6 research outputs found

    Landscape Structures Affect Risk of Canine Distemper in Urban Wildlife

    Get PDF
    Urbanization rapidly changes landscape structure worldwide, thereby enlarging the human-wildlife interface. The emerging urban structures should have a key influence on the spread and distribution of wildlife diseases such as canine distemper, by shaping density, distribution and movements of wildlife. However, little is known about the role of urban structures as proxies for disease prevalence. To guide management, especially in densely populated cities, assessing the role of landscape structures in hampering or promoting disease prevalence is thus of paramount importance. Between 2008 and 2013, two epidemic waves of canine distemper hit the urban red fox (Vulpes vulpes) population of Berlin, Germany. The directly transmitted canine distemper virus (CDV) causes a virulent disease infecting a range of mammals with high host mortality, particularly in juveniles. We extracted information about CDV serological state (seropositive or seronegative), sex and age for 778 urban fox carcasses collected by the state laboratory Berlin Brandenburg. To assess the impact of urban landscape structure heterogeneity (e.g., richness) and shares of green and gray infrastructures at different spatial resolutions (areal of 28 ha, 78 ha, 314 ha) on seroprevalence we used Generalized Linear Mixed-Effects Models with binomial distributions. Our results indicated that predictors derived at a 28 ha resolution were most informative for describing landscape structure effects (AUC = 0.92). The probability to be seropositive decreased by 66% (0.6 to 0.2) with an increasing share of gray infrastructure (40 to 80%), suggesting that urbanization might hamper CDV spread in urban areas, owing to a decrease in host density (e.g., less foxes or raccoons) or an absence of wildlife movement corridors in strongly urbanized areas. However, less strongly transformed patches such as close-to-nature areas in direct proximity to water bodies were identified as high risk areas for CDV transmission. Therefore, surveillance and disease control actions targeting urban wildlife or human-wildlife interactions should focus on such areas. The possible underlying mechanisms explaining the prevalence distribution may be increased isolation, the absence of alternative hosts or an abiotic environment, all impairing the ability of CDV to persist without a host

    Genome Sequences of Two Novel Papillomaviruses Isolated from Healthy Skin of Pudu puda and Cervus elaphus Deer

    Get PDF
    We report the complete genome sequences of (PpudPV1) and (CelaPV2), isolated from healthy skin hair follicles of a Southern pudu and a red deer, respectively. PpudPV1 is basal to the DyokappaPVs, whereas CelaPV2 is basal to the XiPVs (Beta-XiPV crown group)

    Data from: Do cities represent sources, sinks or isolated islands for urban wild boar population structure?

    No full text
    Urban sprawl has resulted in the permanent presence of large mammal species in urban areas, leading to human–wildlife conflicts. Wild boar Sus scrofa are establishing a permanent presence in many cities in Europe, with the largest German urban population occurring in Berlin. Despite their relatively long-term presence, there is little knowledge of colonization processes, dispersal patterns or connectivity of Berlin's populations, hampering the development of effective management plans. We used 13 microsatellite loci to genotype 387 adult and subadult wild boar from four urban forests, adjacent built-up areas and the surrounding rural forests. We applied genetic clustering algorithms to analyse the population genetic structure of the urban boar. We used approximate Bayesian computation to infer the boar's colonization history of the city. Finally, we used assignment tests to determine the origin of wild boar hunted in the urban built-up areas. The animals in three urban forests formed distinct genetic clusters, with the remaining samples all being assigned to one rural population. One urban cluster was founded by individuals from another urban cluster rather than by rural immigrants. The wild boar that had been harvested within urban built-up areas was predominantly assigned to the rural cluster surrounding the urban area, rather than to one of the urban clusters. Synthesis and applications. Our results are likely to have an immediate impact on management strategies for urban wild board populations in Berlin, because they show that there are not only distinct urban clusters, but also ongoing source–sink dynamics between urban and rural areas. It is therefore essential that the neighbouring Federal States of Berlin and Brandenburg develop common hunting plans to control the wild boar population and reduce conflicts in urban areas

    Landscape Structures Affect Risk of Canine Distemper in Urban Wildlife

    No full text
    Urbanization rapidly changes landscape structure worldwide, thereby enlarging the human-wildlife interface. The emerging urban structures should have a key influence on the spread and distribution of wildlife diseases such as canine distemper, by shaping density, distribution and movements of wildlife. However, little is known about the role of urban structures as proxies for disease prevalence. To guide management, especially in densely populated cities, assessing the role of landscape structures in hampering or promoting disease prevalence is thus of paramount importance. Between 2008 and 2013, two epidemic waves of canine distemper hit the urban red fox (Vulpes vulpes) population of Berlin, Germany. The directly transmitted canine distemper virus (CDV) causes a virulent disease infecting a range of mammals with high host mortality, particularly in juveniles. We extracted information about CDV serological state (seropositive or seronegative), sex and age for 778 urban fox carcasses collected by the state laboratory Berlin Brandenburg. To assess the impact of urban landscape structure heterogeneity (e.g., richness) and shares of green and gray infrastructures at different spatial resolutions (areal of 28 ha, 78 ha, 314 ha) on seroprevalence we used Generalized Linear Mixed-Effects Models with binomial distributions. Our results indicated that predictors derived at a 28 ha resolution were most informative for describing landscape structure effects (AUC = 0.92). The probability to be seropositive decreased by 66% (0.6 to 0.2) with an increasing share of gray infrastructure (40 to 80%), suggesting that urbanization might hamper CDV spread in urban areas, owing to a decrease in host density (e.g., less foxes or raccoons) or an absence of wildlife movement corridors in strongly urbanized areas. However, less strongly transformed patches such as close-to-nature areas in direct proximity to water bodies were identified as high risk areas for CDV transmission. Therefore, surveillance and disease control actions targeting urban wildlife or human-wildlife interactions should focus on such areas. The possible underlying mechanisms explaining the prevalence distribution may be increased isolation, the absence of alternative hosts or an abiotic environment, all impairing the ability of CDV to persist without a host

    Wild boar Berlin dataset

    No full text
    Population genetic data from 13 microsattelite loci for 387 adult and subadult wild boar from Berlin and the Federal State Bandenburg which were collected between 2012 and 2015
    corecore