57 research outputs found

    Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View

    Get PDF
    Gastric cancer is a leading cause of cancer death worldwide. Systemic treatment comprising chemotherapy and targeted therapy is the standard of care in advanced/metastatic gastric cancer. Comprehensive molecular characterization of gastric adenocarcinomas by the TCGA Consortium and ACRG has resulted in the definition of distinct molecular subtypes. These efforts have in parallel built a basis for the development of novel molecularly stratified treatment approaches. Based on this molecular characterization, an increasing number of specific genomic alterations can potentially serve as treatment targets. Consequently, the development of promising compounds is ongoing. In this review, key molecular alterations in gastric and gastroesophageal junction cancers will be addressed. Finally, the current status of the translation of targeted therapy towards clinical applications will be reviewed

    Pyroptotic and Necroptotic Cell Death in the Tumor Microenvironment and Their Potential to Stimulate Anti-Tumor Immune Responses

    Get PDF
    Cancer remains the second most common cause of death worldwide affecting around 10 million patients every year. Among the therapeutic options, chemotherapeutic drugs are widely used but often associated with side effects. In addition, toxicity against immune cells may hamper anti-tumor immune responses. Some chemotherapeutic drugs, however, preserve immune functions and some can even stimulate anti-tumor immune responses through the induction of immunogenic cell death (ICD) rather than apoptosis. ICD stimulates the immune system by several mechanisms including the release of damage-associated molecular patterns (DAMPs) from dying cells. In this review, we will discuss the consequences of inducing two recently characterized forms of ICD, i.e., pyroptosis and necroptosis, in the tumor microenvironment (TME) and the perspectives they may offer to increase the immunogenicity of the so-called cold tumors and to stimulate effective anti-tumor immune responses

    Comparison of MRI and VQ-SPECT as a screening test for patients with suspected CTEPH: CHANGE-MRI study design and rationale

    Get PDF
    The diagnostic strategy for chronic thromboembolic pulmonary hypertension (CTEPH) is composed of two components required for a diagnosis of CTEPH: the presence of chronic pulmonary embolism and an elevated pulmonary artery pressure. The current guidelines require that ventilation–perfusion single-photon emission computed tomography (VQ-SPECT) is used for the first step diagnosis of chronic pulmonary embolism. However, VQ-SPECT exposes patients to ionizing radiation in a radiation sensitive population. The prospective, multicenter, comparative phase III diagnostic trial CTEPH diagnosis Europe - MRI (CHANGE-MRI, ClinicalTrials.gov identifier NCT02791282) aims to demonstrate whether functional lung MRI can serve as an equal rights alternative to VQ-SPECT in a diagnostic strategy for patients with suspected CTEPH. Positive findings are verified with catheter pulmonary angiography or computed tomography pulmonary angiography (gold standard). For comparing the imaging methods, a co-primary endpoint is used. (i) the proportion of patients with positive MRI in the group of patients who have a positive SPECT and gold standard diagnosis for chronic pulmonary embolism and (ii) the proportion of patients with positive MRI in the group of patients with negative SPECT and gold standard. The CHANGE-MRI trial will also investigate the performance of functional lung MRI without i.v. contrast agent as an index test and identify cardiac, hemodynamic, and pulmonary MRI-derived parameters to estimate pulmonary artery pressures and predict 6–12 month survival. Ultimately, this study will provide the necessary evidence for the discussion about changes in the recommendations on the diagnostic approach to CTEPH

    The GimA Locus of Extraintestinal Pathogenic E. coli: Does Reductive Evolution Correlate with Habitat and Pathotype?

