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Abstract

In recent years, unsupervised analysis of microbiome data, such as microbial network anal-

ysis and clustering, has increased in popularity. Many new statistical and computational

methods have been proposed for these tasks. This multiplicity of analysis strategies poses a

challenge for researchers, who are often unsure which method(s) to use and might be

tempted to try different methods on their dataset to look for the “best” ones. However, if only

the best results are selectively reported, this may cause over-optimism: the “best” method is

overly fitted to the specific dataset, and the results might be non-replicable on validation

data. Such effects will ultimately hinder research progress. Yet so far, these topics have

been given little attention in the context of unsupervised microbiome analysis. In our illustra-

tive study, we aim to quantify over-optimism effects in this context. We model the approach

of a hypothetical microbiome researcher who undertakes four unsupervised research tasks:

clustering of bacterial genera, hub detection in microbial networks, differential microbial net-

work analysis, and clustering of samples. While these tasks are unsupervised, the

researcher might still have certain expectations as to what constitutes interesting results.

We translate these expectations into concrete evaluation criteria that the hypothetical

researcher might want to optimize. We then randomly split an exemplary dataset from the

American Gut Project into discovery and validation sets multiple times. For each research

task, multiple method combinations (e.g., methods for data normalization, network genera-

tion, and/or clustering) are tried on the discovery data, and the combination that yields the

best result according to the evaluation criterion is chosen. While the hypothetical researcher

might only report this result, we also apply the “best” method combination to the validation

dataset. The results are then compared between discovery and validation data. In all four

research tasks, there are notable over-optimism effects; the results on the validation data

set are worse compared to the discovery data, averaged over multiple random splits into dis-

covery/validation data. Our study thus highlights the importance of validation and replication
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in microbiome analysis to obtain reliable results and demonstrates that the issue of over-

optimism goes beyond the context of statistical testing and fishing for significance.

Author summary

Microbiome research focuses on communities of microbes, for example, those living in

the human gut. To identify the structure of such communities, constructing microbial

networks that represent associations between different microbes has become popular. The

microbial associations are often further analyzed by applying cluster algorithms, i.e.,

researchers try to find groups (clusters) of microbes that are strongly associated with each

other. Likewise, researchers are also interested in finding clusters of samples that are simi-

lar in bacterial compositions, often referred to as enterotypes. To produce broader and

more reliable insights, networks and clustering results that have been constructed based

on one specific dataset should generalize to other datasets as well. However, this may be

compromised by the large number of statistical methods available for network learning

and clustering. Due to uncertainty about which method to use, researchers might try mul-

tiple approaches on their dataset and pick the method which yields the “best” result (e.g.,

the network that has the highest number of strongly connected microbes). When many

such methods are tried, the “best” method may be overly fitted to the specific dataset at

hand, and the result may not generalize to new data. Our study demonstrates such over-

optimism effects and gives recommendations for detecting and/or avoiding over-

optimistic bias. We aim to generate greater awareness around this issue and to increase

reliability of future microbiome studies.

This is a PLOS Computational Biology Methods paper.

1 Introduction

The popularity of microbiome research has surged in recent decades. Many hypotheses about

the human microbiome, as well as the microbiome of other species or in various environ-

ments, are postulated and tested each year. At the same time, new statistical and computational

methods for analyzing microbiome data are continually introduced. Microbiome analysis has

yielded exciting results, leading to high hopes for new treatment and prevention options in

medicine [1, 2].

In such a fast-moving and promising research field, validation is of vital importance to

ensure the reliability of new results. Yet such practices may sometimes be neglected in favor of

chasing new hypotheses. There is a certain danger of over-optimism in the field: New and excit-

ing results might turn out to be non-replicable, i.e., they cannot be confirmed in studies with

independent data. While a discussion about validation and replication has emerged in micro-

biome research in recent years [3, 4], it is not as advanced as in other fields such as psychology,

where the so-called “replication crisis” has received considerable attention [5]. There is a lack

of studies which illustrate the validation process in microbiome analysis and quantify over-

optimism and (non)replicability. In particular, scant attention has been given to these topics in

relation to unsupervised microbiome data analysis, e.g., network analysis and clustering.
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In the present paper, we take a step toward filling this gap. We illustrate how over-optimism

can arise in unsupervised microbiome analysis using four unsupervised “research tasks” as

examples: clustering bacterial genera, finding hubs in microbial networks, differential network

analysis, and clustering samples. The underlying idea is to model the approach of a “hypotheti-

cal researcher” who has these research tasks in mind and is confronted with a variety of meth-

ods to choose from. Due to uncertainty about the appropriate method to apply in the present

case, the researcher might be tempted to try different analysis strategies and pick the “optimal

result” for each task. We quantify the over-optimistic bias that can arise out of choosing the

“best” method in this way, by validating the optimized results on validation data (which we

will define shortly). Our primary interest does not lie in any of the four specific research tasks,

but rather in demonstrating the importance of validation and the necessity of avoiding ques-

tionable research practices. Through this illustrative study, we aim to raise awareness for these

topics in microbiome analysis.

We now explain our usage of the terms “over-optimism”, “validation”, and “replication”.

Broadly speaking, over-optimism may result from two sources of multiplicity: a) multiplicity of

(tested) hypotheses or b) multiplicity of analysis strategies. It is well known that multiple testing
(i.e., testing multiple hypotheses on a dataset) can lead to false-positive results due to the accu-

mulation of the type I-error probability. Such problems may appear in microbiome research,

e.g., when testing many associations of microbiome-related variables with health-related vari-

ables and only reporting the significant results [3]. However, even when considering only a

single hypothesis, the multiplicity of analysis strategies [6]—which we focus on in this paper—

may lead to varied results and the potential for selectively reporting only the best ones.

Researchers must make several choices about their analysis strategy (a mechanism known as

“researcher degrees of freedom”, [7]), including data preprocessing (e.g., normalization) and

statistical analysis in a narrower sense. Often, multiple analysis strategies are possible and sen-

sible, which leads to method uncertainty [8] because it is not necessarily clear which analysis

choice is the best one. In microbiome analysis, for example, a large number of methods for

estimating and analysing microbial association networks exists [9], from which the researcher

must choose.

In such situations, there is a temptation for the researcher to try different methods and then

pick the one that yields the best result. This approach might be considered sensible: Finding

the “best” method for the data appears to be a natural goal. However, when the number of

tried methods is high, there is a substantial danger of “overfitting” the analysis to the present

dataset. The best-performing method might thus perform well on the data currently used, but

perhaps not as well on a validation dataset due to sampling variability—in other words, the

optimized result cannot be (fully) validated or replicated on the validation data. Here, we

define “replication” as applying the same methods of a study to new data [4]; see [10] for a

more extensive discussion of the concept of replication. “Validation”, as we use it, is a broader

term: A result is reappraised on a validation dataset, which may be either genuinely new data,

or a dataset obtained by splitting the original data into two parts (discovery and validation

data) [11]. We use the latter approach in our study.

The connection between the multiplicity of analysis strategies and over-optimism is occa-

sionally mentioned in the literature, mostly in relation to significance testing [12]. For exam-

ple, it is well known that trying different analysis choices can make it easier to find a

statistically significant result [7, 13]. If the researcher does this in an intentional manner (i.e.,

tweaking the analysis choices sequentially until a “significant” p-value is reached), this is called

p-hacking [14]. However, over-optimistic bias might also appear without conscious “hacking”:

A researcher may try different methods with the best intentions but then proceed to selective
reporting (reporting only the method that yields the best result). Additionally, such effects do
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not only pertain to significance testing, but may appear whenever the result of a statistical anal-

ysis is quantified (e.g., with a performance measure or an index value).

In this paper we focus on over-optimism in the context of unsupervised microbiome analy-

sis, outside of the classical setting of significance testing. We illustrate the over-optimistic

effects caused by the multiplicity of analysis strategies in combination with selective reporting,

as quantified by the subsequent validation of the optimistic results. As exemplary data, we use

OTU count data from the American Gut Project (AGP) obtained with 16S amplicon sequenc-

ing [15]. It is well known that technical variation in amplicon sequencing (e.g., batch effects

with respect to different labs or different machines) or using different methods for clustering

sequences to obtain OTUs may lead to variation in the generation of the OTU count data and

the results of subsequent statistical analysis [4, 16–18]. In the present work, however, we focus

on the multiplicity of the statistical analysis methods (starting from the processed OTU count

table), which has received somewhat less attention than multiplicity stemming from different

technical methods. Recently, some studies have highlighted that different statistical analysis

methods or modeling strategies may yield inconsistent results, namely in the context of micro-

biome-disease association modeling [19], microbiome differential abundance methods [20],

and analyzing microbiome intervention design studies [21]. In contrast to these studies, a) we

focus on the multiplicity of unsupervised statistical methods, i.e., methods for network learning

and clustering, and b) our main goal is not to compare the results of different methods, but

rather to quantify over-optimism effects that stem from picking the “best” result. The range of

the statistical methods we consider includes 1) normalization to make read counts comparable

across samples and to account for compositionality (if required by the subsequent analysis

steps), 2) estimation of microbial networks, sample networks, and (dis)similarity matrices, and

3) methods to further process the network/(dis)similarity information such as clustering.

