52 research outputs found

    syntenet: an R/Bioconductor package for the inference and analysis of synteny networks

    Get PDF
    Interpreting and visualizing synteny relationships across several genomes is a challenging task. We previously proposed a network-based approach for better visualization and interpretation of large-scale microsynteny analyses. Here, we present syntenet, an R package to infer and analyze synteny networks from whole-genome protein sequence data. The package offers a simple and complete framework, including data preprocessing, synteny detection and network inference, network clustering and phylogenomic profiling, and microsynteny-based phylogeny inference. Graphical functions are also available to create publication-ready plots. Synteny networks inferred with syntenet can highlight taxon-specific gene clusters that likely contributed to the evolution of important traits, and microsynteny-based phylogenies can help resolve phylogenetic relationships under debate

    Manifestation of palmoplantar pustulosis during or after infliximab therapy for plaque-type psoriasis: report on five cases

    Get PDF
    Infliximab is a monoclonal antibody directed against TNF-α. It has been approved for use in rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, psoriatic arthritis and plaque-type psoriasis. In case reports, positive effects on pustular variants of psoriasis have also been reported. However, paradoxically, manifestation of pustular psoriasis and plaque-type psoriasis has been reported in patients treated with TNF antagonists including infliximab for other indications. Here, we report on 5 patients with chronic plaque-type psoriasis who developed palmoplantar pustulosis during or after discontinuation of infliximab therapy. In two of the five cases, manifestation of palmoplantar pustulosis was not accompanied by worsening of plaque-type psoriasis. Possibly, site-specific factors or a differential contribution of immunological processes modulated by TNF inhibitors to palmoplantar pustulosis and plaque-type psoriasis may have played a role

    Selfing in haploid plants and efficacy of selection: codon usage bias in the model moss Physcomitrella patens

    Full text link
    Long term reduction in effective population size will lead to major shift in genome evolution. In particular, when effective population size is small, genetic drift becomes dominant over natural selection. The onset of self-fertilization is one evolutionary event considerably reducing effective size of populations. Theory predicts that this reduction should be more dramatic in organisms capable for haploid than for diploid selfing. Although theoretically well-grounded, this assertion received mixed experimental support. Here we test this hypothesis by analyzing synonymous codon usage bias of genes in the model moss Physcomitrella patens frequently undergoing haploid selfing. In line with population genetic theory, we found that the effect of natural selection on synonymous codon usage bias is very weak. Our conclusion is supported by four independent lines of evidence: a) Very weak or nonsignificant correlation between gene expression and codon usage bias; b) No increased codon usage bias in more broadly expressed genes; c) No evidence that codon usage bias would constrain synonymous and nonsynonymous divergence; d) Predominant role of genetic drift on synonymous codon usage predicted by a model-based analysis. These findings show striking similarity to those observed in AT-rich genomes with weak selection for optimal codon usage and GC content overall. Our finding is in contrast to a previous study reporting adaptive codon usage bias in the moss P. patens

    Evolution of the recombination regulator PRDM9 in minke whales.

    Get PDF
    Funder: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.BACKGROUND: PRDM9 is a key regulator of meiotic recombination in most metazoans, responsible for reshuffling parental genomes. During meiosis, the PRDM9 protein recognizes and binds specific target motifs via its array of C2H2 zinc-fingers encoded by a rapidly evolving minisatellite. The gene coding for PRDM9 is the only speciation gene identified in vertebrates to date and shows high variation, particularly in the DNA-recognizing positions of the zinc-finger array, within and between species. Across all vertebrate genomes studied for PRDM9 evolution, only one genome lacks variability between repeat types - that of the North Pacific minke whale. This study aims to understand the evolution and diversity of Prdm9 in minke whales, which display the most unusual genome reference allele of Prdm9 so far discovered in mammals. RESULTS: Minke whales possess all the features characteristic of PRDM9-directed recombination, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF) with evidence of rapid evolution, particularly at DNA-recognizing positions that evolve under positive diversifying selection. Seventeen novel PRDM9 variants were identified within the Antarctic minke whale species, plus a single distinct PRDM9 variant in Common minke whales - shared across North Atlantic and North Pacific minke whale subspecies boundaries. CONCLUSION: The PRDM9 ZnF array evolves rapidly, in minke whales, with at least one DNA-recognizing position under positive selection. Extensive PRDM9 diversity is observed, particularly in the Antarctic in minke whales. Common minke whales shared a specific Prdm9 allele across subspecies boundaries, suggesting incomplete speciation by the mechanisms associated with PRDM9 hybrid sterility

    Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation

    No full text
    Background: Plants have evolved light sensing mechanisms to optimally adapt their growth and development to the ambient light environment. The COP1/SPA complex is a key negative regulator of light signaling in the well-studied dicot Arabidopsis thaliana. COP1 and members of the four SPA proteins are part of an E3 ubiquitin ligase that acts in darkness to ubiquitinate several transcription factors involved in light responses, thereby targeting them for degradation by the proteasome. While COP1 is also found in humans, SPA proteins appear specific to plants. Here, we have functionally addressed evolutionary conservation of COP1 and SPA orthologs from the moss Physcomitrella, the monocot rice and the dicot Arabidopsis. Results: To this end, we analyzed the activities of COP1- and SPA-like proteins from Physcomitrella patens and rice when expressed in Arabidopsis. Expression of rice COP1 and Physcomitrella COP1 protein sequences predominantly complemented all phenotypic aspects of the viable, hypomorphic cop1-4 mutant and the null, seedling-lethal cop1-5 mutant of Arabidopsis: rice COP1 fully rescued the constitutive-photomorphogenesis phenotype in darkness and the leaf expansion defect of cop1 mutants, while it partially restored normal photoperiodic flowering in cop1. Physcomitrella COP1 partially restored normal seedling growth and flowering time, while it fully restored normal leaf expansion in the cop1 mutants. In contrast, expression of a SPA ortholog from Physcomitrella (PpSPAb) in Arabidopsis spa mutants did not rescue any facet of the spa mutant phenotype, suggesting that the PpSPAb protein is not functionally conserved or that the Arabidopsis function evolved after the split of mosses and seed plants. The SPA1 ortholog from rice (OsSPA1) rescued the spa mutant phenotype in dark-grown seedlings, but did not complement any spa mutant phenotype in light-grown seedlings or in adult plants. Conclusion: Our results show that COP1 protein sequences from Physcomitrella, rice and Arabidopsis have been functionally conserved during evolution, while the SPA proteins showed considerable functional divergence. This may - at least in part - reflect the fact that COP1 is a single copy gene in seed plants, while SPA proteins are encoded by a small gene family of two to four members with possibly sub-or neofunctionalized tasks

    The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data

    Full text link
    High‐throughput RNA sequencing (RNA‐seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages – protonema, gametophore and sporophyte – allowed us to define both general transcriptional patterns and stage‐specific transcripts. As an example of variation of physico‐chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter‐laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories

    syntenet : an R/Bioconductor package for the inference and analysis of synteny networks

    Get PDF
    Interpreting and visualizing synteny relationships across several genomes is a challenging task. We previously proposed a network-based approach for better visualization and interpretation of large-scale microsynteny analyses. Here, we present syntenet, an R package to infer and analyze synteny networks from whole-genome protein sequence data. The package offers a simple and complete framework, including data preprocessing, synteny detection and network inference, network clustering and phylogenomic profiling, and microsynteny-based phylogeny inference. Graphical functions are also available to create publication-ready plots. Synteny networks inferred with syntenet can highlight taxon-specific gene clusters that likely contributed to the evolution of important traits, and microsynteny-based phylogenies can help resolve phylogenetic relationships under debate.AVAILABILITY AND IMPLEMENTATION: syntenet is available on Bioconductor (https://bioconductor.org/packages/syntenet), and the source code is available on a GitHub repository (https://github.com/almeidasilvaf/syntenet).The European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program; Ghent University; the Max Planck Society and the Chinese Universities Scientific Fund.http://bioinformatics.oxfordjournals.orghj2023BiochemistryGeneticsMicrobiology and Plant Patholog

    Pabies1.0-HC.1000mRNA1000

    No full text
    Reference fasta file used for mapping the reads containing all high confidence genes from the Picea genome (Nystedt et al. 2013) with 1000 bp before and after the mRNA if availabl

    methylation_bed_files

    No full text
    bed files with information on methylation status for CG, CHG and CHH methylation in the eight sequenced libraries
    • 

    corecore