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Abstract
When researchers publish new cluster algorithms, they usually demonstrate the
strengths of their novel approaches by comparing the algorithms’ performance with
existing competitors. However, such studies are likely to be optimistically biased
towards the new algorithms, as the authors have a vested interest in presenting their
method as favorably as possible in order to increase their chances of getting published.
Therefore, the superior performance of newly introduced cluster algorithms is over-
optimistic and might not be confirmed in independent benchmark studies performed
by neutral and unbiased authors. This problem is known among many researchers,
but so far, the different mechanisms leading to over-optimism in cluster algorithm
evaluation have never been systematically studied and discussed. Researchers are thus
often not aware of the full extent of the problem. We present an illustrative study to
illuminate the mechanisms by which authors—consciously or unconsciously—paint
their cluster algorithm’s performance in an over-optimistic light. Using the recently
published cluster algorithm Rock as an example, we demonstrate how optimization
of the used datasets or data characteristics, of the algorithm’s parameters and of the
choice of the competing cluster algorithms leads to Rock’s performance appearing
better than it actually is. Our study is thus a cautionary tale that illustrates how easy
it can be for researchers to claim apparent “superiority” of a new cluster algorithm.
This illuminates the vital importance of strategies for avoiding the problems of over-
optimism (such as, e.g., neutral benchmark studies), which we also discuss in the
article.
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1 Introduction

Cluster analysis refers to grouping similar objects in data, while separating dissimilar
ones. While there already are a huge number of cluster algorithms (see e.g., Xu and
Wunsch (2010) for an overview), researchers continue to propose novel algorithms
every year. Researchers who introduce a new cluster algorithm typically publish it
together with a demonstration of the strengths of their approach and its superiority
over alternative methods.

However, the results of such studies should be regarded with caution. Publica-
tion bias (Boulesteix et al. 2015) constitutes a considerable external incentive for
researchers to demonstrate the superiority of their new approach: journals and confer-
ences aremuchmore likely to accept a paper about a novel computationalmethod if this
method shows good performance and is “better” than pre-existing approaches. This
may tempt researchers to present their method’s performance in an over-optimistic
fashion, a mechanism that is also called the “self-assessment trap” (Norel et al. 2011).
Such scenarios can not only appear in the research field of clustering but can also be
found in all types of methodological research, i.e., the development and evaluation of
data analytic techniques and algorithms (Boulesteix et al. 2020).

Over-optimization is not necessarily performed in a malicious or even intentional
manner, but it is problematic because the new method may turn out to have a worse
performance than initially claimed when it is later investigated in a neutral comparison
study, i.e., a study whose authors do not have a vested interest in one of the competing
methods, see Boulesteix et al. (2013). In other words, the good performance result is
not replicable (Boulesteix et al. 2020). Anecdotal evidence for this lack of replicability
is presented by Buchka et al. (2021) for a specific data analysis problem related to
the pre-processing of a special type of high-throughput molecular data. The over-
optimistic presentation of computational methods may lead to the usage of flawed
methods in applications, which could ultimately hinder research progress or even lead
to questionable results in applied research.

But how exactly may researchers present their new methods in an over-optimistic
fashion? For supervised classification, an illustrative case has already been presented
in the field of bioinformatics by Jelizarow et al. (2010). They considered a “promising”
novel classification method, which in reality was not superior to other classifiers. Yet
the authors were able to demonstrate that different mechanisms allow over-optimistic
presentation of this new method’s performance, namely choosing specific datasets,
optimizing the method’s settings and characteristics to these datasets while burying
the other in the file drawer, and choosing suboptimal competing classifiers.

However, to the best of our knowledge, such a study has not yet been conducted
for cluster analysis, i.e., the unsupervised scenario. While over-optimistic (selective)
reporting iswell understood in the context of statistical testing and supervised learning,
where its impact canbe easilymeasured, it ismuch less so in thefield of cluster analysis,
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Over-optimistic evaluation and reporting of novel cluster algorithms 213

which is characterized by the difficulty to properly evaluate methods. We thus aim at
filling this gap by demonstrating how a novel cluster algorithm’s performance can be
presented in an (overly) favorable light.

