30 research outputs found

    Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives

    Get PDF
    In this review, the unique features and facts of long-term experiments are presented. Long-term experimental plots provide information of forest stand dynamics which cannot be derived from forest inventories or small temporary plots. Most comprise unthinned plots which represent the site specific maximum stand density as an unambiguous reference. By measuring the remaining as well as the removed stand, the survey of long-term experiments provides the total production at a given site, which is most relevant for examining the relationship between site conditions and stand productivity on the one hand and between stand density and productivity on the other. Thus, long-term experiments can reveal the site-specific effect of thinning and species mixing on stand structure, production and carbon sequestration. If they cover an entire rotation or even the previous and following generation on a given site, they reveal a species' long-term behaviour and any growth trends caused by environmental changes. Second, we exploit the unique data of European long-term experiments, some of which have been surveyed since 1848. We show the long-term effect of different density regimes on stand dynamics and an essential trade-off between total stand volume production and mean tree size. Long-term experiments reveal that tree species mixing can significantly increase stand density and productivity compared with monospecific stands. Thanks to surveys spanning decades or even a century, we can show the changing long-term-performance of different provenances and acceleration of stand production caused by environmental change, as well as better understand the growth dynamics of natural forests. Without long-term experiments forest science and practice would be not in a position to obtain such findings which are of the utmost relevance for science and practice. Third, we draw conclusions and show perspectives regarding the maintenance and further development of long-term experiments. It would require another 150years to build up a comparable wealth of scientific information, practical knowledge, and teaching and training model examples. Although tempting, long-term experiments should not be sacrificed for cost-cutting measures. Given the global environmental change and the resulting challenges for sustainable management, the network of long-term experiments should rather be extended regarding experimental factors, recorded variables and inter- and transdisciplinary use for science and practice

    Review on the Projections of Future Storminess over the North Atlantic European Region

    No full text
    This is an overview of the results from previously published climate modeling studies reporting on projected aspects of future storminess over the North Atlantic European region (NAER) in the period 2020–2190. Changes in storminess are summarized for seven subregions in the study area and rated by a categorical evaluation scheme that takes into account emission scenarios and modeling complexity in the reviewed studies. Although many of the reviewed studies reported an increase in the intensity of high-impact wind speed and extreme cyclone frequency in the second half of the 21st century, the projections of aspects of future storminess over the NAER differed regionally. There is broad consensus that the frequency and intensity of storms, cyclones, and high-impact wind speed will increase over Central and Western Europe, and these changes will probably have the potential to produce more damage. In contrast, future extratropical storminess over Southern Europe is very likely to decrease. For Northern and Eastern Europe the results of the evaluation are inconclusive, because there is an indication of increasing as well as decreasing development of the evaluated aspects of future storminess. Concerning the storm track, we found indications of a likely north- and eastward shift in most assessed studies. Results from three studies suggest a northeastward shift of the North Atlantic Oscillation

    Seedling development and regeneration success after 10 years following group selection harvesting in a sessile oak (Quercus petraea [Mattuschka] Liebl.) stand

    No full text
    International audienceContext: Small-scale harvesting methods as practiced in close-to-nature forestry may disadvantage the regeneration of more light-demanding tree species including sessile oak (Quercus petraea [Mattuschka] Liebl.) and thus cause regeneration failure. However, owing to the short-term nature of many previous studies, regeneration success of sessile oak could not be properly ascertained.Aims: This study examined oak seedling development over a time period of ten growing seasons in canopy openings of 0.05 to 0.2 ha in size created through group selection harvesting in a mature mixed sessile oak forest in southwestern Germany. We tried to answer the following research questions: (i) how do initial stand conditions relate to and interact with oak seedling density and seedling height growth, and (ii) what are the driving factors of regeneration success under the encountered site conditions.Methods: We evaluated the influence of solar radiation, Rubus spp. cover, initial oak seedling density, and competition from other tree species on change in density and height of oak seedlings, as well as overall regeneration success (oak seedlings ≥ 150 cm in height).Results: Regeneration success increased with initial oak seedling density and solar radiation levels and decreased with early Rubus spp. cover. Density and maximum height of oak seedlings was negatively related with competition of other woody species.Conclusion: Results of our longer-term study demonstrate that forest management activities to regenerate sessile oak naturally are only successful in stands (i) without advance regeneration of other woody species and without established, recalcitrant ground vegetation, (ii) with a sufficiently high initial oak seedling density in larger patches following mast years, and (iii) where periodic monitoring and control of competing woody individuals can be ensured. Our findings further corroborate the view that natural regeneration of sessile oak in small-scale canopy openings is possible in principle

    Bark wounds caused by felling are more susceptible to discoloration and decay than wounds caused by extraction in European beech