The key idea of our illustrative study consists of splitting the whole dataset into a discovery

and a validation set, trying out different methods for each of these three analysis steps on the

discovery data, choosing the combination of methods that yields the best result on the discov-

ery data according to an evaluation criterion, and applying this combination to the validation

data to check whether the evaluation criterion takes a similar value. Fig 1 gives an overview of

this approach, which we now describe in more detail.

We use four exemplary “research tasks” to illustrate the effects of the multiplicity of analysis

strategies. Imagine a researcher who wishes to perform an unsupervised analysis of micro-

biome data. Even though the analysis is unsupervised and might be performed for exploratory

purposes, the researcher usually has some hopes for the results. While these expectations could

be vague at first, the researcher might eventually focus on a concrete evaluation criterion that

represents these hopes in order to judge the results. The researcher tries different statistical

methods and chooses the method that yields the best result according to the evaluation crite-

rion. We now detail the four research tasks, the hopes that our hypothetical researcher might

have, and the concrete evaluation criteria they might use (and which we therefore choose for

our illustrative study):

1. Clustering of bacterial genera: Bacterial genera can be clustered based on their associa-

tions such that highly associated genera are likely to belong to the same cluster. Hence, the

assignment of two genera to the same cluster indicates shared variation over the samples,

which in turn might suggest a shared functionality. We assume that the hypothetical

researchers hopes to find a clustering of bacterial genera that yields good agreement with

the taxonomic categorization of the genera into families. As concrete evaluation criterion,

we choose the Adjusted Rand Index (ARI, [22]), a measure for comparing two partitions,

normalized for chance agreement. The ARI ranges in [−1, 1], with higher values indicating
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higher similarity of the partitions. In this research task, one partition is given by the cluster-

ing as calculated by the researcher, the other one by the taxonomic categorization of the

genera into families. The higher the ARI (i.e., the closer to 1), the more similar the calcu-

lated clustering is to the taxonomic categorization, which indicates a “better” clustering.

While it is typically not realistic to find a clustering that is perfectly aligned with the taxo-

nomic categorization (i.e., where the ARI is equal to 1), some agreement with the taxonomy

is often considered as a good property of a bacterial clustering [23]. While we perform the

clustering at the genus level, the same logic would apply at any taxonomic level. This

remark also holds for the other research tasks.

2. Hub detection: A researcher might hope to find a microbial network with interesting key-

stone taxa (also called “microbial hubs”), i.e., highly connected taxa which are assumed to

have a strong impact on the rest of the network. Detecting and analyzing keystone taxa in

order to better understand microbial interactions has become popular in recent years [24–

26]. Taxa that are identified as hubs based on network centrality measures (see Section 4.3.2

Fig 1. Graphical overview of our study. The process of drawing 50 samplings of discovery and validation data is repeated for different sample sizes: n
2 {100, 250, 500, 1000, 4000} for tasks 1 and 2, n 2 {100, 250, 500} for task 3, and n 2 {100, 250, 500, 1000, 3500} for task 4.

https://doi.org/10.1371/journal.pcbi.1010820.g001
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for details) are not automatically biologically important keystone taxa [25]. Still, hub detec-

tion can serve as a starting point to carry out further analyses about the role of the detected

hubs [27]. For example, a recent study [28] analyzed microbiome data from aquatic envi-

ronments where many microbes are “unknown taxa”, i.e., uncharacterized. The authors

generated microbial networks and performed hub detection. Frequently, the detected

hubs were unknown taxa, which in turn serves to prioritize these specific taxa for further

analyses.

In our illustrative example, we assume that our hypothetical researcher is interested in gen-

erating as many interesting hypotheses and directions for further research as possible.

Therefore, we assume that the researcher chooses a method that yields a relatively high

number of hubs, to maximize the “hubbiness” of the network. Thus, the number of hubs is

used as the concrete evaluation criterion. Of course, other criteria to choose an “interesting”

network with hubs are also feasible.

3. Differential network analysis: Microbiome researchers are often interested in the effects of

treatments, such as antibiotics, on the gut microbial community (see, e.g., [29, 30] for back-

ground). When generating microbial association networks for two groups (one for persons

who did not take antibiotics in the last year, and one for persons who took antibiotics in the

last month), a researcher might expect that the networks (as proxies for microbial commu-

nity structure) potentially change. As concrete evaluation criterion we measure the dissimi-

larity between the networks with the Graphlet Correlation Distance (GCD) between the

networks [31]. The method that yields the largest GCD between the two networks is chosen.

The GCD has been used in previous studies to compare microbial networks [32–34].

4. Clustering of samples: The three previous research tasks are all based on associations

between microbes. In contrast, the fourth task focuses on similarities between samples
(individuals). The goal is to find a clustering of samples such that samples within the same

cluster have a similar bacterial composition, while the composition differs between samples

of different clusters. This task is inspired by the popular concept of “enterotypes”. In 2011, a

study [35] argued that individuals can be clustered into three distinct groups which repre-

sent different gut microbiome types (enterotypes). Whether enterotypes truly exist (and if

they do, how many there are) has since become a topic of controversial discussion [36–40].

Some studies have already noted that using different methods for clustering the samples

(e.g., different methods for calculating the similarities between the samples) may lead to dif-

ferent enterotype results [37, 41]. However, to the best of our knowledge, the relation

between the multiplicity of analysis strategies and over-optimism has not yet been explicitly

studied. For this exemplary research task, we assume that the hypothetical researcher is

interested in finding enterotypes in the AGP dataset. As concrete evaluation criterion, we

use the Average Silhouette Width (ASW [42]). The ASW is a cluster validation index that

measures the homogeneity as well as the separation of the clusters. The index ranges in [−1,

1], with higher values indicating a better clustering. The ASW has been previously used in

enterotype studies to evaluate the quality of sample clusterings [35, 37, 41].

For each of the four research tasks, we imitate our “hypothetical researcher” by trying dif-

ferent methods (i.e., methods for estimating microbial networks, calculating similarities

between samples, and/or clustering) and looking for the best result. The hypothetical

researcher might stop at this point, and only report the best result according to the respective

criterion. In contrast, we are interested in whether the best result can be confirmed on valida-
tion data: The result obtained by the “best” method on the discovery data (i.e., the “best” ARI,

number of hubs, GCD, or ASW, respectively) is compared with the result obtained by this
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method on the validation data. The discovery and validation datasets are obtained by ran-

domly sampling two disjoint subsets from the full AGP dataset, a process which is repeated

multiple times.

Note that our analysis serves only illustrative purposes to study over-optimism effects. It is

not our aim to systematically evaluate or compare the chosen method combinations. More-

over, we do not claim that researchers typically apply multiple methods to a dataset as system-

atically as we do this here, nor that they “optimize” for the best method with malicious intent.

Nevertheless, during a longer research process, researchers will often try multiple methods on

a dataset, and even if this happens with the best intentions, it might still cause over-optimism

effects.

So far, we have spoken of imitating the behavior of a single hypothetical researcher or

research team. Our study might also be interpreted as modeling the behavior of multiple
research teams. Each team tries a different analysis strategy and only the team with the “best”

result is able to publish their findings (e.g., due to publication bias).

We present the results of our analysis in Section 2. Section 3 contains a discussion. In Sec-

tion 4, we give a detailed overview of the exemplary dataset, our study design, and the different

statistical methods that we applied to the discovery data.

2 Results

2.1 Quantifying over-optimism effects

For each research task, we drew discovery and validation sets (each with sample size n) of vary-

ing sizes: n 2 {100, 250, 500, 1000, 4000} for the first two research tasks, n 2 {100, 250, 500} for

the third research task, and n 2 {100, 250, 500, 1000, 3500} for the fourth research task. For the

third task, the maximal sample size was reduced due to the required information about antibi-

otics usage. For the fourth task, the maximal sample size was 3500 instead of 4000 because

only samples from adults were kept for the analysis. More details are given in Section 4.2.

