388 research outputs found

    Selective inhibition of T suppressor-cell function by a monosaccharide

    Get PDF
    Interactions between regulatory T lymphocytes and other cells are assumed to occur at the level of the cell surface. T cells which suppress the generation of specifically effector cells have been described as having antigenic, idiotypic, allotypic and I-region specificity1−4. Other T suppressor cells generated by in vitro cultivation with or without mitogenic stimulation5,6 have suppressive activity for T and B cells but no specificity can be assigned to them. These T suppressor cells (Ts) inhibit various lymphoid functions—this either reflects their polyclonal origin or indicates that the structures recognized by the Ts receptors must be common for many cell types. Carbohydrates on cell membrane-inserted glycoproteins or glycolipids might function as specific ligands for recognition by cellular receptors or soluble factors. Almost all cell-surface proteins of mammalian cells are glycosylated. There is evidence for lectin-like carbohydrate binding proteins not only in plants7 but also in toxins8, viruses9, prokaryotic cells10 and even mammalian cells, including T cells11. A functional role for these lectin-like proteins has been described for slime moulds and suggested for the selective association of embryonic cells12,13. We report here that addition of a monosaccharide can counteract the effect of T suppressor cells during the generation of alloreactive cytotoxic T cells (CTLs) in vitro

    Decreased expression of breast cancer resistance protein in the duodenum in patients with obstructive cholestasis

    Get PDF
    Background/Aims: The expression of transporters involved in bile acid homeostasis is differentially regulated during obstructive cholestasis. Since the drug efflux transporter breast cancer resistance protein (BCRP) is known to transport bile acids, we investigated whether duodenal BCRP expression could be altered during cholestasis. Methods: Using real-time RT-PCR analysis we determined mRNA expression levels in duodenal tissue of 19 cholestatic patients. Expression levels were compared to 14 healthy subjects. BCRP protein staining was determined in biopsies of 6 cholestatic and 6 healthy subjects by immunohistochemistry. Results: We found that in patients with obstructive cholestasis mean duodenal BCRP mRNA levels were significantly reduced to 53% and mean protein staining was reduced to 57%. Conclusions: BCRP, a transporter for bile acids and numerous drugs, appears to be down-regulated in the human duodenum during cholestasis. The clinical impact of these results has to be investigated in further studies. Copyright (c) 2006 S. Karger AG, Basel

    The effect of aging on the autophagic and heat shock response in human peripheral blood mononuclear cells

    Get PDF
    Autophagy is a lysosome degradation pathway through which damaged organelles and macromolecules are degraded within the cell. A decrease in activity of the autophagic process has been linked to several age-associated pathologies, including triglyceride accumulation, mitochondrial dysfunction, muscle degeneration, and cardiac malfunction. Here, we examined the differences in the autophagic response using autophagy-inducer rapamycin (Rapa) in peripheral blood mononuclear cells (PBMCs) from young (21.8 ± 1.9 years) and old (64.0 ± 3.7 years) individuals. Furthermore, we tested the interplay between the heat shock response and autophagy systems. Our results showed a significant increase in LC3-II protein expression in response to Rapa treatment in young but not in old individuals. This was associated with a decreased response in MAP1LC3B mRNA levels, but not SQSTM1/p62. Furthermore, HSPA1A mRNA was upregulated only in young individuals, despite no differences in HSP70 protein expression. The combined findings suggest a suppressed autophagic response following Rapa treatment in older individuals

    Gender and age differences among current smokers in a general population survey

    Get PDF
    BACKGROUND: Evidence suggests a higher proportion of current smokers among female than among male ever smokers at the age above 50. However, little is known about the proportion of current smokers among ever smokers in old age groups with consideration of women in comparison to men from general population samples. The goal was to analyze the proportions of current smokers among female and among male ever smokers including those older than 80. METHODS: Cross-sectional survey study with a national probability household sample in Germany. Data of 179,472 participants aged 10 or older were used based on face-to-face in-home interviews or questionnaires. The proportions of current smokers among ever smokers were analyzed dependent on age, age of onset of smoking and cigarettes per day including effect modification by gender. RESULTS: Proportions of current smokers tended to be larger among female than among male ever smokers aged 40 or above. Women compared to men showed adjusted odds ratios of 1.7 to 6.9 at ages 40 to 90 or older in contrast to men. No such interaction existed for age of onset of smoking or cigarettes per day. CONCLUSION: Special emphasis should be given to current smokers among the female general population at the age of 40 or above in public health intervention

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    How do nutrient conditions and species identity influence the impact of mesograzers in eelgrass-epiphyte systems?

