94 research outputs found

    Testing a pyriproxyfen auto-dissemination station attractive to gravid Anopheles gambiae sensu stricto for the development of a novel attract-release -and-kill strategy for malaria vector control

    Get PDF
    Background Larviciding is an effective supplementary tool for malaria vector control, but the identification and accessibility of aquatic habitats impedes application. Dissemination of the insect growth regulator, pyriproxyfen (PPF), by gravid Anopheles might constitute a novel application strategy. This study aimed to explore the feasibility of using an attractive bait-station to contaminate gravid Anopheles gambiae sensu stricto with PPF and subsequently transfer PPF to larval habitats. Methods A bait-station was developed comprising of an artificial pond containing water treated with 20 ppm cedrol, an oviposition attractant, and a netting-cover treated with PPF. Three identical semi-field cages were used to assess the potential of gravid Anopheles to transfer PPF from the bait-station to ponds. Gravid females were released in two semi-field cages, one with PPF on its bait-station (test) and one without PPF (control). No mosquitoes were released in the third cage with a PPF-treated station (control). Transfer of PPF to open ponds was assessed by monitoring emergence of late instar insectary-reared larvae introduced into the ponds. The amount of PPF carried by a mosquito and transferred to water was quantified using liquid chromatography-mass spectrometry. Results In the controls, 86% (95% CI 81–89%) of larvae introduced into open ponds developed into adults, indicating that wind did not distribute PPF in absence of mosquitoes. Emergence inhibition was observed in the test cage but was dependent on the distance between pond and bait-station. Only 25% (95% CI 22–29%) of larvae emerged as adults from ponds 4 m from the bait-station, but 92% (95% CI 89–94%) emerged from ponds 10 m away. Each mosquito was contaminated on average with 112 μg (95% CI 93–123 μg) PPF resulting in the transfer of 230 ng/L (95% CI 180–290 ng/L) PPF to 100 ml volumes of water. Conclusions The bait-stations successfully attracted gravid females which were subsequently dusted with effective levels of PPF. However, in this study design, attraction and dissemination was limited to short distances. To make this approach feasible for malaria vector control, stronger attractants that lure gravid females from longer distances, in landscapes with many water bodies, and better PPF delivery systems are needed

    Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage

    Get PDF
    BACKGROUND: Based on sensitivity analysis of the MacDonald-Ross model, it has long been argued that the best way to reduce malaria transmission is to target adult female mosquitoes with insecticides that can reduce the longevity and human-feeding frequency of vectors. However, these analyses have ignored a fundamental biological difference between mosquito adults and the immature stages that precede them: adults are highly mobile flying insects that can readily detect and avoid many intervention measures whereas mosquito eggs, larvae and pupae are confined within relatively small aquatic habitats and cannot readily escape control measures. PRESENTATION OF THE HYPOTHESIS: We hypothesize that the control of adult but not immature mosquitoes is compromised by their ability to avoid interventions such as excito-repellant insecticides. TESTING THE HYPOTHESIS: We apply a simple model of intervention avoidance by mosquitoes and demonstrate that this can substantially reduce effective coverage, in terms of the proportion of the vector population that is covered, and overall impact on malaria transmission. We review historical evidence that larval control of African malaria vectors can be effective and conclude that the only limitations to the effective coverage of larval control are practical rather than fundamental. IMPLICATIONS OF THE HYPOTHESIS: Larval control strategies against the vectors of malaria in sub-Saharan Africa could be highly effective, complementary to adult control interventions, and should be prioritized for further development, evaluation and implementation as an integral part of Rolling Back Malaria

    Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae

    Get PDF
    Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. To assess the larvicidal efficacy of a neem (Azadirachta indica) oil formulation (azadirachtin content of 0.03% w/v) on An. gambiae s.s., larvae were exposed as third and fourth instars to a normal diet supplemented with the neem oil formulations in different concentrations. A control group of larvae was exposed to a corn oil formulation in similar concentrations. Neem oil had an LC50 value of 11 ppm after 8 days, which was nearly five times more toxic than the corn oil formulation. Adult emergence was inhibited by 50% at a concentration of 6 ppm. Significant reductions on growth indices and pupation, besides prolonged larval periods, were observed at neem oil concentrations above 8 ppm. The corn oil formulation, in contrast, produced no growth disruption within the tested range of concentrations. Neem oil has good larvicidal properties for An. gambiae s.s. and suppresses successful adult emergence at very low concentrations. Considering the wide distribution and availability of this tree and its products along the East African coast, this may prove a readily available and cheap alternative to conventional larvicides

    Community-owned resource persons for malaria vector control: enabling factors and challenges in an operational programme in Dar es Salaam, United Republic of Tanzania.