For each n, the process of drawing discovery and validation sets was repeated 50 times. As

sampling variability decreases with increasing n, the performances of a method on both dis-

covery and validation data should become more and more similar. We thus expected over-

optimistic effects to decrease with increasing n.

For each research task, we applied multiple method combinations to the discovery data. For

the first three research tasks which were based on microbial associations, this involved normal-
ization methods (clr [43], mclr [44], and VST [45]), association estimation (Pearson correla-

tion, Spearman correlation, latentcor [46], SPRING [44], and proportionality [47]),

sparsification (t-test, threshold method, and neighborhood selection), and, for the first research

task, clustering (hierarchical clustering, spectral clustering [48], fast greedy modularity optimi-

zation [49], the Louvain method for community detection [50], and manta [51]). For the

fourth research task where samples were clustered based on their similarities, we applied nor-
malization methods (clr, mclr, and VST), similarity calculation (Aitchison distance [52],

Euclidean distance, compositional Kullback-Leibler divergence (cKLD) [53], and Bray-Curtis

dissimilarity [54]), sparsification (threshold method, K-nearest neighbors), and clustering
(Dirichlet multinomial mixtures (DMM) [55], spectral clustering, partitioning around

medoids (PAM) [56], fast greedy modularity optimization, and the Louvain method for com-

munity detection). Detailed descriptions of the combinations are given in Section 4.3.

Supplementary figures in the Supporting Information S1, S2, S3 and S4 Text show the

results of applying the different method combinations to the discovery data for the varying

sample sizes (task 1: Fig A-J in S1 Text, task 2: Fig A-E in S2 Text, task 3: Fig A-C in S3 Text,

task 4: Fig A-J in S4 Text). Notably, there is some change in the selected “best” method
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combination with respect to sample size. In particular, the performance of the sparsification

methods is dependent on the sample size. These results are discussed in detail in S1, S2, S3 and

S4 Text.

Our main interest lies in choosing the method combination that yields the maximum value

of the evaluation criterion (ARI, number of hubs, GCD, and ASW) on the discovery data,

applying it to the validation data, and checking whether the values of the evaluation criteria

can be validated. Over-optimism is indicated if the value of the evaluation criterion is lower on

the validation data compared to the result on the discovery data. Exemplary results for n = 250

are shown in Fig 2 (research tasks 1 & 2) and Fig 3 (research tasks 3 & 4). The corresponding

figures for all other sample sizes n are given in the Supporting Information (task 1: Fig K-O in

S1 Text, task 2: Fig F-J in S2 Text, task 3: Fig D-F in S3 Text, task 4: Fig K-O in S4 Text).

Fig 2. Research tasks 1 & 2: For n = 250, values of the evaluation criteria resulting from the “best” method combinations

on the discovery data are compared to the corresponding results on the validation data. On the x-axis, the method

combinations that performed best in at least one of the 50 samplings are shown. For each of the 50 samplings, the value of the

evaluation criterion on the discovery data (belonging to the best method combination) and the corresponding value on the

validation data are connected by a line, resulting in 50 lines overall. As the lines are slightly transparent, overlapping lines

appear in a darker shade. a) ARI values for the task of clustering bacterial genera, b) numbers of hubs for the hub detection

task.

https://doi.org/10.1371/journal.pcbi.1010820.g002
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On the x-axis, only the method combinations that performed best in at least one of the 50

samplings are shown (that is, not all tried method combinations; the method combinations

that did not perform best in at least one of the samplings do not appear in the plot because

these were never applied to the validation data). For each sampling, the value of the evaluation

criterion on the discovery data (belonging to the best method combination) and the corre-

sponding value on the validation data are connected by a line. For the first and fourth task, the

dots representing the ARI/ASW values are colored according to the number k of clusters in

the respective clustering result. Details about the procedures for determining k are given in

Sections 4.3.1 and 4.3.4. For the other two research tasks, the results are shown as red squares

for the discovery data and black dots for the validation data.

Fig 3. Research tasks 3 & 4: Analogously to Fig 2 (see the description there), values of the evaluation criteria are compared

between discovery and validation data for n = 250. a) GCD values for the differential network analysis task, b) ASW values

for the task of clustering samples.

https://doi.org/10.1371/journal.pcbi.1010820.g003
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The lines point downwards in most cases, i.e., the results for the validation data are usually

slightly worse than for the discovery data. This indicates over-optimism effects. To further

quantify these effects, Table 1 (tasks 1 & 2) and Table 2 (tasks 3 & 4) show the mean, median,

and standard deviation of the difference as well as the scaled difference between the value of

the evaluation criterion on the validation data and the value on the discovery data (over the 50

samplings of discovery/validation data). While it might be interesting to test the differences

between discovery and validation data for significance (to assess whether the results on the

Table 1. For research tasks 1 and 2: Mean, median, and standard deviation (over 50 samplings of discovery/validation data) of the difference (both unscaled and

scaled) between the value of the evaluation criterion on the validation data and the corresponding value on the discovery data. Additionally, the effect size (mean

divided by standard deviation) is reported. ARIdiscov denotes the best ARI on the discovery data and ARIvalid the ARI resulting from the corresponding method combination

on the validation data. The quantities #hubsdiscov, #hubsvalid (number of hubs) are defined analogously.

Research task 1: clustering of bacterial genera

ARIvalid − ARIdiscov ARIvalid�ARIdiscov
ARIdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.054 -0.046 0.044 -1.22 -30.0% -26.7% 24.1% -1.24

250 -0.039 -0.035 0.046 -0.84 -22.0% -21.8% 26.3% -0.84

500 -0.038 -0.037 0.038 -1.01 -21.4% -20.6% 21.6% -0.99

1000 -0.042 -0.035 0.037 -1.13 -23.7% -20.1% 20.3% -1.16

4000 -0.035 -0.033 0.035 -1.00 -19.0% -18.3% 18.8% -1.01

Research task 2: hub detection

#hubsvalid − #hubsdiscov hubsvalid�hubsdiscov
hubsdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -2.44 -3 2.35 -1.04 -21.6% -24.0% 21.3% -1.02

250 -2.18 -2 1.78 -1.22 -20.5% -20.0% 16.5% -1.24

500 -2.12 -2 1.88 -1.13 -20.8% -20.0% 17.9% -1.16

1000 -1.64 -2 1.52 -1.08 -16.3% -18.2% 15.4% -1.06

4000 -1.12 -1 1.32 -0.85 -11.5% -11.1% 13.8% -0.83

https://doi.org/10.1371/journal.pcbi.1010820.t001

Table 2. For research tasks 3 and 4: Mean, median, and standard deviation (over 50 samplings of discovery/validation data) of the difference (both unscaled and

scaled) between the value of the evaluation criterion on the validation data and the corresponding value on the discovery data. Additionally, the effect size (mean

divided by standard deviation) is reported. GCDdiscov denotes the largest GCD on the discovery data and GCDvalid the GCD resulting from the corresponding method com-

bination on the validation data. The quantities ASWdiscov, ASWvalid (average silhouette width) are defined analogously.

Research task 3: differential network analysis

GCDvalid − GCDdiscov
GCDvalid�GCDdiscov

GCDdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.481 -0.463 0.829 -0.58 -25.0% -30.0% 55.5% -0.45

250 -0.555 -0.516 0.856 -0.65 -26.7% -52.8% 72.5% -0.37

500 -0.305 -0.417 0.605 -0.50 -18.6% -45.1% 63.5% -0.29

Research task 4: clustering of samples

ASWvalid − ASWdiscov
ASWvalid�ASWdiscov

ASWdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.055 -0.043 0.088 -0.63 -20.0% -22.6% 35.0% -0.57

250 -0.036 -0.027 0.065 -0.55 -18.3% -16.0% 36.8% -0.50

500 -0.020 -0.017 0.041 -0.48 -10.6% -10.1% 24.7% -0.43

1000 -0.019 -0.002 0.039 -0.48 -11.2% -1.6% 25.5% -0.44

3500 -0.010 -0.010 0.017 -0.58 -7.2% -8.0% 13.3% -0.54

https://doi.org/10.1371/journal.pcbi.1010820.t002

PLOS COMPUTATIONAL BIOLOGY Over-optimism in unsupervised microbiome analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010820 January 6, 2023 10 / 26

https://doi.org/10.1371/journal.pcbi.1010820.t001
https://doi.org/10.1371/journal.pcbi.1010820.t002
https://doi.org/10.1371/journal.pcbi.1010820


validation data are “significantly worse”), a suitable procedure for that purpose has not yet

been proposed, to the best of our knowledge, and would need to be explored in further work.