    Get PDF
    Coastal eutrophication is thought to cause excessive growth of epiphytes in eelgrass beds, threatening the health and survival of these ecologically and economically valuable ecosystems worldwide. Mesograzers, small crustacean and gastropod grazers, have the potential to prevent seagrass loss by grazing preferentially and efficiently on epiphytes. We tested the impact of three mesograzers on epiphyte biomass and eelgrass productivity under threefold enriched nutrient concentrations in experimental indoor mesocosm systems under summer conditions. We compared the results with earlier identical experiments that were performed under ambient nutrient supply. The isopod Idotea baltica, the periwinkle Littorina littorea, and the small gastropod Rissoa membranacea significantly reduced epiphyte load under high nutrient supply with Rissoa being the most efficient grazer, but only high densities of Littorina and Rissoa had a significant positive effect on eelgrass productivity. Although all mesograzers increased epiphyte ingestion with higher nutrient load, most likely as a functional response to the quantitatively and qualitatively better food supply, the promotion of eelgrass growth by Idotea and Rissoa was diminished compared to the study performed under ambient nutrient supply. Littorina maintained the level of its positive impact on eelgrass productivity regardless of nutrient concentrations

    Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte

    Get PDF
    Eosinophil granulocytes reside in respiratory mucosa including lungs, in the gastro-intestinal tract, and in lymphocyte associated organs, the thymus, lymph nodes and the spleen. In parasitic infections, atopic diseases such as atopic dermatitis and asthma, the numbers of the circulating eosinophils are frequently elevated. In conditions such as Hypereosinophilic Syndrome (HES) circulating eosinophil levels are even further raised. Although, eosinophils were identified more than hundred years ago, their roles in homeostasis and in disease still remain unclear. The most prominent feature of the eosinophils are their large secondary granules, each containing four basic proteins, the best known being the eosinophil cationic protein (ECP). This protein has been developed as a marker for eosinophilic disease and quantified in biological fluids including serum, bronchoalveolar lavage and nasal secretions. Elevated ECP levels are found in T helper lymphocyte type 2 (atopic) diseases such as allergic asthma and allergic rhinitis but also occasionally in other diseases such as bacterial sinusitis. ECP is a ribonuclease which has been attributed with cytotoxic, neurotoxic, fibrosis promoting and immune-regulatory functions. ECP regulates mucosal and immune cells and may directly act against helminth, bacterial and viral infections. The levels of ECP measured in disease in combination with the catalogue of known functions of the protein and its polymorphisms presented here will build a foundation for further speculations of the role of ECP, and ultimately the role of the eosinophil

    Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme

    Get PDF
    Therapy options at the time of recurrence of glioblastoma multiforme are often limited. We investigated whether treatment with a new intratumoral thermotherapy procedure using magnetic nanoparticles improves survival outcome. In a single-arm study in two centers, 66 patients (59 with recurrent glioblastoma) received neuronavigationally controlled intratumoral instillation of an aqueous dispersion of iron-oxide (magnetite) nanoparticles and subsequent heating of the particles in an alternating magnetic field. Treatment was combined with fractionated stereotactic radiotherapy. A median dose of 30 Gy using a fractionation of 5 × 2 Gy/week was applied. The primary study endpoint was overall survival following diagnosis of first tumor recurrence (OS-2), while the secondary endpoint was overall survival after primary tumor diagnosis (OS-1). Survival times were calculated using the Kaplan–Meier method. Analyses were by intention to treat. The median overall survival from diagnosis of the first tumor recurrence among the 59 patients with recurrent glioblastoma was 13.4 months (95% CI: 10.6–16.2 months). Median OS-1 was 23.2 months while the median time interval between primary diagnosis and first tumor recurrence was 8.0 months. Only tumor volume at study entry was significantly correlated with ensuing survival (P < 0.01). No other variables predicting longer survival could be determined. The side effects of the new therapeutic approach were moderate, and no serious complications were observed. Thermotherapy using magnetic nanoparticles in conjunction with a reduced radiation dose is safe and effective and leads to longer OS-2 compared to conventional therapies in the treatment of recurrent glioblastoma

    Matrix Metalloproteinase Proteolysis of the Myelin Basic Protein Isoforms Is a Source of Immunogenic Peptides in Autoimmune Multiple Sclerosis

    Get PDF
    Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination leading to autoimmune multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The classic MBP isoforms are predominantly expressed in the oligodendrocytes of the CNS. The splice variants of the single MBP gene (Golli-MBP BG21 and J37) are widely expressed in the neurons and also in the immune cells. The relative contribution of the individual MMPs to the MBP cleavage is not known.To elucidate which MMP plays the primary role in cleaving MBP, we determined the efficiency of MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MT1-MMP, MT2-MMP, MT3-MMP, MT4-MMP, MT5-MMP and MT6-MMP in the cleavage of the MBP, BG21 and J37 isoforms in the in vitro cleavage reactions followed by mass-spectroscopy analysis of the cleavage fragments. As a result, we identified the MMP cleavage sites and the sequence of the resulting fragments. We determined that MBP, BG21 and J37 are highly sensitive to redundant MMP proteolysis. MT6-MMP (initially called leukolysin), however, was superior over all of the other MMPs in cleaving the MBP isoforms. Using the mixed lymphocyte culture assay, we demonstrated that MT6-MMP proteolysis of the MBP isoforms readily generated, with a near quantitative yield, the immunogenic N-terminal 1-15 MBP peptide. This peptide selectively stimulated the proliferation of the PGPR7.5 T cell clone isolated from mice with EAE and specific for the 1-15 MBP fragment presented in the MHC H-2(U) context.In sum, our biochemical observations led us to hypothesize that MT6-MMP, which is activated by furin and associated with the lipid rafts, plays an important role in MS pathology and that MT6-MMP is a novel and promising drug target in MS especially when compared with other individual MMPs
    corecore