19 research outputs found

    X-ray Shapes of Distant Clusters: the Connection to Blue Galaxy Fractions

    Get PDF
    Based on ROSAT PSPC pointed observations, we have determined the aggregate X-ray shapes of 10 distant (z = 0.17-0.54) rich clusters: A2397, A222, A520, A1689, A223B, A1758, A2218, A2111, A2125, and CL0016+16. Four of the clusters have global X-ray ellipticities greater than 0.2, as measured on a scale of diameter 3 h_{50}^{-1} Mpc. These strongly elongated clusters tend to show substantial amounts of substructure, indicating that they are dynamically young systems. Most interestingly, the global X-ray ellipticities of the clusters correlate well with their blue galaxy fractions; the correlation coefficient is 0.75 with a 90% confidence range of 0.44-0.92. This correlation suggests that blue cluster galaxies originate in the process of cluster formation, and that the blue galaxy proportion of a cluster decreases as the intracluster medium relaxes onto equipotential surfaces.Comment: Submitted to ApJL, 9 pages including 2 figure

    A Tidal Disruption Flare in Abell 1689 from an Archival X-ray Survey of Galaxy Clusters

    Full text link
    Theory suggests that a star making a close passage by a supermassive black hole at the center of a galaxy can under most circumstances be expected to emit a giant flare of radiation as it is disrupted and a portion of the resulting stream of shock-heated stellar debris falls back onto the black hole itself. We examine the first results of an ongoing archival survey of galaxy clusters using Chandra and XMM-selected data, and report a likely tidal disruption flare from SDSS J131122.15-012345.6 in Abell 1689. The flare is observed to vary by a factor of >30 over at least 2 years, to have maximum L_X(0.3-3.0 keV)> 5 x 10^{42} erg s^{-1} and to emit as a blackbody with kT~0.12 keV. From the galaxy population as determined by existing studies of the cluster, we estimate a tidal disruption rate of 1.2 x 10^{-4} galaxy^{-1} year^{-1} if we assume a contribution to the observable rate from galaxies whose range of luminosities corresponds to a central black hole mass (M_bh) between 10^6 and 10^8 M_sun.Comment: 24 pages, including 6 figures and 2 tables Accepted for publication in the Astrophysical Journa

    Electroform/Plasma-Spray Laminates for X-Ray Optics

    Get PDF
    Electroform/plasma-spray laminates have shown promise as lightweight, strong, low-thermal-expansion components for xray optics. The basic idea is to exploit both (1) the well-established art of fabrication of optical components by replication and (2) plasma spraying as a means of reinforcing a thin replica optic with one or more backing layer(s) having tailorable thermomechanical properties. In x-ray optics as in other applications, replication reduces the time and cost of fabrication because grinding and polishing can be limited to a few thick masters, from which many lightweight replicas can thereafter be made. The first step in the fabrication of a component of the type in question is to make a replica optic by electroforming a thin layer of nickel on a master. Through proper control of the electroforming process conditions, it is possible to minimize residual stress and, hence, to minimize distortion in the replica. Next, a powder comprising ceramic particles coated with a metal compatible with the electroformed nickel is plasma-sprayed onto the backside of the nickel replica. Then through several repetitions and variations of the preceding steps or perhaps a small compressive stress, alternating layers of electroformed nickel and plasma-sprayed metal-coated ceramic powder are deposited. The thicknesses of the layers and the composition of the metal-coated ceramic powder are chosen to optimize the strength, areal mass density, and toughness of the finished component. An important benefit of using both electroforming and plasma spraying is the possibility of balancing stresses to a minimum level, which could be zero or perhaps a small net compressive stress designed to enhance the function of the component in its intended application

    A weak lensing study of the Coma cluster

    Full text link
    Due to observational constraints, dark matter determinations in nearby clusters based on weak lensing are still extremely rare, in spite of their importance for the determination of cluster properties independent of other methods. We present a weak lensing study of the Coma cluster (redshift 0.024) based on deep images obtained at the CFHT. After obtaining photometric redshifts for the galaxies in our field based on deep images in the u (1x1 deg2), and in the B, V, R and I bands (42'x52'), allowing us to eliminate foreground galaxies, we apply weak lensing calculations on shape measurements performed in the u image. We derive a map of the mass distribution in Coma, as well as the radial shear profile, and the mass and concentration parameter at various radii. We obtain M_200c = 5.1+4.3-2.1 x10^14 Msun and c_200c=5.0+3.2-2.5, in good agreement with previous measurements. With deep wide field images it is now possible to analyze nearby clusters with weak lensing techniques, thus opening a broad new field of investigation

    Gamma-Ray and Radio Observations of PSR B1509-58

    Get PDF
    Abstract : We report concurrent radio and gamma-ray observations of PSR B1509-58 carried out by the Parkes Radio Telescope and by the Burst and Transient Source Experiment (BATSE) and the Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma Ray Observatory (CGRO-Gamma-ray light curves fitted at several energies between ~ 20-500 keV yield a phase offset with respect to the radio pulse that is independent of energy, with an average value 0.32 plus or minus 0.02. Although this value is larger by 0.07 than that reported by Kawai et al., the difference is not statistically significant (only~2 sigma) when account is taken of the uncertainty associated with their result. We briefly discuss the possibility that the energy-independence of the gamma-ray pulse phase is a signature of non-thermal radiation in the X-ray/gamma-ray range and the suggestion of a dependence of pulsar radio-gamma-ray phase offset on pulse period

    Toward Large-Area Sub-Arcsecond X-Ray Telescopes II

    Get PDF
    In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (approx. = 3 sq m) and fine angular resolution (approx. = 1"). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 sq m) of lightweight (approx. = 2 kg/sq m areal density) high-quality mirrors, at an acceptable cost (approx. = 1 M$/sq m of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates

    Toward Large-Area Sub-Arcsecond X-Ray Telescopes

    Get PDF
    The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (>1 sq m) and finer angular resolution(100 sq m) of lightweight (1 kg/sq m areal density) high quality mirrors-possibly entailing active (in-space adjustable) alignment and figure correction. This paper discusses relevant programmatic and technological issues and summarizes progress toward large area sub-arcsecond x-ray telescopes. Key words: X-ray telescopes, x-ray optics, active optics, electroactive devices, silicon mirrors, differential deposition, ion implantation

    13th Texas Symposium on Relativistic Astrophysics

    No full text
    corecore