For cluster analysis, challenges related to this issue have been recently discussed [11]. Instead

of calculating p-values, we report the “effect size” (mean divided by standard deviation) in

Tables 1 and 2.

As expected, the means and medians of the differences are negative for all four research

tasks and all sample sizes, demonstrating that the results on the discovery data were somewhat

over-optimistic. The effect sizes (mean divided by standard deviation) are notable for all

research tasks, albeit slightly smaller for the third and fourth research task. We now discuss the

behavior of the average differences over the varying sample sizes n in more detail for each

research task in turn.

Research task 1 (clustering of bacterial genera): The average absolute decline of the ARI on

the validation data is not drastic, but when considering the scaled difference, the ARI is

reduced on the validation data by about 20–30% on average. Note that the absolute value of

the mean/median ARI difference (both unscaled and scaled) is largest for n = 100, and smallest

for n = 4000. This fits with our previously mentioned hypothesis that over-optimism effects

are less pronounced when n is large. However, between 100 and 4000, there is no clear linearly

decreasing tendency in the absolute mean/median ARI differences. Moreover, there is no clear

tendency with respect to the effect sizes.

Research task 2 (hub detection): The absolute values of the means and medians of the differ-

ences tend to decrease with increasing sample size. Again, this fits with our hypothesis that the

over-optimistic bias decreases with increasing n. This tendency also largely holds for the effect

sizes, although the absolute value of the effect size is slightly larger at n = 250 compared to

n = 100, due to the larger standard deviation at n = 100.

Research task 3 (differential network analysis): The absolute values of the means and medi-

ans do not monotonically decrease with increasing n: for n = 250, these are slightly larger than

for n = 100. This is perhaps due to the fact that the sampling variability is still rather large at

n = 250. At n = 500, however, the over-optimism effect appears to decrease, as evidenced by

the drops in the absolute values of the average differences (both unscaled and scaled). For even

higher sample sizes, we would expect to see a continuing decline of the over-optimistic bias,

although we cannot confirm this due to the limited data availability.

Research task 4 (clustering of samples): Similar to the first research task, the average absolute

decline of the evaluation criterion (here, the ASW) on the validation data is not drastic. When

considering the relative decline, the ASW values decrease on the validation data by about 20%

on average for smaller sample sizes. Over-optimistic bias tends to be less pronounced for larger

sample sizes. With respect to the median differences and effect sizes, the bias slightly increases

again at the largest sample size of n = 3500, but the mean and median differences are quite

small.

We not only analyzed the relation of over-optimistic bias with the sample size, but also

expected over-optimistic bias to decrease if fewer method combinations were tried. To investi-

gate this hypothesis, we repeated our analyses with a reduced number of method combina-

tions: five instead of 58 for the first research task, three instead of 14 for the second and third

research tasks, and five instead of 31 for the fourth research task. The chosen subsets of combi-

nations as well as the results are described in detail in the Supporting Information S5 Text.

The means and medians of the differences mostly remain negative for the different research

tasks and sample sizes (indicating that some over-optimistic bias still exists), but as expected,

the absolute values of the mean/median differences as well as the effect sizes tend to be smaller.

This supports our hypothesis that over-optimistic bias is more pronounced the more method
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combinations are tried. Of course, the exact amount of over-optimistic bias still depends on

the chosen (subset of) method combinations.

2.2 Additional stability analyses

While our main focus was to compare the “best” result on the discovery data to the corre-

sponding result on the validation data (with respect to the evaluation criteria), we also report

some additional stability results for the first two research tasks to further demonstrate that the

methods do not necessarily yield stable results on discovery vs. validation data. For the task of

clustering bacterial genera, we compared the clusterings on discovery vs. validation data with

the ARI (while the agreement with the taxonomic categorization was ignored). This measure is

denoted as ARIstab. The results are reported in Table 3. For the hub detection task, we com-

pared the sets of hubs on discovery vs. validation data with the Jaccard index (on the genus

level) and cosine similarity index (on the family level), as reported in Table 4. The indices are

described in more detail in Section 4.3.

For the clustering task, Table 3 shows that for smaller sample sizes, the mean ARIs are

rather far away from 1, which indicates notable differences between the clusterings of the bac-

teria based on discovery vs. validation data. The clusterings tend to become more similar with

increasing sample size, but even for n = 4000, the mean ARI of about 0.8 indicates that the

clusterings are still different to some extent. This shows that the chosen clustering on the dis-

covery data is not necessarily stable regarding cluster memberships when the result is validated

on the validation data.

For the hub detection task, Table 4 demonstrates that the sets of hubs can be quite different

between discovery and validation data, as measured with the Jaccard index (which ranges

between 0 and 1). For smaller sample sizes, the similarity is particularly small. The Jaccard val-

ues increase with increasing sample size, but even at n = 4000, a mean value of about 0.7 shows

that there are still notable dissimilarities between the sets of hubs. For the similarity on family

Table 3. Mean, median, and standard deviation of ARIstab, i.e., the ARI between the clusterings of bacterial genera

on discovery and validation data, over 50 samplings of discovery/validation data.

ARIstab
n mean median sd

100 0.361 0.329 0.111

250 0.509 0.491 0.166

500 0.604 0.574 0.168

1000 0.600 0.568 0.166

4000 0.763 0.792 0.140

https://doi.org/10.1371/journal.pcbi.1010820.t003

Table 4. Mean, median, and standard deviation (over 50 samplings of discovery/validation data) of a) the Jaccard index which compares the set of hubs obtained on

the discovery data with the set of hubs on the validation data, and b) the cosine similarity which compares these sets of hubs, but on the level of families.

Jaccard Cosine similarity

n mean median sd mean median sd

100 0.236 0.250 0.109 0.881 0.911 0.112

250 0.359 0.357 0.119 0.922 0.955 0.078

500 0.443 0.429 0.116 0.948 0.969 0.060

1000 0.546 0.538 0.139 0.946 0.974 0.068

4000 0.709 0.727 0.147 0.975 0.984 0.026

https://doi.org/10.1371/journal.pcbi.1010820.t004
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level, we expected higher values (given that two hubs from the same family which differ on the

genus level are counted as not equal for the Jaccard index and as equal for the cosine similar-

ity). Indeed, the values of the cosine similarity (which ranges between -1 and 1), are generally

quite high. Therefore, if one only interprets the hubs on family level (e.g., with respect to typi-

cal functions of the bacterial families), there is less danger of instability between discovery and

validation data, compared to an interpretation on genus level.

We repeated the stability analyses with reduced numbers of tried methods combinations as

described in the previous section. The results are reported in the Supporting Information S5

Text. Overall, the stability results are rather similar to the ones obtained with the full sets of

method combinations.

3 Discussion

We have quantified over-optimism effects resulting from the multiplicity of analysis strate-

gies coupled with selective reporting, using four exemplary microbiome research questions.

Our results indicate an over-optimistic bias for all four research tasks. That is, when choos-

ing the “best” method on the discovery data according to the maximization of an evaluation

criterion, this criterion then tends to attain lower (“worse”) values on the validation data

when the same method is applied. The exact size of the over-optimistic bias depends on the

research task and sample size. Generally speaking, the over-optimistic bias tends to be more

pronounced at smaller sample sizes, although the relation between sample size and optimis-

tic bias is not always strictly monotonically decreasing in our analyses. Moreover, the over-

optimistic bias also depends on the number of tried method combinations. When we

tried fewer combinations, we still detected some over-optimistic bias, but the bias was less

pronounced.

Additional stability analyses for the first two research tasks have illustrated that clustering

solutions and sets of hubs—which have been yielded by a method on discovery data—do not

necessarily remain stable when the same method is applied to validation data.

In summary, our study has demonstrated that the issue of over-optimism and instability of

results goes beyond the context of statistical testing and fishing for significance, and pertains

to unsupervised analysis strategies as well.

The number of tried method combinations in the analyses with all combinations (58 for the

clustering of bacterial genera, 14 for hub detection and differential network analysis, 31 for the

clustering of samples) may seem quite large for a single researcher to attempt. However, we

would argue that these numbers are not that unrealistic. The method combinations are not

independent of each other. Rather, the combinations are obtained by varying methods along

the analysis pipeline (e.g., the type of sparsification). Modern software packages make it very

easy to quickly switch from one method choice to another. Moreover, as mentioned in the

introduction, our study might also be interpreted as modeling the behavior of multiple
research teams. Large public datasets, such as the AGP data, are studied by many researchers.