The problem of over-optimism is in fact as important in unsupervised clustering
as it is in supervised classification, and is probably even exacerbated because the per-
formance evaluation of cluster algorithms has not been studied as systematically as
the evaluation of supervised classifiers in the methodological literature. Guidance for
proper benchmarking of cluster algorithms has only recently emerged (Van Mechelen
et al. 2018). Even though the “true” cluster labels are unknown in clustering appli-
cations, researchers typically use datasets with known labels to evaluate their novel
cluster algorithms. To some extent, the performance evaluation of cluster algorithms
thus appears similar to the evaluation of classifiers. Yet for cluster analysis, the role
of test data is not as clear-cut as in supervised classification (Ullmann et al. 2021),
which entails that researchers are less aware that “overfitting” can not only happen in
supervised classification, but also in cluster analysis. Moreover, optimizing hyperpa-
rameters such as the number of clusters based on the “ground truth”, as is frequently
done in cluster algorithm evaluation, does not take into account that other researchers
who eventually want to use the algorithm in applications do not know the “true”
cluster labels of their datasets, and will thus likely obtain worse results than the per-
formances reported in the original evaluation of the novel algorithm. To evaluate their
new method, researchers might also use performance evaluation measures which do
not require a fixed “ground truth”, such as internal validation indices which measure
internal properties of the data (e.g., homogeneity and/or separateness of the clusters).
However, over-optimism can still be an issue when using these indices.

In the present study, we use the “Rock” algorithm (Beer et al. 2019) as an illustrative
example. Beer et al. (2019) agreed to the usage of their algorithm in our paper. Rock
was originally introduced as a “promising” new algorithm and was presented as being
able to outperform competitors. In subsequent studies, it turned out that Rock does not
generally perform better than its competitors. In the present paper, we show that Rock
outperforms competing algorithms in very specific scenarios and that these scenarios
can be obtained by three different mechanisms: (1.) optimization of datasets and data
characteristics, (2.) optimization of parameters of the Rock algorithm and (3.) the
choice of the competing clustering approaches. We demonstrate that if the optimized
scenarios are selectively reported and the settings in which Rock performs worse are
omitted, the algorithm then appears to outperform its competitors—as a result of an
over-optimistic presentation.

Rock is used only as an example—demonstrating the specific characteristics of the
Rock algorithm is not the main interest of our work. Rather, we use Rock to illustrate
more general mechanisms of over-optimization. We suspect that many studies which
introduce new cluster algorithms are affected by these mechanisms. However, given
that over-optimization can happen quite subtly and/or unintentionally, we do not cite
any published papers here which probably presented their results in an over-optimistic
fashion. Neither do we try to quantify the actual optimistic bias that currently exists in
the literature on cluster algorithms. Rather, our study is intended as a cautionary tale
to raise awareness of the over-optimism problem, and to illuminate the importance
of using strategies to avoid over-optimism (e.g., avoiding selective reporting, using

123



214 T. Ullmann et al.

independent test data and conducting neutral benchmark studies, as discussed in detail
in Sect. 6).

We first give an overview of related work in Sect. 2. Section 3 explains how we
performed optimization of Rock’s performance. The corresponding results are pre-
sented in Sect. 4 and further discussed in Sect. 5. Possible solutions for the problem
of over-optimism are outlined in Sect. 6. We conclude the paper in Sect. 7.

2 Related work

In this section we discuss studies that are related to our work. After presenting stud-
ies which directly look at the over-optimistic bias of new computational methods,
we address aspects in the field of data mining that are connected to over-optimistic
presentation of cluster algorithms.

2.1 Previous work about over-optimistic bias of new computational methods

There appears to be a lack of literature about over-optimism in the introduction of new
cluster algorithms. For computational methods other than clustering, there exist some
studies, to our knowledge mostly in the field of bioinformatics.

As mentioned above, a study similar to ours was previously reported by Jelizarow
et al. (2010), but for supervised classification. Moreover, while this study illustrated
over-optimism with a classification method for gene expression data and used real
cancer gene expression datasets for this purpose, our example is not application spe-
cific. For performance evaluation we choose simulated and real datasets which are
frequently used for the evaluation of cluster algorithms in computational research
(e.g., the synthetic “Two Moons” dataset, the Iris dataset etc., see Sect. 3).

