further, since JonesCo and Fami-
lyTrust are both controlled byMr. Jones, JonesCowill never pursue legal action against
FamilyTrust. When the hotel is finally sold to Mr. Brown, FamilyTrust receives $198
but Mr. Jones pays no tax, due to the earlier basis adjustment.

The grammar used for the IBOB scheme is as shown in Fig. 3. Note that since
< transactions > is recursive, the search space is in theory infinite.

3.1 Results

To test our algorithm’s ability to construct IBOB schemes, we’ve conducted two sets
of experiments. In the first, we ignored risk and cost by using the fitness function
F = G, where G is the difference between the tax owed and the tax ultimately paid.
In the second, we used the modified fitness function F = G(1− ∑

i ai fi ) described
in Sect. 2.2 above.

We begin each run by creating the following set of Entities: MrJones, NewCo,
JonesCo, FamilyTrust, and MrBrown. These entities are all linked together according
to the ownership network depicted in Step 1 of Fig. 4. At inception, each Entity owns
a portfolio of Assets including cash, promissory notes, and partnership shares (and,
in the case of NewCo, a Hotel). We then proceed through the genetic algorithm steps
described in Sect. 2.1 above, which results in multiple transactions between these
Entities. If a partnership asset is exchanged, then the ownership network is updated to
reflect this; further, each such transaction has the potential to trigger a 754 Election.
Promissory notes are treated as annuities in which payments are made in installments;
issuers of promissory notes have the option to default, and if they do, no gain is reported
and no tax is paid.

For each run, a population of 5,000 schemes is evolved over 10 generations. In the
first set of experiments, we found that the algorithm is indeed capable of producing
IBOB; one such run is shown in in Fig. 5. The curve lingers near zero until IBOB
emerges, at which point the fitness jumps discontinuously to its maximum.

Given the rather limited transaction space available it was surprising to discover
that IBOB is only one of a number of optimal schemes with respect to the fitness
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Fig. 5 IBOBGA run. The ‘fitness’ here corresponds to the tax gapG of the fittest member of the population
in a given generation

function G. In fact, the vast majority of schemes yielding the maximum gap within
ten generations are not IBOB, but variants like the one described below:

1. Mr Jones buys the Hotel from NewCo with an Annuity and defaults on it
2. Mr Jones sells the Hotel to Mr Brown

In this scheme, no 754 Election is required since Mr. Brown directly purchases the
hotel from NewCo. This transaction is clearly absurd; Mr. Jones is essentially buying
a Hotel from himself using a promissory note he never intends to repay. Nevertheless,
since we do not explicitly proscribe this activity in our code, the algorithm always
discovers it in due course. We found many variants like the one above. Examined
closely, these variants all make use of one or both of the following transactions: first,
an exchange of assets between ‘linked’ entities, that is, entities connected by one or
more degrees of ownership; and second, an exchange of a material asset (like the
Hotel) for a promissory note. Since promissory notes are treated as annuities in our
code, and since annuities are paid in installments, no tax is collected at the moment
the note is issued. If the issuer of the note defaults, no tax is collected at all.

Such variants are clearly very risky propositions since they involve transactions that
are more or less openly fraudulent. In principle we could exclude these transactions by
adding explicit constraints to the logic of the interpreter module, but such an approach
is complex and inflexible. It is far easier simply to penalize these transactions when
they do occur rather than to exclude them outright. This has the added benefit of being
much closer to the reality of how audits actually work (IRS 2013).

As discussed in Sect. 2.2, we’ve developed an audit score technique to reduce the
fitness of schemes that employ questionable transactions like the ones described above.
Our second round of experiments tests the degree to which this technique increases
the efficiency of IBOB production by the underlying genetic algorithm. We use the
same basic parameters as in the first set of experiments, only now the fitness function
is adjusted to penalize schemes that make use of certain ‘flagged’ transactions. In our
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case, these transactions include: (1) exchanges between entities connected by one or
two ownership links, and (2) transactions involving the exchange of a material asset
for a promissory note. The results of this experiment are displayed in Fig. 6.

Each bar corresponds to 100 separate runs. In the first bar, no audit scheme is
implemented, and the vast majority of schemes that emerge within 10 generations
are non-IBOB variants employing either one or both of the risky transactions (1) and
(2). In the second bar, all category (1) transactions are penalized, and the proportion
of non-IBOB variants surviving ten generations drops, while the proportion of IBOB
schemes rises. In fact, the absolute number of IBOB schemes increases substantially.
The third bar indicates the effect of penalizing transactions of both type (1) and type (2).
Here non-IBOB schemes are practically non-existent, whereas the absolute number
of IBOBs increases almost to 20.

4 Conclusion

We have built a functioning end-to-end codebase capable of executing all the steps
of the canonical genetic algorithm described above. In particular, we developed a
genetic representation with the capacity to generate complex tax evasion schemes like
IBOB. This was achieved by separating the representation into two parts: first, a set
of Asset and Entity objects responsible for tracking any state changes associated with
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transactions, and second, a grammar mapping chromosomes into a set of transaction
instructions to be executed by the associated objects.

Our fitnessmeasure employs an audit scoremethodology inwhich suspicious trans-
actions are penalized in proportion to their frequency and likelihood of detection. Such
a measure incorporates the risk of detection by rewarding those schemes with the
smallest expected penalty for a given tax gap G. We demonstrated the ability of this
technique to alter the distribution of GA outputs by manually varying the audit scores
to penalize specific subsets of transactions. These manipulations led to increasingly
efficient production of fitter schemes like IBOB.

We believe our algorithm has the potential to provide valuable insight to auditors
seeking to reduce the national tax gap. Enforcement efforts have traditionally been
focussed on single financial entities, but unfortunately the most successful schemes
involve complex transaction flows within large partnership networks. These schemes
are extremely difficult to target without detailed foreknowledge of the associated pat-
tern of activity. Our algorithm can help mitigate this problem by providing detailed
exemplars of network-based evasion. Further, it can inform audit policy by enabling
decision makers to anticipate the kinds of schemes that are likely to emerge under
different enforcement regimes.
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