While a single researcher or research team might only try a few analysis strategies, the strate-

gies tried by multiple teams could sum up to a much larger number.

In order to quantify over-optimism, we deliberately split a single dataset into two parts

instead of using an independent dataset as validation data. With the latter approach, we could

not have determined whether worse performance on the validation data indeed stemmed from

the multiplicity of analysis strategies combined with selective reporting (which is the focus of

our work), or was simply due to substantial differences between discovery and validation data

(e.g., different populations). Of course, beyond the context of our study, using external data is

generally important to check the validity and generalizability of results.
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A constraint of our study is that for each research task in turn, we translated expectations of

the “hypothetical researcher” into a single fixed evaluation criterion. Of course, researchers

might have various expectations and thus multiple criteria in mind. On the one hand, it is

likely more difficult for researchers to find a result that is simultaneously good with respect to

multiple criteria, thus potentially reducing over-optimism effects. On the other hand, consider-

ing multiple criteria might allow researchers to pick one or a few criteria based on obtaining

good results. This constitutes another source of multiplicity (adding to the sources of multi-

plicity considered in the present study), which in turn might increase over-optimistic bias. It

would be interesting to analyze the effects of considering multiple criteria in future work.

Over-optimism can lead to unreliable results and might ultimately hinder research prog-

ress. We now discuss some strategies which may help researchers avoid over-optimistic bias in

their application studies.

As illustrated by our analyses with a reduced number of method combinations, over-opti-

mistic bias tends to decrease if fewer methods are tried. Therefore, the first option is to reduce

the multiplicity of analysis strategies before the start of the analysis. Researchers should care-

fully consider which method is most suitable for their application. Here, guidance from neutral
comparison studies can be relevant. Such studies compare existing methods (instead of intro-

ducing a novel method), and the authors of the study are neutral, i.e., they do not have a vested

interest in a particular method showing better performance than the others and are as a group

approximately equally familiar with all considered methods. We refer to [57, 58] for a more

detailed discussion of this concept. It would be desirable if more neutral comparison studies

were published in the context of methodological research on microbiome analysis. For exam-

ple, two recent studies already provide such a welcome effort in the context of microbial differ-

ential abundance testing [20, 59], and guidelines for benchmarking microbiome analysis

methods have been proposed as well [60].

An additional strategy is preregistration of the researchers’ analysis plan. Preregistering

refers to defining the research hypotheses and analysis plan, and posting this plan to a registry,

before observing the results. This concept has gained plenty of attention in recent years [61].

Once their analysis plan is registered, researchers might shy away from trying many other

analysis strategies and selectively reporting only the best results.

However, preregistration might not always be possible or sensible: for example, in explor-

atory research, researchers typically cannot pin down the exact analysis strategy in advance,

and trying out different methods sequentially is quite natural [4]. Indeed, unsupervised analy-

sis methods, on which we have focused in our study, are often used for exploratory purposes.

In such cases, when the multiplicity of analysis strategies cannot be avoided, researchers

should honestly report that their study is exploratory and that multiple methods were tried.

They should not present their analyses as if a single analysis pipeline was fixed in advance, nor

should they report only the “best” results.

In general, we would advise researchers to use validation data to validate their results when-

ever possible. While we have included validation data in our study to quantify over-optimism

effects, researchers can also use validation data in their applied research, to check whether the

best results on the discovery data still hold on the validation data. This is particularly relevant

when the multiplicity of possible analysis strategies cannot be reduced beforehand, e.g., in the

absence of relevant neutral comparison studies for the methods of interest. For the topic of

cluster analysis(research tasks 1 and 4), different strategies for validating clustering results on

validation data have been previously discussed in detail [11]. More awareness for the impor-

tance of validation data has also emerged in microbiome research (see, e.g., in the context of

supervised analysis [62, 63] and large-scale cohort studies [64]). Using validation data does

not directly prevent over-optimism on the discovery data, but helps to detect over-optimistic
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results. The evaluation on the validation data can be considered as a more realistic assessment

of the quality of the result, thus correcting for over-optimistic bias.

Sometimes, validation data is not available, e.g., because the dataset is too small to be

split into discovery and validation sets, and a suitable independent validation set does not

exist. For such cases, it would be interesting to find other indicators of potential over-

optimism. Researchers might check, for instance, whether the results from the different

tested methods coincide. Similarity of the results indicates robustness with respect to

method choice. However, lack of robustness does not automatically imply that the results

(or the “best” result) will also be over-optimistic, in the sense that they cannot be vali-

dated on validation data. Vice versa, if the results are robust, it is not entirely clear to

which extent this is an indicator of nonexistent or small over-optimistic bias (although a

reduced extent of over-optimism might be somewhat likely because obtaining very simi-

lar results would not allow researchers to pick a single result that is notably better than

the other ones). It might be interesting to study the relation between robustness and rep-

licability on validation data in further work.

The present study does not aim at systematically evaluating the performance of any chosen

method combination. In particular, we do not give recommendations about which methods to

use. In future research, it might be interesting to explore whether the design used in this study

could be adapted to method evaluation and comparison. More precisely, one might repeatedly

sample discovery and validation datasets as in our study, and evaluate methods based on

whether they a) have a good performance on the discovery data and b) have a similar perfor-

mance on the validation data, i.e., do not tend to overfit to the discovery data.

In summary, we hope that our study helps raise awareness of the important problem of

over-optimism in microbiome research, and that it motivates more widespread implementa-

tion of strategies to avoid over-optimistic bias. If researchers adhere to good research practices,

the results of microbiome analyses will likely become more reliable and replicable in the

future.

4 Materials and methods

4.1 Dataset

We used data from the American Gut Project [15], a large citizen-science initiative. The proj-

ect collected (mainly) fecal samples from participants in the United States, United Kingdom,

and Australia. The researchers also collected metadata on the participants, e.g., health status,

disease history, and lifestyle variables. Bacterial abundances were obtained using high-

throughput amplicon sequencing, targeting the V4 region of the 16S rRNA marker gene with

subsequent variant calling.

We downloaded an OTU count table for unrarefied bacterial fecal samples (dating from

2017) from the project website http://ftp.microbio.me/AmericanGut/ag-2017-12-04/, together

with metadata about the samples. The OTU count table originally contained p = 35511 OTUs

and N = 15148 samples. Following [23], we performed three preprocessing steps: 1) removing

samples with a sequencing depth of less than 10000 counts, 2) removing OTUs which were

present in less than 30% of the remaining samples, 3) removing 10% of the remaining samples,

namely the samples with a sequencing depth under the 10%-percentile. The resulting OTU

count table comprises p = 531 OTUs and N = 9631 samples.

For all four research tasks, the analysis was performed on the taxonomic rank of genera, to

which the data were agglomerated. OTUs with unknown genus were assigned their own indi-

vidual genus, which resulted in p = 323 genera overall.
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4.2 Sampling of discovery and validation datasets

We obtained discovery and validation datasets by randomly sampling two disjoint subsets

from the full AGP dataset. For each research task, the process of sampling discovery and vali-

dation data was performed along the samples of the AGP data (i.e., the subjects), not along the

bacteria. This is because in each task, the bacteria formed a fixed set of entities of specific inter-

est. This set thus remained constant for both discovery and validation data. For clustering, this

is discussed in more detail in [11].

Discovery and validation sets (each with sample size n) were drawn of varying sizes: n 2

{100, 250, 500, 1000, 4000} for the first two research tasks (clustering of bacterial genera and

hub detection), n 2 {100, 250, 500} for the third research task (differential network analysis),

and n 2 {100, 250, 500, 1000, 3500} for the fourth research task (clustering of samples). For dif-

ferential network analysis, the maximal sample size was reduced because we only considered

samples that did not take antibiotics in the last year as well as samples that took antibiotics in

the last month. There were 6901 samples that fulfilled these criteria. Moreover, the sampling

was stratified according to antibiotics use; for discovery and validation data each, we drew n/2

samples that did not take antibiotics in the last year and n/2 samples that took antibiotics in

the last month. Because there are only 544 persons who took antibiotics in the last month, the

maximum n is reduced to 500. For sample clustering, the maximum n is 3500 instead of 4000

because we only kept samples from adults between ages 20–65 (7145 samples overall). We

focused on this age group because previous studies have shown that the composition of the gut

microbiome varies across age [65–67], with potentially more extreme “enterotypes” in children

and the elderly [40, 68].