    Get PDF
    BACKGROUND: Community participation in vector control and health services in general is of great interest to public health practitioners in developing countries, but remains complex and poorly understood. The Urban Malaria Control Program (UMCP) in Dar es Salaam, United Republic of Tanzania, implements larval control of malaria vector mosquitoes. The UMCP delegates responsibility for routine mosquito control and surveillance to community-owned resource persons (CORPs), recruited from within local communities via the elected local government. METHODS: A mixed method, cross-sectional survey assessed the ability of CORPs to detect mosquito breeding sites and larvae, and investigated demographic characteristics of the CORPs, their reasons for participating in the UMCP, and their work performance. Detection coverage was estimated as the proportion of wet habitats found by the investigator which had been reported by CORP. Detection sensitivity was estimated as the proportion of wet habitats found by the CORPS which the investigator found to contain Anopheles larvae that were also reported to be occupied by the CORP. RESULTS: The CORPs themselves perceived their role as professional rather than voluntary, with participation being a de facto form of employment. Habitat detection coverage was lower among CORPs that were recruited through the program administrative staff, compared to CORPs recruited by local government officials or health committees (Odds Ratio = 0.660, 95% confidence interval = [0.438, 0.995], P = 0.047). Staff living within their areas of responsibility had > 70% higher detection sensitivity for both Anopheline (P = 0.016) and Culicine (P = 0.012): positive habitats compared to those living outside those same areas. DISCUSSION AND CONCLUSIONS: Improved employment conditions as well as involving the local health committees in recruiting individual program staff, communication and community engagement skills are required to optimize achieving effective community participation, particularly to improve access to fenced compounds. A simpler, more direct, less extensive community-based surveillance system in the hands of a few, less burdened, better paid and maintained program personnel may improve performance and data quality

    An exploratory study of community factors relevant for participatory malaria control on Rusinga Island, western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Capacity strengthening of rural communities, and the various actors that support them, is needed to enable them to lead their own malaria control programmes. Here the existing capacity of a rural community in western Kenya was evaluated in preparation for a larger intervention.</p> <p>Methods</p> <p>Focus group discussions and semi-structured individual interviews were carried out in 1,451 households to determine (1) demographics of respondent and household; (2) socio-economic status of the household; (3) knowledge and beliefs about malaria (symptoms, prevention methods, mosquito life cycle); (4) typical practices used for malaria prevention; (5) the treatment-seeking behaviour and household expenditure for malaria treatment; and (6) the willingness to prepare and implement community-based vector control.</p> <p>Results</p> <p>Malaria was considered a major threat to life but relevant knowledge was a chimera of scientific knowledge and traditional beliefs, which combined with socio-economic circumstances, leads to ineffective malaria prevention. The actual malaria prevention behaviour practiced by community members differed significantly from methods known to the respondents. Beside bednet use, the major interventions implemented were bush clearing and various hygienic measures, even though these are ineffective for malaria prevention. Encouragingly, most respondents believed malaria could be controlled and were willing to contribute to a community-based malaria control program but felt they needed outside assistance.</p> <p>Conclusion</p> <p>Culturally sensitive but evidence-based education interventions, utilizing participatory tools, are urgently required which consider traditional beliefs and enable understanding of causal connections between mosquito ecology, parasite transmission and the diagnosis, treatment and prevention of disease. Community-based organizations and schools need to be equipped with knowledge through partnerships with national and international research and tertiary education institutions so that evidence-based research can be applied at the grassroots level.</p

    Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia

    Get PDF
    BACKGROUND: Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. METHODS: Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. RESULTS: At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0-100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. CONCLUSION: Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to fly. The traditional practice of 'swamp rice' cultivation uses different bodies of water on the floodplains to cultivate rice during the rainy season. A consequence of this cultivation is the provizion of ideal conditions for malaria vectors to thrive. As the demand for locally-produced rice grows, increased rice farming will generate great numbers of vectors; emphasizing the need to protect local communities against malaria

    Gravid Anopheles gambiae sensu stricto avoid ovipositing in Bermuda grass hay infusion and it's volatiles in two choice egg-count bioassays.