Broadly speaking, the three categories of optimization mechanisms that we analyze
are similar to the categories previously considered in Jelizarow et al. (2010), i.e., opti-
mization of the data, optimization of the algorithm’s characteristics, and the choice of
competing approaches. However, the use of simulated data allows us to systematically
consider data characteristics such as noise or dimensionality, which was not done for
the real datasets used in Jelizarow et al. (2010).

In a similar application context, Yousefi et al. (2010) also addressed over-optimism
when reporting the performance of newly proposed classifiers. They focused on clas-
sification on high-dimensional data with low sample size, such as gene expression
data. The authors specifically considered the optimization of the datasets, i.e., they
analyzed the optimistic bias that results from reporting only the datasets with the
best (or second best) performance of the new classifier. They estimated this bias in
a simulation study, by repeatedly sampling sets of datasets, and recording the best
(or second best) performing dataset of each set. The aim of their study thus was to
quantify the optimistic bias with specific focus on the choice of datasets, whereas we
model different over-optimization mechanisms of a (hypothetical) researcher in an
illustrative way. The results of Yousefi et al. (2010) show that in the high-dimensional
data setting, there is indeed a large optimistic bias when reporting only the best or
second best performing dataset.
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Finally, again in the context of bioinformatics, a recent study aimed to estimate the
optimistic bias in the reported performance of new computational methods to prepro-
cess a special type of raw high-throughput molecular data (Buchka et al. 2021). The
approach was to perform a literature search and compare the reported performance
of newly introduced methods against their performance in later neutral comparison
studies. As expected, novel methods were ranked better than competitors in most of
the papers introducing them, but outperformed competitors at a lesser rate in neutral
studies. Yet the new methods still outperformed more than 50% of their paired com-
petitors in neutral studies, showing that while there is optimistic bias, there is also
some level of genuine scientific progress.

Outside of bioinformatics, Ferrari Dacrema et al. (2021) assessed optimistic bias
in research about recommender systems. Recommender algorithms can be used, for
example, to propose new movies to a media streaming user based on previously
watched movies. Many new recommendation algorithms based on deep learning were
published in recent years, which usually claimed superiority over previous approaches.
Ferrari Dacrema et al. (2021) repeated the evaluations of the original authors, but with
additional baseline algorithms. Their analysis showed that most of the new methods
did not actually outperform simple and long-known baseline algorithms, provided
strong-performing baselines were chosen and their hyperparameters were tuned as
carefully as those of the new algorithms. This highlights that not including strong
competitors or not treating the competing methods fairly might lead to optimistic bias.

2.2 Information visualization

Over-optimistic presentation of results can also be obtained by visualization methods,
i.e., not only by a biased selection of which data to show, but also by how the selected
data is shown. Studies on information visualization address the latter aspect. For
example, visualization methods with a high lie factor (the ratio between “size of effect
shown in graphic” and “size of effect in data”, see Tufte (1983)), ormisleading labeling
and scaling of axes, could be used by a researcher to let their algorithm appear in a
more favorable light.

We do not focus on such mechanisms in our study, and instead illustrate that
over-optimistic reporting of results is also possible if all rules regarding “correct”
information visualization are observed.

2.3 Robustness

Robust clustering algorithms yield a similar quality of results for similar input. Thus,
it is unlikely that there are experimental setups which yield notably better results
than similar experiments and could thus be selectively presented in an over-optimistic
fashion. We do not systematically evaluate the robustness of any of the tested cluster
algorithms in Sect. 4, but rather show how the lack of robustness can be exploited
in order to over-optimistically present the results of the exemplary algorithm. Out of
the diverse types of robustness, we focus on the lack of robustness regarding different
properties of the data as well as hyperparameter settings. For example, we consider
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robustness w.r.t. noise. “Noise” can mean either background noise, i.e., uniformly
distributed points across the data spacewhich do not belong to the original distribution,
or jitter, i.e., small deviations or perturbations in the original distribution. We regard
only the latter in our experiments.

