26 research outputs found

    Evaluation of clustering results and novel cluster algorithms

    Get PDF
    Cluster analysis is frequently performed in many application fields to find groups in data. For example, in medicine, researchers have used gene expression data to cluster patients suffering from a particular disease (e.g., breast cancer), in order to detect new disease subtypes. Many cluster algorithms and methods for cluster validation, i.e., methods for evaluating the quality of cluster analysis results, have been proposed in the literature. However, open questions about the evaluation of both clustering results and novel cluster algorithms remain. It has rarely been discussed whether a) interesting clustering results or b) promising performance evaluations of newly presented cluster algorithms might be over-optimistic, in the sense that these good results cannot be replicated on new data or in other settings. Such questions are relevant in light of the so-called "replication crisis"; in various research disciplines such as medicine, biology, psychology, and economics, many results have turned out to be non-replicable, casting doubt on the trustworthiness and reliability of scientific findings. This crisis has led to increasing popularity of "metascience". Metascientific studies analyze problems that have contributed to the replication crisis (e.g., questionable research practices), and propose and evaluate possible solutions. So far, metascientific studies have mainly focused on issues related to significance testing. In contrast, this dissertation addresses the reliability of a) clustering results in applied research and b) results concerning newly presented cluster algorithms in the methodological literature. Different aspects of this topic are discussed in three Contributions. The first Contribution presents a framework for validating clustering results on validation data. Using validation data is vital to examine the replicability and generalizability of results. While applied researchers sometimes use validation data to check their clustering results, our article is the first to review the different approaches in the literature and to structure them in a systematic manner. We demonstrate that many classical cluster validation techniques, such as internal and external validation, can be combined with validation data. Our framework provides guidance to applied researchers who wish to evaluate their own clustering results or the results of other teams on new data. The second Contribution applies the framework from Contribution 1 to quantify over-optimistic bias in the context of a specific application field, namely unsupervised microbiome research. We analyze over-optimism effects which result from the multiplicity of analysis strategies for cluster analysis and network learning. The plethora of possible analysis strategies poses a challenge for researchers who are often uncertain about which method to use. Researchers might be tempted to try different methods on their dataset and look for the method yielding the "best" result. If only the "best" result is selectively reported, this may cause "overfitting" of the method to the dataset and the result might not be replicable on validation data. We quantify such over-optimism effects for four illustrative types of unsupervised research tasks (clustering of bacterial genera, hub detection in microbial association networks, differential network analysis, and clustering of samples). Contributions 1 and 2 consider the evaluation of clustering results and thus adopt a metascientific perspective on applied research. In contrast, the third Contribution is a metascientific study about methodological research on the development of new cluster algorithms. This Contribution analyzes the over-optimistic evaluation and reporting of novel cluster algorithms. As an illustrative example, we consider the recently proposed cluster algorithm "Rock"; initially deemed promising, it later turned out to be not generally better than its competitors. We demonstrate how Rock can nevertheless appear to outperform competitors via optimization of the evaluation design, namely the used data types, data characteristics, the algorithm’s parameters, and the choice of competing algorithms. The study is a cautionary tale that illustrates how easy it can be for researchers to claim apparent "superiority" of a new cluster algorithm. This, in turn, stresses the importance of strategies for avoiding the problems of over-optimism, such as neutral benchmark studies

    Over-optimism in unsupervised microbiome analysis: Insights from network learning and clustering

    Get PDF
    In recent years, unsupervised analysis of microbiome data, such as microbial network analysis and clustering, has increased in popularity. Many new statistical and computational methods have been proposed for these tasks. This multiplicity of analysis strategies poses a challenge for researchers, who are often unsure which method(s) to use and might be tempted to try different methods on their dataset to look for the “best” ones. However, if only the best results are selectively reported, this may cause over-optimism: the “best” method is overly fitted to the specific dataset, and the results might be non-replicable on validation data. Such effects will ultimately hinder research progress. Yet so far, these topics have been given little attention in the context of unsupervised microbiome analysis. In our illustrative study, we aim to quantify over-optimism effects in this context. We model the approach of a hypothetical microbiome researcher who undertakes four unsupervised research tasks: clustering of bacterial genera, hub detection in microbial networks, differential microbial network analysis, and clustering of samples. While these tasks are unsupervised, the researcher might still have certain expectations as to what constitutes interesting results. We translate these expectations into concrete evaluation criteria that the hypothetical researcher might want to optimize. We then randomly split an exemplary dataset from the American Gut Project into discovery and validation sets multiple times. For each research task, multiple method combinations (e.g., methods for data normalization, network generation, and/or clustering) are tried on the discovery data, and the combination that yields the best result according to the evaluation criterion is chosen. While the hypothetical researcher might only report this result, we also apply the “best” method combination to the validation dataset. The results are then compared between discovery and validation data. In all four research tasks, there are notable over-optimism effects; the results on the validation data set are worse compared to the discovery data, averaged over multiple random splits into discovery/validation data. Our study thus highlights the importance of validation and replication in microbiome analysis to obtain reliable results and demonstrates that the issue of over-optimism goes beyond the context of statistical testing and fishing for significance