    Get PDF
    BACKGROUND: A number of mosquito species in the Culex and Aedes genera prefer to lay eggs in Bermuda grass (Cynodon dactylon) hay infusions compared to water alone. These mosquitoes are attracted to volatile compounds from the hay infusions making the infusions effective baits in gravid traps used for monitoring vectors of arboviral and filarial pathogens. Since Bermuda grass is abundant and widespread, it is plausible to explore infusions made from it as a potential low cost bait for outdoor monitoring of the elusive malaria vector Anopheles gambiae s.s. METHODS: This study investigated preferential egg laying of individual An. gambiae s.s. in hay infusion or in tap water treated with volatiles detected in hay infusion headspace compared to tap water alone, using two-choice egg-count bioassays. Infusions were prepared by mixing 90 g of dried Bermuda grass (hay) with 24 L of unchlorinated tap water in a bucket, and leaving it for 3 days at ambient temperature and humidity. The volatiles in the headspace of the hay infusion were sampled with Tenax TA traps for 20 h and analysed using gas chromatography coupled to mass spectrometry. RESULTS: In total, 18 volatiles were detected in the infusion headspace. Nine of the detected compounds and nonanal were selected for bioassays. Eight of the selected compounds have previously been suggested to attract/stimulate egg laying in An. gambiae s.s. Gravid females were significantly (p < 0.05) less likely to lay eggs in hay infusion dilutions of 25, 50 and 100 % and in tap water containing any of six compounds (3-methylbutanol, phenol, 4-methylphenol, nonanal, indole, and 3-methylindole) compared to tap water alone. The oviposition response to 10 % hay infusion or any one of the remaining four volatiles (4-hepten-1-ol, phenylmethanol, 2-phenylethanol, or 4-ethylphenol) did not differ from that in tap water. CONCLUSIONS: Anopheles gambiae s.s. prefers to lay eggs in tap water rather than Bermuda grass hay infusion. This avoidance of the hay infusion appears to be mediated by volatile organic compounds from the infusion. It is, therefore, unlikely that Bermuda grass hay infusion as formulated and used in gravid traps for Culex and Aedes mosquitoes will be suitable baits for monitoring gravid An. gambiae s.s

    Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    Get PDF
    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats

    Malaria vectors and their blood-meal sources in an area of high bed net ownership in the western Kenya highlands

    Get PDF
    Background Blood-meal sources of malaria vectors affect their capacity to transmit the disease. Most efficient malaria vectors prefer human hosts. However, with increasing personal protection measures it becomes more difficult for them to find human hosts. Here recent malaria vector blood-meal sources in western Kenya highlands were investigated. Methods Adult mosquitoes resting indoors, outdoors and exiting through windows were collected in three study areas within the western Kenya highlands from June 2011 to June 2013. A census of people, livestock and of insecticide-treated nets was done per house. Mosquito blood-meal sources were determined as human, goat, bovine or chicken using enzyme-linked-immunosorbent assays. Results Most (86.3 %) households possessed at least one bed net, 57.2 % had domesticated animals and 83.6 % had people sharing houses with livestock at night. Most (94.9 %) unfed malaria vectors were caught exiting through windows. Overall, 53.1 % of Anopheles gambiae sensu stricto obtained blood-meals from humans, 26.5 % from goats and 18.4 % from bovines. Single blood-meal sources by An. gambiae s.s. from humans were 26.5 %, 8.2 % from bovines and 2.0 % from goats. Mixed blood-meal sources by An. gambiae s.s. identified included: 24.5 % human/goat, 10.2 % human/bovine, 8.2 % human/bovine/goat and also 8.2 % bovine/goat. One An. arabiensis mosquito obtained blood-meal only from humans. Conclusion An unusually high frequency of animal and mixed human-animal blood meals in the major malaria vector An. gambiae s.s. was revealed in the western Kenya highlands where bed net coverage is above the WHO target. The shift in blood-meal sources from humans to livestock is most likely the vectors’ response to increased bed net coverage and the close location of livestock frequently in the same house as people at night. Livestock-targeted interventions should be considered under these circumstances to address residual malaria transmission
    corecore