365 research outputs found

    Accurate, rapid identification of dislocation lines in coherent diffractive imaging via a min-max optimization formulation

    Full text link
    Defects such as dislocations impact materials properties and their response during external stimuli. Defect engineering has emerged as a possible route to improving the performance of materials over a wide range of applications, including batteries, solar cells, and semiconductors. Imaging these defects in their native operating conditions to establish the structure-function relationship and, ultimately, to improve performance has remained a considerable challenge for both electron-based and x-ray-based imaging techniques. However, the advent of Bragg coherent x-ray diffractive imaging (BCDI) has made possible the 3D imaging of multiple dislocations in nanoparticles ranging in size from 100 nm to1000 nm. While the imaging process succeeds in many cases, nuances in identifying the dislocations has left manual identification as the preferred method. Derivative-based methods are also used, but they can be inaccurate and are computationally inefficient. Here we demonstrate a derivative-free method that is both more accurate and more computationally efficient than either derivative- or human-based methods for identifying 3D dislocation lines in nanocrystal images produced by BCDI. We formulate the problem as a min-max optimization problem and show exceptional accuracy for experimental images. We demonstrate a 260x speedup for a typical experimental dataset with higher accuracy over current methods. We discuss the possibility of using this algorithm as part of a sparsity-based phase retrieval process. We also provide the MATLAB code for use by other researchers

    Radio structures of the nuclei of nearby Seyfert galaxies and the nature of the missing diffuse emission

    Full text link
    We present archival high spatial resolution VLA and VLBA data of the nuclei of seven of the nearest and brightest Seyfert galaxies in the Southern Hemisphere. At VLA resolution (~0.1 arcsec), the nucleus of the Seyfert galaxies is unresolved, with the exception of MCG-5-23-16 and NGC 7469 showing a core-jet structure. Three Seyfert nuclei are surrounded by diffuse radio emission related to star-forming regions. VLBA observations with parsec-scale resolution pointed out that in MRK 1239 the nucleus is clearly resolved into two components separated by ~30 pc, while the nucleus of NGC 3783 is unresolved. Further comparison between VLA and VLBA data of these two sources shows that the flux density at parsec scales is only 20% of that measured by the VLA. This suggests that the radio emission is not concentrated in a single central component, as in elliptical radio galaxies, and an additional low-surface brightness component must be present. A comparison of Seyfert nuclei with different radio spectra points out that the ``presence'' of undetected flux on milli-arcsecond scale is common in steep-spectrum objects, while in flat-spectrum objects essentially all the radio emission is recovered. In the steep-spectrum objects, the nature of this ``missing'' flux is likely due to non-thermal AGN-related radiation, perhaps from a jet that gets disrupted in Seyfert galaxies because of the denser environment of their spiral hosts.Comment: 13 pages, 9 figures; paper accepted for publication in MNRA

    EVLA Observations of OH Masers in ON 1

    Full text link
    This Letter reports on initial Expanded Very Large Array (EVLA) observations of the 6035 MHz masers in ON 1. The EVLA data are of good quality, lending confidence in the new receiver system. Nineteen maser features, including six Zeeman pairs, are detected. The overall distribution of 6035 MHz OH masers is similar to that of the 1665 MHz OH masers. The spatial resolution is sufficient to unambiguously determine that the magnetic field is strong (~ -10 mG) at the location of the blueshifted masers in the north, consistent with Zeeman splitting detected in 13441 MHz OH masers in the same velocity range. Left and right circularly polarized ground-state features dominate in different regions in the north of the source, which may be due to a combination of magnetic field and velocity gradients. The combined distribution of all OH masers toward the south is suggestive of a shock structure of the sort previously seen in W3(OH).Comment: 4 pages using emulateapj.cls including 2 tables and 2 color figure

    Gigahertz-Peaked Spectrum Radio Sources in Nearby Galaxies

    Get PDF
    There is now strong evidence that many low-luminosity AGNs (LLAGNs) contain accreting massive black holes and that the nuclear radio emission is dominated by parsec-scale jets launched by these black holes. Here, we present preliminary results on the 1.4 GHz to 667 GHz spectral shape of a well-defined sample of 16 LLAGNs. The LLAGNs have a falling spectrum at high GHz frequencies. Several also show a low-frequency turnover with a peak in the 1-20 GHz range. The results provide further support for jet dominance of the core radio emission. The LLAGNs show intriguing similarities with gigahertz-peaked spectrum (GPS) sources.Comment: 6 pages, to appear in ASP Conference series, 2002, Vol. 25

    The Origin of Radio Emission in Low-Luminosity Active Galactic Nuclei: Jets, Accretion Flows, or Both?

    Get PDF
    The low-luminosity active galactic nuclei in NGC 3147, NGC 4203, and NGC 4579 have been imaged at four frequencies with the Very Long Baseline Array. The galaxies are unresolved at all frequencies, with size upper limits of 10310410^3-10^4 times the Schwarzschild radii of their central massive black holes. The spectral indices between 1.7 and 5.0 GHz range from 0.2 to 0.4; one and possibly two of the galaxies show spectral turnovers between 5.0 and 8.4 GHz. The high brightness temperatures (>109> 10^9 K) and relatively straight spectra imply that free-free emission and/or absorption cannot account for the slightly inverted spectra. Although the radio properties of the cores superficially resemble predictions for advection-dominated accretion flows, the radio luminosities are too high compared to the X-ray luminosities. We suggest that the bulk of the radio emission is generated by a compact radio jet, which may coexist with a low radiative efficiency accretion flow.Comment: To appear in ApJ (Letters). 4 page
    corecore