That robustness is crucial for clustering algorithms was already stated by Davé
and Krishnapuram (1997). In recent literature on cluster algorithms, the robustness
regarding different properties of the data is often presented, e.g., the size of the dataset,
number of clusters, dimensionality, and structure of the data. Usually there is a base
case for which one property at a time is changed to regard the effects on the clustering
result. However, it is often left unclear how and why this base case was obtained, and
how the settings which are not regarded in the respective experiment are chosen.

Even though the robustness regarding the choice of hyperparameters seems simi-
larly important, authors often refer to “expert knowledge” for finding the “best” setting,
and omit a robustness analysis. This can lead to enormous disagreements in the eval-
uation of an algorithm, see, e.g., the controversy about DBSCAN (Ester et al. 1996;
Gan and Tao 2015; Schubert et al. 2017). Even easily interpretable hyperparameters,
such as the number of clusters k (e.g., for k-Means, Lloyd 1982), which at first sight
do not seem to require a robustness analysis, might show better performance w.r.t. the
evaluation measure when set at a value different from the “ground truth”.

To summarize, robustness regarding different aspects is not only important to guar-
antee a predictable quality of clustering for users, but also reduces the potential for
over-optimism.

2.4 Adversarial attacks

An adversarial attacker may corrupt the results of an algorithm by only performing
small changes or additions in a dataset, leading to a wrong but more favorable outcome
for the attacker (Goodfellow et al. 2018). Even though adversarial attacks are most
often regarded in context of supervised machine learning, they can also influence
results of unsupervised machine learning: recently, Chhabra et al. (2020) showed that
adversarial attacks are also possible for clustering, even without knowing important
details of the cluster algorithm. Algorithms which tend to return results of highly
varying quality, also for only small perturbations in the data, are easy victims not
only for adversarial attacks, but also for over-optimism. However, where adversarial
attackers aim at changing only certain results, over-optimistic researchers would try to
change the impression of an algorithm’s overall quality. By knowing the details of their
novel algorithm as well as deciding on all hyperparameters and competitive methods,
the influence over-optimistic researchers can have on the presentation of their results
is massive, especially compared to an adversarial attacker.

3 Over-optimizationmethods

In this section we outline the concept and the experimental design of our study. We
first explain the three different categories of over-optimization mechanisms that we
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illustrate in our study. We then detail our concrete implementation, e.g., the clustering
algorithms, datasets, evaluation measure and optimization method.

3.1 Three categories of over-optimization

Imagine a researcher who wishes to present his/her cluster algorithm in a favorable
light. We model the work process of this researcher as an “optimization task”: the
characteristics of the study in which the new algorithm is compared to existing ones
are optimized such that the researcher’s algorithm scores well, in particular better
than the best performing competing algorithm. This optimization can refer to (1.)
finding datasets or data characteristics for which the new algorithm works particularly
well, (2.) finding optimal parameters of the algorithm (and vice versa, neglecting the
search for optimal parameters for the competitors) or (3.) choosing specific competing
algorithms.

Optimizing datasets or data characteristics.Anew cluster algorithmmight perform
well for specific types of datasets, but not for other types. Researchers might decide to
report only the best-performing types of datasets. Additionally, for synthetic datasets,
there is potential for over-optimism when varying specific characteristics (e.g., the
amount of noise, the sample size, or the number of dimensions), and reporting only
the optimal settings. Moreover, simulated datasets depend on the random seed, such
that in turn, the performance of the cluster algorithm might also vary over different
random seeds. Researchers might actively look for a “good” random seed or simply
stumble across a particular “good” random seed by chance, neglecting to try other
random seeds to check for robustness.