    No full text
    International audienceKey messageBeech is subjected to devaluating bark damage by logging operations. It is shown experimentally that damage in the upper part of the trunk entails much higher risk of wood discoloration and decay by fungi than damage in the lower part. Cellular defense mechanisms in xylem are elucidated.ContextDuring harvesting operations and more specifically processes of both felling and extraction, remaining trees suffer specific bark damages, leaving the exposed xylem vulnerable to subsequent discoloration and fungal decay. As a consequence, the future value of the produced timber is reduced.AimsThe objective of this study is to test for the consequences of artificial bark damage to the base vs. the upper parts of the trunk in terms of discoloration, fungal infection, wood decay, and wound closure.MethodsAn artificial basal “extraction wound” was inflicted along with an elongated “felling wound” at 5-m stem height in 40 beech trees (Fagus sylvatica L.) during either June or October. The trees were felled 3 years later and the impact of the wounds was evaluated with microscopic imaging and microbiological methods.ResultsThe compartmentalization observed in the basal extraction wounds was highly efficient, and rate and intensity of discoloration and susceptibility to decay were significantly lower than in wounds inflicted to the upper segments of the trunk. The latter displayed deeply penetrating discoloration and decay.ConclusionBark damage in the higher portions of the stem inflicted by felling is followed by much higher risk of wood discoloration and decay than damage at the base of the stem (extraction damage). Harvesting management has to be optimized in order to avoid felling damage in remaining neighboring trees particularly

    Site carrying capacity of Norway spruce and Scots pine stands has increased in Germany and northern Europe

    No full text
    The maximum size-density relationship describes site carrying capacity, i.e., the maximum number of trees of a given size that can be stocked per unit area (self-thinning line). We analysed whether the self-thinning lines of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) have remained unchanged over time in South Germany, Norway and Finland, i.e., over a wide climatic gradient from Central Europe up to the Arctic circle. The analyses are based on long-term growth and yield experiments measured on individual tree basis over several decades, the oldest experiments established during the early 20th century. The stochastic frontier analysis was used to analyse changes in the species-specific self-thinning lines. The results show that the self-thinning lines have shifted upwards over time in all the regions. Thus, currently stands sustain higher stand densities than in the past. The increase of the maximum density for a given average stem size was more pronounced for pine than for spruce, but similar in all studied geographical regions. In addition, increasing site index was associated with increasing site carrying capacity for spruce and pine in all regions. The results imply that environmental changes have altered site properties in similar fashion across the whole study region. In practical forestry, increased site carrying capacity will reduce mortality and loss of growing stock

    Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient

    Get PDF
    • Existing growth and yield plots of pure and mixed stands of Norway spruce (Picea abies (L.) H. Karst.) and European beech (Fagus sylvatica L.) were aggregated in order to unify the somewhat scattered sources of information currently available, as well as to develop a sound working hypothesis about mixing effects. The database contains information from 23 long-term plots, covering an ecological gradient from nutrient poor and dry to nutrient rich and moist sites throughout Central Europe. • An empirically formed interaction model showed, that depending on the site conditions, dry mass growth in mixed stands can range from − 46% to +138 % of the growth yielded by a scaled combination of pure stands at equal mixing proportions. • Drawing from the interaction model, overyielding of the mixed stands appears to be triggered by two separate mechanisms. On poor sites, where significant overyielding is commonly found, facilitation by beech offsets nutrient-related growth limitations in spruce. In contrast, overyielding of mixed stands occurs less frequently on rich sites, and appears to be based on an admixture effect, with spruce reducing the severe intra-specific competition common in pure beech stands. • It was concluded that silviculture can accelerate growth of spruce by beech admixtures on poor sites, while growth of beech can be promoted by admixture of spruce, particularly on excellent sites

    Site carrying capacity of Norway spruce and Scots pine stands has increased in Germany and northern Europe

    Get PDF
    The maximum size-density relationship describes site carrying capacity, i.e., the maximum number of trees of a given size that can be stocked per unit area (self-thinning line). We analysed whether the self-thinning lines of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) have remained unchanged over time in South Germany, Norway and Finland, i.e., over a wide climatic gradient from Central Europe up to the Arctic circle. The analyses are based on long-term growth and yield experiments measured on individual tree basis over several decades, the oldest experiments established during the early 20th century. The stochastic frontier analysis was used to analyse changes in the species-specific self-thinning lines. The results show that the self-thinning lines have shifted upwards over time in all the regions. Thus, currently stands sustain higher stand densities than in the past. The increase of the maximum density for a given average stem size was more pronounced for pine than for spruce, but similar in all studied geographical regions. In addition, increasing site index was associated with increasing site carrying capacity for spruce and pine in all regions. The results imply that environmental changes have altered site properties in similar fashion across the whole study region. In practical forestry, increased site carrying capacity will reduce mortality and loss of growing stock.publishedVersio
    corecore