    Get PDF
    IbeA (invasion of brain endothelium), which is located on a genomic island termed GimA, is involved in the pathogenesis of several extraintestinal pathogenic E. coli (ExPEC) pathotypes, including newborn meningitic E. coli (NMEC) and avian pathogenic E. coli (APEC). To unravel the phylogeny of GimA and to investigate its island character, the putative insertion locus of GimA was determined via Long Range PCR and DNA-DNA hybridization in 410 E. coli isolates, including APEC, NMEC, uropathogenic (UPEC), septicemia-associated E. coli (SEPEC), and human and animal fecal isolates as well as in 72 strains of the E. coli reference (ECOR) collection. In addition to a complete GimA (∼20.3 kb) and a locus lacking GimA we found a third pattern containing a 342 bp remnant of GimA in this strain collection. The presence of GimA was almost exclusively detected in strains belonging to phylogenetic group B2. In addition, the complete GimA was significantly more frequent in APEC and NMEC strains while the GimA remnant showed a higher association with UPEC strains. A detailed analysis of the ibeA sequences revealed the phylogeny of this gene to be consistent with that obtained by Multi Locus Sequence Typing of the strains. Although common criteria for genomic islands are partially fulfilled, GimA rather seems to be an ancestral part of phylogenetic group B2, and it would therefore be more appropriate to term this genomic region GimA locus instead of genomic island. The existence of two other patterns reflects a genomic rearrangement in a reductive evolution-like manner

    Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View

    No full text
    Gastric cancer is a leading cause of cancer death worldwide. Systemic treatment comprising chemotherapy and targeted therapy is the standard of care in advanced/metastatic gastric cancer. Comprehensive molecular characterization of gastric adenocarcinomas by the TCGA Consortium and ACRG has resulted in the definition of distinct molecular subtypes. These efforts have in parallel built a basis for the development of novel molecularly stratified treatment approaches. Based on this molecular characterization, an increasing number of specific genomic alterations can potentially serve as treatment targets. Consequently, the development of promising compounds is ongoing. In this review, key molecular alterations in gastric and gastroesophageal junction cancers will be addressed. Finally, the current status of the translation of targeted therapy towards clinical applications will be reviewed

    Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View

    No full text
    Gastric cancer is a leading cause of cancer death worldwide. Systemic treatment comprising chemotherapy and targeted therapy is the standard of care in advanced/metastatic gastric cancer. Comprehensive molecular characterization of gastric adenocarcinomas by the TCGA Consortium and ACRG has resulted in the definition of distinct molecular subtypes. These efforts have in parallel built a basis for the development of novel molecularly stratified treatment approaches. Based on this molecular characterization, an increasing number of specific genomic alterations can potentially serve as treatment targets. Consequently, the development of promising compounds is ongoing. In this review, key molecular alterations in gastric and gastroesophageal junction cancers will be addressed. Finally, the current status of the translation of targeted therapy towards clinical applications will be reviewed

    Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View

    No full text
    Gastric cancer is a leading cause of cancer death worldwide. Systemic treatment comprising chemotherapy and targeted therapy is the standard of care in advanced/metastatic gastric cancer. Comprehensive molecular characterization of gastric adenocarcinomas by the TCGA Consortium and ACRG has resulted in the definition of distinct molecular subtypes. These efforts have in parallel built a basis for the development of novel molecularly stratified treatment approaches. Based on this molecular characterization, an increasing number of specific genomic alterations can potentially serve as treatment targets. Consequently, the development of promising compounds is ongoing. In this review, key molecular alterations in gastric and gastroesophageal junction cancers will be addressed. Finally, the current status of the translation of targeted therapy towards clinical applications will be reviewed

    Pyroptotic and Necroptotic Cell Death in the Tumor Microenvironment and Their Potential to Stimulate Anti-Tumor Immune Responses

    No full text
    Cancer remains the second most common cause of death worldwide affecting around 10 million patients every year. Among the therapeutic options, chemotherapeutic drugs are widely used but often associated with side effects. In addition, toxicity against immune cells may hamper anti-tumor immune responses. Some chemotherapeutic drugs, however, preserve immune functions and some can even stimulate anti-tumor immune responses through the induction of immunogenic cell death (ICD) rather than apoptosis. ICD stimulates the immune system by several mechanisms including the release of damage-associated molecular patterns (DAMPs) from dying cells. In this review, we will discuss the consequences of inducing two recently characterized forms of ICD, i.e., pyroptosis and necroptosis, in the tumor microenvironment (TME) and the perspectives they may offer to increase the immunogenicity of the so-called cold tumors and to stimulate effective anti-tumor immune responses
    • …
    corecore