Optimizing the algorithm’s parameters or characteristics. Hyperparameters of the
cluster algorithm, or characteristics of the algorithm designed during the development
phase, could be varied by researchers to look for the best result. Hyperparameter opti-
mization (HPO) is per se a legitimate procedure in performance evaluation. However,
there is less awareness for proper evaluation of cluster algorithms combined with
HPO, compared to the more extensive methodological literature on correct evaluation
of supervised classifiers with HPO (Boulesteix et al. 2008; Bischl et al. 2021). In
cluster analysis, over-optimism in relation to HPO may result from (1.) optimizing
hyperparameters based on the “true” cluster labels known to the researchers, and (2.)
not splitting the data into training and test sets. Both aspects will be discussed in more
detail in Sects. 4 and 5. Moreover, over-optimism might also result when researchers
neglect to set optimal parameters for the competing algorithms, e.g., when choosing
suboptimal hyperparameter defaults for the competitors while finetuning their own
algorithm.

Optimizing the choice of competing algorithms. Finally, researchers might pick
specific competing clustering methods that let their own algorithm appear in a better
light. They could neglect to look for the best state-of-the-art competitor, instead opting
for less optimal comparison algorithms. Even if the researchers are aware of state-
of-the-art competitors, they might not include them because the codes are not openly
available, or implemented in a programming languagewhich they are not familiarwith.
Researchers could also think of different groups of competing cluster algorithms, and
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then pick the group that is most favorable for comparison with their own algorithm.
A new density-based cluster algorithm could for example be compared either with a
group of other density-based algorithms, or with a group of some well-known, not
necessarily density-based cluster algorithms. While both choices could in principle
be sensible, it is over-optimistic if researchers either deliberately exclude a class of
competitors a priori because they expect their novel algorithm to perform worse than
this class, or if they choose the competitor group a posteriori after having seen the
results (Jelizarow et al. 2010).

Apart from these three categories of optimization, there are some further optimiza-
tion possibilities (e.g., optimizing the evaluation measure) that we do not analyze here
in detail, but briefly discuss in Sect. 5.

We assume that usually, researchers do not consciously perform the three classes of
optimization tasks in a malicious and systematic manner. Nevertheless, in the course
of a longer research process during which researchers try different datasets, algorithm
parameters/configurations and competing algorithms, researchers might optimize the
settings in an unsystematic and (probably) unintentional manner. Even if researchers
start their analysis with the best intentions, they might post-hoc rationalize their
(over-optimistic) choices as perfectly reasonable decisions, given that “[h]umans are
remarkably good at self-deception” and scientists often “fool themselves” (Nuzzo
2015).

One might argue that the optimizations outlined above are not actually over-
optimizations and that it is perfectly fine to look for scenarios in which a novel
algorithm performs well. We would agree that it is not a priori wrong to search for
and report such scenarios, as a new cluster algorithm can never be expected to out-
perform every other cluster algorithm in every situation. However, it should also be
transparently reported how the presented “successful” scenarios were obtained, and
how the algorithm performs in other settings. Over-optimism ultimately appears when
performance results are selectively reported. We will illustrate this with our results in
Section 4.

3.2 Experimental setup

We now present the exemplary cluster algorithm and its settings, the competing algo-
rithms, the datasets and the evaluationmeasure.Our fully reproducible code is available
at https://github.com/thullmann/overoptimism-clust-algo.

In accordance with the authors, we used the already published algorithm Rock
(Beer et al. 2019) as a novel and promising algorithm. Rock is an iterative approach
similar to Mean Shift (Fukunaga and Hostetler 1975), but based on the k nearest
neighbors (kNN) instead of the bandwidth. In each step, points “roam” to the mean of
their respective k nearest neighbors. Points with a similar final position are assigned
to a common cluster. The algorithm involves the hyperparameter tmax , which gives
the maximum number of iterations. As the maximum meaningful value for k is fixed
(k > n

2 would lead to an assignment of all points to the same cluster), and the increase
of k in every step is linear, tmax also determines the number k of nearest neighbors
regarded in each iteration. The larger tmax is chosen, the closer values for k are in
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consecutive steps. Lower values for tmax thus lead to larger gaps between consecutive
values for k, which may cause volatile merges of different clusters. On the other hand,
higher values for tmax lead to more iterations, which increases runtime.