    KD Diagnosis Does Not Increase Cardiovascular Risk in Children According to Dynamic Intima–Media Roughness Measurements

    Get PDF
    Background: Kawasaki Disease (KD) is a generalized vasculitis in childhood with possible long-term impact on cardiovascular health besides the presence of coronary artery lesions. Standard vascular parameters such as carotid intima–media thickness (cIMT) have not been established as reliable markers of vascular anomalies after KD. The carotid intima–media roughness (cIMR) representing carotid intimal surface structure is considered a promising surrogate marker for predicting cardiovascular risk even beyond cIMT. We therefore measured cIMR in patients with a history of KD in comparison to healthy controls to investigate whether KD itself and/or KD key clinical aspects are associated with cIMR alterations in the long-term. Methods: We assessed cIMR in this case-control study (44 KD, mean age in years (SD); 13.4 (7.5); 36 controls, mean age 12.1 (5.3)) approximately matched by sex and age. Different clinical outcomes such as the coronary artery status and acute phase inflammation data were analyzed in association with cIMR values. Results: When comparing all patients with KD to healthy controls, we detected no significant difference in cIMR. None of the clinical parameters indicating the disease severity, such as the persistence of coronary artery aneurysm, were significantly associated with our cIMR values. However, according to our marginally significant findings (p = 0.044), we postulate that the end-diastolic cIMR may be rougher than the end-systolic values in KD patients. Conclusions: We detected no significant differences in cIMR between KD patients and controls that could confirm any evidence that KD predisposes patients to a subsequent general arteriopathy. Our results, however, need to be interpreted in the light of the low number of study participants

    Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges

    Get PDF
    Most machine learning algorithms are configured by a set of hyperparameters whose values must be carefully chosen and which often considerably impact performance. To avoid a time-consuming and irreproducible manual process of trial-and-error to find well-performing hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods—for example, based on resampling error estimation for supervised machine learning—can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods, from simple techniques such as grid or random search to more advanced methods like evolution strategies, Bayesian optimization, Hyperband, and racing. This work gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with machine learning pipelines, runtime improvements, and parallelization. This article is categorized under: Algorithmic Development > Statistics Technologies > Machine Learning Technologies > Prediction

    Inhibition of FGF receptor blocks adaptive resistance to RET inhibition in CCDC6-RET-rearranged thyroid cancer.

    Get PDF
    Genetic alterations in RET lead to activation of ERK and AKT signaling and are associated with hereditary and sporadic thyroid cancer and lung cancer. Highly selective RET inhibitors have recently entered clinical use after demonstrating efficacy in treating patients with diverse tumor types harboring RET gene rearrangements or activating mutations. In order to understand resistance mechanisms arising after treatment with RET inhibitors, we performed a comprehensive molecular and genomic analysis of a patient with RET-rearranged thyroid cancer. Using a combination of drug screening and proteomic and biochemical profiling, we identified an adaptive resistance to RET inhibitors that reactivates ERK signaling within hours of drug exposure. We found that activation of FGFR signaling is a mechanism of adaptive resistance to RET inhibitors that activates ERK signaling. Combined inhibition of FGFR and RET prevented the development of adaptive resistance to RET inhibitors, reduced cell viability, and decreased tumor growth in cellular and animal models of CCDC6-RET-rearranged thyroid cancer

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Over-optimistic evaluation and reporting of novel cluster algorithms: an illustrative study

    Get PDF
    When researchers publish new cluster algorithms, they usually demonstrate the strengths of their novel approaches by comparing the algorithms' performance with existing competitors. However, such studies are likely to be optimistically biased towards the new algorithms, as the authors have a vested interest in presenting their method as favorably as possible in order to increase their chances of getting published. Therefore, the superior performance of newly introduced cluster algorithms is over-optimistic and might not be confirmed in independent benchmark studies performed by neutral and unbiased authors. This problem is known among many researchers, but so far, the different mechanisms leading to over-optimism in cluster algorithm evaluation have never been systematically studied and discussed. Researchers are thus often not aware of the full extent of the problem. We present an illustrative study to illuminate the mechanisms by which authors-consciously or unconsciously-paint their cluster algorithm's performance in an over-optimistic light. Using the recently published cluster algorithm Rock as an example, we demonstrate how optimization of the used datasets or data characteristics, of the algorithm's parameters and of the choice of the competing cluster algorithms leads to Rock's performance appearing better than it actually is. Our study is thus a cautionary tale that illustrates how easy it can be for researchers to claim apparent superiority of a new cluster algorithm. This illuminates the vital importance of strategies for avoiding the problems of over-optimism (such as, e.g., neutral benchmark studies), which we also discuss in the article

    For research tasks 1 and 2: Mean, median, and standard deviation (over 50 samplings of discovery/validation data) of the difference (both unscaled and scaled) between the value of the evaluation criterion on the validation data and the corresponding value on the discovery data.

    No full text
    Additionally, the effect size (mean divided by standard deviation) is reported. ARIdiscov denotes the best ARI on the discovery data and ARIvalid the ARI resulting from the corresponding method combination on the validation data. The quantities #hubsdiscov, #hubsvalid (number of hubs) are defined analogously.</p
    corecore