4.3 Methods for unsupervised microbiome analysis

In this section, we discuss which method combinations were applied to the discovery data, and

how the results were evaluated on the validation data.

4.3.1 Research task 1: Clustering bacterial genera. We varied different steps of the clus-

ter analysis process, resulting in 58 method combinations that were tried on the discovery

data. In this section we explain how the 58 combinations were obtained.

We used cluster algorithms from two categories. Algorithms from the first category are

based on (dis)similarity matrices: hierarchical clustering and spectral clustering [48]. Algo-

rithms from the second category are based on networks with weighted edges: fast greedy mod-

ularity optimization [49], the Louvain method for community detection [50], and the manta

algorithm [51].

To generate either (dis)similarity matrices or weighted networks, associations (rij)i,j
between the microbes must be calculated. Beforehand, often zero handling and normalization

of the data are required. Table 5 gives an overview of the method combinations used for calcu-

lating the associations rij for later use in (dis)similarity based clustering, i.e., for generating

(dis)similarity matrices which will later be used as input for hierarchical and spectral cluster-

ing. We used four different association measures. The first ones are the Pearson and Spearman

correlations, which require normalization to account for compositionality. Here we used

either the centered log-ratio transformation (clr, [43]), the modified clr transformation (mclr,

[44]), or the variance-stabilizing transformation (VST, [45]). As the clr and VST methods can-

not handle zeros in the count data, a pseudo count of 1 was added to the count data before nor-

malizing with these methods (mclr, on the other hand, can deal with zeros). Apart from the

Pearson and Spearman correlations, we used the semi-parametric rank-based correlation,

which is based on estimating the latent correlation matrix of a truncated Gaussian copula

model (latentcor, [46, 69]). Since the latentcor method requires normalized counts that are
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strictly non-negative, it was only combined with the mclr transformation. The final association

measure is proportionality [47, 70]. Proportionality is a compositionally aware method that

measures associations between log-ratio transformed variables [47]. We thus used the clr

transformation as proposed in [47] and replaced zero counts by a pseudo count.

Table 6 shows the method combinations used for calculating the associations rij for later

use in network-based clustering. That is, these methods were used for generating weighted net-

works. The method combinations are very similar to the methods in Table 5 for generating

(dis)similarity matrices. Indeed, weighted networks are also based on (dis)similarity matrices,

but the generation contains an additional sparsification step, as explained below. Again, the

Pearson and Spearman correlations were used with the respective normalization and/or zero

handling methods. We also used the SPRING method [44], which combines the latentcor cor-

relation estimation with sparse graphical modeling techniques, namely by using the neighbor-

hood selection technique [71] for sparse estimation of partial correlations. Finally, we used the

proportionality measure.

To generate a weighted network, the associations rij (which are usually different from zero)

were not directly used as an adjacency matrix—otherwise, the network would be dense. There-

fore, the associations rij were transformed into sparsified values r�
ij by setting some r�

ij to zero to

indicate that i and j are not connected, r�
ij ¼ rij otherwise. For sparsification of the Pearson and

Table 6. Method combinations for generating weighted microbial association networks. The networks were used as input for fast greedy modularity optimization, Lou-

vain community detection, and manta.

Zero handling Normalization Association estimation Sparsification

pseudo clr Pearson t-test

pseudo clr Pearson threshold

pseudo VST Pearson t-test

pseudo VST Pearson threshold

none mclr Pearson t-test

none mclr Pearson threshold

pseudo clr Spearman t-test

pseudo clr Spearman threshold

pseudo VST Spearman t-test

pseudo VST Spearman threshold

none mclr Spearman t-test

none mclr Spearman threshold

none mclr SPRING neighborhood selection

pseudo clr proportionality threshold

https://doi.org/10.1371/journal.pcbi.1010820.t006

Table 5. Method combinations for generating microbial associations, which are then transformed into (dis)simi-

larity matrices. The (dis)similarity matrices were used as input for hierarchical and spectral clustering.

Zero handling Normalization Association estimation

pseudo clr Pearson

pseudo VST Pearson

none mclr Pearson

pseudo clr Spearman

pseudo VST Spearman

none mclr Spearman

none mclr latentcor

pseudo clr proportionality

https://doi.org/10.1371/journal.pcbi.1010820.t005
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Spearman correlations rij, we used either Student’s t-test or the threshold method. The former

sets r�
ij ¼ 0 if the association rij is not significantly different from 0 according to the t-test. The

p-values were adjusted for multiple testing via the local false discovery rate [72]. For the thresh-

old method, we set r�
ij ¼ 0 if rij < c for some fixed threshold value c (we use c = 0.15 which gave

reasonable results in preliminary analyses, not shown). For the proportionality measure, we

used threshold sparsification. SPRING already comes with inbuilt sparsification given by the

neighborhood selection method.

After calculating the associations as in Tables 5 and 6, they were then transformed as fol-

lows (the pipeline and notations are taken from [9]):

a. For (dis)similarity based clustering (Table 5): A dissimilarity matrix D = (dij) for hierarchi-

cal clustering is calculated via dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ð1 � rijÞ

q
. A similarity matrix S = (sij) for spectral

clustering is obtained by setting sij = 1 − dij.

b. For network-based clustering (Table 6): A weighted network is constructed as follows. For

the edges ij with r�
ij 6¼ 0 (i.e., the edges that remain after sparsification), the distances dij and

similarities sij are calculated as in a). Finally, the weighted network is represented as an adja-

cency matrix A = (aij) with aij = sij for ij with r�
ij 6¼ 0, and aij = 0 otherwise.

The (dis)similarity matrices and networks were then used as input for clustering. For hier-

archical and spectral clustering, we fixed the number of clusters at k = 10, which was inspired

by the ten different taxonomic classes in the data. Also, k = 10 tends to yield better ARI results

than ks lower than ten (preliminary analysis, not shown). ks higher than ten were not tried

because we aimed to emulate a researcher who wants to find an interpretable, handy clustering

(there are 34 different taxonomic families, but 34 clusters are not easily interpretable). The

other clustering algorithms all have inbuilt mechanisms for determining k. Forcing k to be 10

for these methods generally did not improve the results (not shown). However, k can be indi-

rectly influenced via the sparsification: The sparser the network, the more clusters tend to be

found. This is one of the reasons we set the threshold for threshold sparsification at c = 0.15

because this value generally yielded sufficiently high ks to find good results, but only rarely ks

that are so high that the clusters are difficult to interpret.

Overall, the method combinations yielded 58 different clustering results on the discovery

data: 16 based on (dis)similarity clustering (eight rows in Table 5 times two cluster algo-

rithms), and 42 based on network clustering (fourteen rows in Table 6 times three cluster algo-

rithms). The best one out of the 58 clustering results was chosen, i.e., the clustering with the

highest ARI regarding the taxonomic categorization into families. The corresponding method

combination was applied to the validation data. The ARI between the clustering on the valida-

tion data and the taxonomic categorization was computed and compared with the best ARI on

the discovery data. If the ARI on the validation data was lower, this was an indication that the

best ARI on the discovery data was over-optimistic.

As an additional stability analysis, we compared the chosen clustering on the discovery data

with the clustering on the validation data, again using the ARI.

4.3.2 Research task 2: Hub detection. Here, we wanted to generate sparse weighted

microbial association networks. For this purpose, we used the same methods as in Table 6.

Thus, 14 method combinations were tried on the discovery data.

For hub detection in the resulting networks, hubs were defined as nodes that have the high-

est degree, betweenness, and closeness centrality [25]. More precisely, we determined the hubs

as the nodes with centrality values above the 95% empirical quantile, for each of the three

centrality measures simultaneously. The centralities are defined as follows [73]: The degree
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centrality denotes the number of adjacent nodes. The betweenness centrality measures the frac-

tion of times a node lies on the shortest path between all other nodes. The closeness centrality

of a node is the reciprocal of the sum of shortest paths between this node and all other nodes.

All centrality measures were normalized to be comparable between networks of different sizes

(see [9] for details). The centralities were only calculated for the largest connected component

of each network (i.e., the largest subgraph of the network in which all nodes are connected);

centrality values of nodes in the disconnected component were set to zero. We assumed that

“hubs” in small parts of the network that are disconnected from the majority of the nodes are

of less interest to researchers. Moreover, the betweenness and closeness centrality depend on

shortest paths, which are not well-defined for nodes in different unconnected sub-graphs.