As typical for short papers, only a limited number of experiments is presented in
Beer et al. (2019), illustrating that the underlying idea is promising. The results for
Rock looked good compared to k-Means (Lloyd 1982), DBSCAN (Ester et al. 1996)
and Mean Shift, which are typical competitors in the field and representatives for
algorithms finding different types of clusters. As examples for competing algorithms,
we thus chose k-means, DBSCAN, Mean Shift and additionally Spectral Clustering
(Ng et al. 2001).

As the clustering performance measure we use the Adjusted Mutual Information
Score (AMI,Vinh et al. 2010), a version of theMutual Information (MI) Score adjusted
for chance agreement of random partitions. For each dataset and cluster algorithm,
the known “true” clustering (as given either by the simulation design for the synthetic
datasets or by additional label information for the real datasets) was compared via
the AMI with the clustering found by the algorithm. The higher the AMI, the more
similar the two clusterings are. The AMI attains its maximum value of 1 if the two
clusterings are identical, and equals 0 if the MI between the two clusterings is equal to
the MI value expected for two random partitions. We give the detailed mathematical
definition of the AMI in the appendix A.

While we only use the AMI in our illustration for the sake of conciseness, a similar
analysis could be performed for alternative indiceswhichmeasure the agreement of the
calculated clusterings with the “ground truth”, or even for internal validation indices
which evaluate clusterings based on internal properties of the data alone and do not
require the “ground truth” (see also the discussion in Sect. 5.2).

The choice of exemplary datasets is linked to the three different optimization tasks
outlined in Sect. 3.1. We thus give the datasets for each task in turn and explain how
the optimization was performed. Note that we performed the three optimization tasks
sequentially, building on the results of each previous task. Of course, in reality, a
researcher will likely not perform the optimizations in such a perfectly sequential
matter, and might jump between different tasks of optimization or try to optimize
different aspects simultaneously. Again, our sequential procedure merely serves illus-
trative purposes.

For some specific details of the implementation, we refer to the appendix A.

Optimizing datasets and data characteristics. For this part of the analysis, we chose
three commonly used different synthetic datasets from scikit-learn (Pedregosa et al.
2011), see Fig. 2: Two Moons1, Blobs2 (for details on this dataset, see the appendix
A), and Rings3.

1 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html, visited: 05/31/
2021.
2 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html, visited: 05/31/
2021.
3 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html, visited: 05/31/
2021.
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First, we performed optimization by varying the following data characteristics:
a) for Two Moons, the sample size and the jitter values (where “jitter” denotes small
randomperturbations to the original data points in the clusters), b) forBlobs, the sample
size, the number of dimensions and the number of generated clusters (“blobs”), and c)
for Rings, the sample size and the jitter values. The goal of the optimization was to find
the parameter configuration (e.g., for Two Moons, the configuration (n, j) of sample
size and jitter value) that yields the largest performance difference between Rock and
the best of the competitors – which is not necessarily the parameter configuration that
yields the best absolute performance of Rock.

That is, for each of the three types of synthetic datasets in turn, we performed the
following formal optimization task:

argmaxD∈D

{
1

10

10∑
i=1

(
AMI

(
Rock(Di ), yDi

)
− maxC∈C AMI

(
C(Di ), yDi

) )}
(1)

where D ∈ D denotes the different variants of the dataset. For example, for the Two
Moons data, each dataset D is a version of Two Moons with a specific jitter value
and sample size. Each D has a cluster label ground truth yD . For each D ∈ D,
ten different versions of D, namely Di , i = 1, . . . , 10 resulting from ten different
random seeds were generated. Put differently, we performed ten simulation iterations
per setting, i.e., we sampled ten datasets from each data distribution with a specific
data parameter setting. The AMI difference is then averaged over these ten versions.
This is supposed to reduce the influence of the random seed. Only at a later point in
the analysis did we look at the effect of picking specific random seeds (see below).
Rock(Di ) denotes the application of Rock to the data Di , returning a partition of the
objects. Analogously, the competing algorithms C ∈ C return a partition of Di , with
C = {k-means, DBSCAN, Mean Shift, Spectral Clustering}.

For each of the three types of datasets in turn, we performed the optimization task
(1) by using the Tree-structured Parzen Estimator (TPE, Bergstra et al. 2011), as imple-
mented in the Optuna framework (Akiba et al. 2019) in Python4. TPE is a Bayesian
optimization (BO) method. BO approaches sequentially propose new parameter con-
figurations based on a library of previous evaluations of the objective function (for
more details on BOmethods and the TPE, see the appendix A). The TPE is often used
for hyperparameter optimization of machine learning models, but in our case, we use
it to optimize the data parameters. The TPE optimization can be considered as a very
simplified model of the researcher’s optimization procedure. Of course, a researcher’s
behavior does not exactly correspond to the mathematical procedure of the TPE. How-
ever, if researchers perform intentional (over-)optimization, then they might indeed
use an optimizationmethod such as the TPE to find the best data settings. TheBayesian
optimization mimics the researcher’s (unintentional) over-optimization in the follow-
ing sense: as mentioned above, a researcher developing a new cluster algorithm might
sequentially look for data settings in which the new algorithm performs well, taking

4 https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.TPESampler.html, visited:
05/31/2021.
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into account performance information from previously tried data parameters. This is
the reason why we chose the TPE over a simple grid search or random search, because
the latter do not use previously obtained performance information. To make the TPE
processmore “realistic”, we supplied a grid of limited discrete values to the TPE, given
that a researcher presumably would not try arbitrary real numbers. We performed this
experiment with only 100 optimization steps for each of the three types of datasets, in
order to fairly represent a researcher trying different data parameters by hand.

After determining the optimal values for the data parameters (which we will later
report in Table 1 in Sect. 4.1), we analyzed the performance of Rock for non-optimal
parameter values. That is, for each dataset and single data parameter in turn, the
parameter was varied over a list of values, while the other data parameters were kept
fixed at their optimal values. For example, for the TwoMoons dataset we tried different
jitter values and plotted the corresponding performance as measured by the mean AMI
over ten random seeds against the jitter, keeping the sample size at the optimal value
determined by the TPE. These analyses show the effects of selectively reporting only
the best data parameters versus the performance of the algorithm over a broader range
of each data parameter.

In the experiments given so far, we always considered the AMI averaged over ten
random seeds. In the final step of the analysis for this section, we specifically study the
influence of individual random seeds. We take the Two Moons dataset as an example,
with a data parameter setting which is not optimal for Rock, but for which DBSCAN
performs very well. We generate 100 datasets with these characteristics by setting 100
different random seeds, to check whether there exist particular seeds for which Rock
does perform well, leading to over-optimization potential.

For all experiments described so far, we applied reasonable parameter choices
(defaults or heuristics) for the cluster algorithms. For Rock we chose tmax = 15, as
done for all experiments in the original paper (Beer et al. 2019), and for the competing
algorithms see the appendix A.

Optimizing the algorithm’s parameters or characteristics. For this example we varied
Rock’s hyperparameter tmax (maximum number of iterations). As tmax is discrete with
a reasonable range of {1, . . . , 30}, a researcher could easily try every value by hand.
Thus we did not perform optimization with the TPE, but with a full grid search, i.e.,
we calculated the AMI performance of Rock for each value of tmax and for each
dataset. For this illustration, we considered the absolute performance of Rock, given
researchers would also strive to maximize the absolute performance of their novel
algorithm.

As exemplary datasets, we again considered Two Moons, Blobs and Rings, and
additionally four real datasets frequently used for performance evaluation: Digits,
Wine, Iris and Breast Cancer as provided by scikit-learn5 (see also the UCI Machine
Learning Repository, Dua and Graff 2017). The data parameter settings for the three
synthetic datasets (sample size, amount of jitter etc.) corresponded to the optimal
settings from the TPE optimization of (1). We used a single random seed to generate
the illustrative synthetic datasets.

5 https://scikit-learn.org/stable/datasets/toy_dataset.html, visited: 05/31/2021.
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In a next step, using the Two Moons dataset as an example, we compared the AMI
performances of Rock and DBSCAN over ten random seeds, first without, then with
hyperparameter optimization for Rock and DBSCAN. We used the TPE for HPO of
DBSCAN. Here, the TPE was not intended to model a researcher’s behavior, but was
used as a classical HPO method. The comparison illustrates the effect of neglecting
parameter optimization for competing algorithms.