After applying the 14 method combinations and calculating the hubs for each resulting net-

work, the method combination that yielded the highest number of hubs was chosen. If there

were multiple method combinations that attained the maximal number of hubs, we chose the

combination that yielded higher mean centrality values of the hubs. More specifically, for each

set of hubs that corresponds to a method combination, the mean values of the three centrality

measures were calculated over the hubs. Then for each centrality measure separately, the sets

of hubs were ranked according to these mean values. Finally, the set of hubs (and thus the cor-

responding method combination) that yielded the highest mean rank over all three centrality

measures was chosen.

The “best” method combination was then applied to the validation data. The number of

hubs in the microbial network on the validation data was calculated and compared with the

highest number of hubs on the discovery data. Over-optimism was indicated if the number of

hubs was lower on the validation data.

Additionally, we reported the similarity of the sets of hubs determined on the discovery vs.

validation data with the Jaccard index [74]: let Hdiscov, Hvalid be the sets of hubs for the discov-

ery resp. validation data, then

JaccðHdiscov;HvalidÞ ¼
jHdiscov \ Hvalidj

jHdiscov [ Hvalidj
:

The Jaccard index takes values in [0, 1], and is closer to 1 the more similar the sets are. The

similarity between the sets of hubs was also assessed on the higher taxonomic level of families

with the cosine similarity index. More precisely, assume that the hubs (genera) in the union

Hdiscov[Hvalid belong to l distinct families overall. Let f ðdÞ
¼ ðf ðdÞ

1 ; . . . ; f ðdÞ

l Þ be the family fre-

quency vector for Hdiscov, that is, each entry f ðdÞ

j counts how many hubs in Hdiscov belong to

family j. Analogously, let f(v) be the family frequency vector for Hvalid. The vectors f(d) and f(v)

are then compared with the cosine similarity index:

cos simðfðdÞ
; f ðvÞ

Þ ¼

Pl
j¼1

f ðdÞ

j f ðvÞ

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl

j¼1
ðf ðdÞ

j Þ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
j¼1

ðf ðvÞ

j Þ
2

q

The cosine similarity index ranges in [0, 1], with higher values indicating higher similarity.

4.3.3 Research task 3: Differential network analysis. As described in Section 4.2, the dis-

covery and validation datasets each consisted of two halves: persons who did not take antibiot-

ics in the last year (“non-antibiotics samples”), and persons who took antibiotics in the last

month (“antibiotics samples”). The methods for generating weighted microbial association

networks as in Table 6 were applied separately to the antibiotics and non-antibiotics samples

of the discovery data.

The resulting networks were compared with the Graphlet Correlation Distance (GCD,

[31]). This distance measures the similarity of the networks based on small induced subgraphs,
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so-called graphlets. All graphlets composed of up to four nodes are considered, and the auto-

morphism orbits of these graphlets are enumerated (orbits represent the “roles” that nodes can

play in the graphlets). For each node in a given network, one can count how often the node

participates in each graphlet at the respective orbits. Only 11 non-redundant orbits are consid-

ered here. Based on these orbit counts across all nodes, the 11 × 11 Spearman correlation

matrix among the 11 orbits is calculated, which represents a robust and size independent net-

work summary statistics. For comparing two networks, the Spearman correlation matrix is cal-

culated for each network in turn. Then the Euclidean distance between the upper triangular

parts of these matrices is calculated, resulting in the GCD.

In our study, the network generation method that yielded the largest GCD between the

antibiotics network and the non-antibiotics network was chosen as the “best” one and applied

to the antibiotics and non-antibiotics samples in the validation data. Again, the resulting net-

works were compared with the GCD. If the GCD on the validation data was smaller (i.e., the

antibiotics vs. non-antibiotics networks were more similar than on the discovery data), this

indicated over-optimism.

4.3.4 Research task 4: Clustering of samples. Similar to the first research task, both

(dis)similarity-based and network-based cluster algorithms were applied to the discovery

data (resulting in 31 clusterings overall). In contrast to the first task, dissimilarities between

samples instead of microbes were calculated, and sample networks instead of microbial asso-

ciation networks were estimated (i.e., networks in which nodes correspond to samples, not

taxa).

We considered partitioning around medoids (PAM) [56] as well as spectral clustering as

instances of (dis)similarity-based clustering algorithms. We chose PAM since it has been fre-

quently used in enterotype studies [35, 37, 41, 68]. For this research task, we excluded hierar-

chical clustering because this algorithm frequently resulted in clusters with nearly all samples

contained in one cluster and only a few samples in other clusters (this phenomenon did not

occur to the same extent in the clustering of bacterial genera). Presumably, researchers would

be less interested in such clustering results.

From the category of network-based cluster algorithms, we chose fast greedy modularity

optimization and the Louvain method for community detection. The manta algorithm was not

chosen because it was explicitly developed for clustering taxa, not samples.

We also included clustering based on Dirichlet multinomial mixtures (DMM) [55]. In con-

trast to the cluster algorithms listed above, DMM does not require calculation of dissimilarities

between samples and can be applied directly to the microbial count matrix. The DMM method

has been used in several studies to detect enterotypes [55, 68, 75].

Table 7 presents the different methods for calculating dissimilarities (dij)i,j between the sam-

ples, which are then used as input for PAM and spectral clustering. We used the Aitchison dis-

tance [52] which is defined as the Euclidean distance between clr-transformed compositions.

We also combined the Euclidean distance with the VST and mclr normalization. Moreover,

Table 7. Method combinations for dissimilarity calculation. The dissimilarity matrices were used as input for PAM

and spectral clustering.

Zero handling Normalization Association estimation

pseudo clr Aitchison

pseudo VST Euclidean

none mclr Euclidean

pseudo fractions cKLD

none mclr Bray-Curtis

https://doi.org/10.1371/journal.pcbi.1010820.t007
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we applied the compositional Kullback-Leibler divergence (cKLD) [53]. The cKLD measure is

suitable for application on compositional data; thus, the counts are merely transformed into

fractions (relative abundances) before the measure is applied. Finally, we applied the Bray-

Curtis dissimilarity measure [54], which requires non-negative values as input and is therefore

combined with the mclr normalization.

The dissimilarities dij were scaled to [0, 1], resulting in values dscale
ij (see [9] for details). The

scaled dissimilarities were used as input for PAM. Similarities sij for spectral clustering were

obtained by setting sij ¼ 1 � dscale
ij .

For network-based clustering, the same methods for calculating dissimilarities as in Table 7

were used, but with an additional sparsification step. This is displayed in Table 8. The scaled

dissimilarities dscale
ij were transformed into sparsified values d�

ij, either with the threshold

method (by setting d�
ij to 1, i.e., the maximum dissimilarity, if dscale

ij > 0:85), or with the K-near-

est neighbor method (each node is connected to the K = 3 nodes with minimum dissimilarity;

if nodes i and j are not connected after this procedure, d�
ij is set to 1). The weighted sample net-

work is then represented as an adjacency matrix A = (aij) with aij ¼ sij ¼ 1 � d�
ij, with aij = 0

for sparsified edges.

DMM clustering, fast greedy modularity optimization, and Louvain commmunity detec-

tion all have inbuilt mechanisms for determining the number of clusters k. For PAM and spec-

tral clustering, we tried different values k 2 {2, 3, . . ., 10} and chose the k that maximized the

ASW of the clustering.

For calculating the ASW of a clustering, a corresponding dissimilarity matrix is required.

For most clustering results, we used the dissimilarity matrix that was calculated one step

before applying the cluster algorithm. The only exception are clustering results obtained by

DMM which does not require prior calculation of dissimilarities. We calculated the ASW

values for DMM clustering results based on the Bray-Curtis dissimilarity matrix since the

authors of the DMM method used this dissimilarity measure to visualize their clustering

results [55].

Overall, the considered method combinations led to 31 different clustering results on the

discovery data: one based on DMM clustering, ten based on (dis)similarity clustering (five

rows in Table 7 times two cluster algorithms), and 20 based on network clustering (ten rows in

Table 8 times two cluster algorithms). The method combination that yielded the clustering

with the highest ASW value was chosen and applied to the validation data, with over-optimis-

tic bias indicated by lower ASW values on the validation data.

Table 8. Method combinations for generating weighted sample networks. The networks were used as input for fast greedy modularity optimization and Louvain com-

munity detection.

Zero handling Normalization Association estimation Sparsification

pseudo clr Aitchison threshold

pseudo clr Aitchison K-NN

pseudo VST Euclidean threshold

pseudo VST Euclidean K-NN

none mclr Euclidean threshold

none mclr Euclidean K-NN

pseudo fractions cKLD threshold

pseudo fractions cKLD K-NN

none mclr Bray-Curtis threshold

none mclr Bray-Curtis K-NN

https://doi.org/10.1371/journal.pcbi.1010820.t008
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4.4 Technical implementation

All analyses were performed with R, version 4.0.4 and Python, version 3.6.13. Our fully repro-

ducible code is available at https://github.com/thullmann/overoptimism-microbiome. (Dis)

similarity matrices and weighted networks were generated with the R package NetCoMi [9].

Spectral clustering was performed with a previously published R implementation [23]. For fast

greedy modularity optimization and the Louvain method for community detection, we used

the R package igraph [76]. For clustering with manta, we accessed the Python implementation

[51] with the reticulate interface for R [77]. We used the R package cluster [78] for PAM clus-

tering, and the R package DirichletMultinomial [79] for DMM clustering. Orbit counts for the

calculation of the GCD were generated with the R package orca [80].
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6. Hoffmann S, Schönbrodt F, Elsas R, Wilson R, Strasser U, Boulesteix AL. The multiplicity of analysis

strategies jeopardizes replicability: lessons learned across disciplines. Royal Society Open Science.

2021; 8:201925. https://doi.org/10.1098/rsos.201925 PMID: 33996122

7. Simmons JP, Nelson LD, Simonsohn U. False-positive psychology: undisclosed flexibility in data collec-

tion and analysis allows presenting anything as significant. Psychological Science. 2011; 22(11):1359–

1366. https://doi.org/10.1177/0956797611417632 PMID: 22006061

8. Klau S, Martin-Magniette ML, Boulesteix AL, Hoffmann S. Sampling uncertainty versus method uncer-

tainty: A general framework with applications to omics biomarker selection. Biometrical Journal. 2020;

62(3):670–687. https://doi.org/10.1002/bimj.201800309 PMID: 31099917

9. Peschel S, Müller CL, von Mutius E, Boulesteix AL, Depner M. NetCoMi: network construction and com-

parison for microbiome data in R. Briefings in Bioinformatics. 2020; 22(4):bbaa290. https://doi.org/10.

1093/bib/bbaa290

10. Nosek BA, Errington TM. What is replication? PLoS Biology. 2020; 18(3):e3000691. https://doi.org/10.

1371/journal.pbio.3000691 PMID: 32218571

11. Ullmann T, Hennig C, Boulesteix AL. Validation of cluster analysis results on validation data: A system-

atic framework. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2022; 12(3):

e1444. https://doi.org/10.1002/widm.1444

12. Ioannidis JP. Why most published research findings are false. PLoS Medicine. 2005; 2(8):e124. https://

doi.org/10.1371/journal.pmed.0020124 PMID: 16060722

13. Gelman A, Loken E. The statistical crisis in science. American Scientist. 2014; 102(6):460. https://doi.

org/10.1511/2014.111.460

14. Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD. The extent and consequences of p-hacking in

science. PLoS Biology. 2015; 13(3):e1002106. https://doi.org/10.1371/journal.pbio.1002106 PMID:

25768323

15. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, et al. American gut: an

open platform for citizen science microbiome research. Msystems. 2018; 3(3):e00031–18. https://doi.

org/10.1128/mSystems.00031-18 PMID: 29795809

16. Sinha R, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, Amir A, et al. Assessment of variation in microbial

community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium.

Nature Biotechnology. 2017; 35(11):1077–1086. https://doi.org/10.1038/nbt.3981 PMID: 28967885

17. Allali I, Arnold JW, Roach J, Cadenas MB, Butz N, Hassan HM, et al. A comparison of sequencing plat-

forms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiology.

2017; 17(1):194. https://doi.org/10.1186/s12866-017-1101-8 PMID: 28903732

18. Clausen DS, Willis AD. Evaluating replicability in microbiome data. Biostatistics. 2021;kxab048 https://

doi.org/10.1093/biostatistics/kxab048.

19. Tierney BT, Tan Y, Yang Z, Shui B, Walker MJ, Kent BM, et al. Systematically assessing microbiome–

disease associations identifies drivers of inconsistency in metagenomic research. PLoS Biology. 2022;

20(3):1–18. https://doi.org/10.1371/journal.pbio.3001556 PMID: 35235560

20. Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, et al. Microbiome differential

abundance methods produce different results across 38 datasets. Nature Communications. 2022;

13(1):1–16. https://doi.org/10.1038/s41467-022-28034-z

21. Khomich M, Måge I, Rud I, Berget I. Analysing microbiome intervention design studies: Comparison of

alternative multivariate statistical methods. PLoS One. 2021; 16(11):1–20. https://doi.org/10.1371/

journal.pone.0259973 PMID: 34793531

PLOS COMPUTATIONAL BIOLOGY Over-optimism in unsupervised microbiome analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010820 January 6, 2023 23 / 26

https://doi.org/10.1126/scitranslmed.aaw1815
http://www.ncbi.nlm.nih.gov/pubmed/30700573
https://doi.org/10.1016/j.tips.2016.10.001
http://www.ncbi.nlm.nih.gov/pubmed/27814885
https://doi.org/10.1186/s40168-017-0267-5
http://www.ncbi.nlm.nih.gov/pubmed/28476139
https://doi.org/10.1128/mBio.00525-18
https://doi.org/10.1128/mBio.00525-18
http://www.ncbi.nlm.nih.gov/pubmed/29871915
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1098/rsos.201925
http://www.ncbi.nlm.nih.gov/pubmed/33996122
https://doi.org/10.1177/0956797611417632
http://www.ncbi.nlm.nih.gov/pubmed/22006061
https://doi.org/10.1002/bimj.201800309
http://www.ncbi.nlm.nih.gov/pubmed/31099917
https://doi.org/10.1093/bib/bbaa290
https://doi.org/10.1093/bib/bbaa290
https://doi.org/10.1371/journal.pbio.3000691
https://doi.org/10.1371/journal.pbio.3000691
http://www.ncbi.nlm.nih.gov/pubmed/32218571
https://doi.org/10.1002/widm.1444
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pmed.0020124
http://www.ncbi.nlm.nih.gov/pubmed/16060722
https://doi.org/10.1511/2014.111.460
https://doi.org/10.1511/2014.111.460
https://doi.org/10.1371/journal.pbio.1002106
http://www.ncbi.nlm.nih.gov/pubmed/25768323
https://doi.org/10.1128/mSystems.00031-18
https://doi.org/10.1128/mSystems.00031-18
http://www.ncbi.nlm.nih.gov/pubmed/29795809
https://doi.org/10.1038/nbt.3981
http://www.ncbi.nlm.nih.gov/pubmed/28967885
https://doi.org/10.1186/s12866-017-1101-8
http://www.ncbi.nlm.nih.gov/pubmed/28903732
https://doi.org/10.1093/biostatistics/kxab048
https://doi.org/10.1093/biostatistics/kxab048
https://doi.org/10.1371/journal.pbio.3001556
http://www.ncbi.nlm.nih.gov/pubmed/35235560
https://doi.org/10.1038/s41467-022-28034-z
https://doi.org/10.1371/journal.pone.0259973
https://doi.org/10.1371/journal.pone.0259973
http://www.ncbi.nlm.nih.gov/pubmed/34793531
https://doi.org/10.1371/journal.pcbi.1010820


22. Hubert L, Arabie P. Comparing partitions. Journal of Classification. 1985; 2(1):193–218. https://doi.org/

10.1007/BF01908075

23. Badri M, Kurtz ZD, Bonneau R, Müller CL. Shrinkage improves estimation of microbial associations

under different normalization methods. NAR Genomics and Bioinformatics. 2020; 2(4):lqaa100. https://

doi.org/10.1093/nargab/lqaa100 PMID: 33575644

24. Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occur-

rence networks. Frontiers in Microbiology. 2014; 5:219. https://doi.org/10.3389/fmicb.2014.00219

PMID: 24904535

25. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic

factors to plant microbiome variation. PLoS Biology. 2016; 14(1):e1002352. https://doi.org/10.1371/

journal.pbio.1002352 PMID: 26788878

26. Banerjee S, Schlaeppi K, van der Heijden MG. Keystone taxa as drivers of microbiome structure and

functioning. Nature Reviews Microbiology. 2018; 16(9):567–576. https://doi.org/10.1038/s41579-018-

0024-1 PMID: 29789680
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