Optimizing the choice of competing algorithms.We did not perform new experiments
here. Rather, we looked at the results from the two previous optimization tasks to
derive the potential for optimization of the choice of competing cluster algorithms.

4 Results

We present our results for the three optimization tasks outlined above, starting with
the optimization of datasets and data characteristics.

4.1 Optimizing datasets and data characteristics

In this subsection we examine how strongly the choice of the “best” properties of a
dataset, along with the type of dataset, can influence the performance estimation of
Rock.

4.1.1 Optimization of the data parameters with TPE

Table 1 reports the optimal data parameters for the three synthetic datasets as deter-
mined by the TPE optimization. The search space for each parameter is given in
parentheses and consists of discrete values. The column “AMI diff.” shows the dif-
ference of the AMI obtained by Rock to the AMI obtained by the best competitor
(averaged over ten random seeds). Recall that the AMI difference was used as the
optimization criterion by the TPE to find the “optimal” parameter configuration. The
column “Abs. AMI” denotes the absolute performance of Rock as measured by the
AMI averaged over ten random seeds. The standard deviation over the seeds is also
displayed.

Table 1 Optimal data parameters as determined by the TPE optimization

Dataset Sample size Jitter # of dim. # of clusters AMI diff. Abs. AMI

Two Moons 1000 0.15 2 2 +0.3581 0.7881

([1, 16] · 100) ([1, 20] · 0.01) (default) (default) ±0.1583

Blobs 300 – 3 2 +0.0475 0.8881

([1, 16] · 100) ([2,20]) ([2,10]) ±0.1573

Rings 1600 0.02 2 2 +0.1789 0.1789

([1, 16] · 100) ([1, 20] · 0.01) (default) (default) ±0.0026

123



Over-optimistic evaluation and reporting of novel cluster algorithms 223

Fig. 1 Optimization progression for the Two Moons dataset, with the AMI difference averaged over ten
random seeds

Fig. 2 Example datasets (Two Moons, Blobs, Rings) with the optimal data parameters. For the Blobs
example we only show the first and second dimensions

For the example of the TwoMoons dataset, Fig. 1 shows a graphical representation
of the TPE process over 100 optimization steps. The final “optimal” result is given by
the best trial out of the 100 trials. The datasets with the optimal settings are pictured
in Fig. 2, using a single illustrative seed of 0.

Judging from the results in Table 1, Rock appears to show better performance
than its competitors. A researcher could use the results to claim Rock’s “superiority”.
However, the absolute performance of Rock for the Rings dataset is not very good
with a mean AMI of only 0.1789. Rock is only the best algorithm here because the
competing methods completely fail to detect the clustering. A researcher who tries to
optimize the data types might thus decide to let the Rings dataset disappear in the “file
drawer”, particularly if he/she must omit some results due to page limits, and only
present the Two Moons and Blobs datasets, for which Rock performs well, both in
absolute and in relative (compared to competitors) terms. But would this presentation
for Two Moons and Blobs be over-optimistic? To obtain a more realistic picture of
Rock’s abilities, we analyze the results when the data parameters are not set at the
optimal values, but varied over a grid.

4.1.2 Varying the data parameters

Weconsider the influence of the sample size, the number of dimensions and the amount
of jitter. For each data parameter, we pick one data type for illustrative purposes (either
Two Moons or Blobs). The data parameters that are not currently considered are set
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a

b

c

Fig. 3 a Varying the sample size for the Two Moons dataset (jitter = 0.15), b varying the number of
dimensions for the Blobs dataset (sample size = 300, number of blobs = 2), c varying the jitter amount for
the Two Moons dataset (sample size = 1000)

to their optimal values from Table 1. Figure 3a–c show the performance of Rock and
its competitors measured by the AMI over ten random seeds, depending on the varied
data parameters. The border around each line shows the standard deviation over the
seeds. Red squares indicate the optimal setting from Table 1.

Sample size.Herewe consider the TwoMoons dataset in Fig. 3a.We tried the following
sample sizes: 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600. The jitter value
is set at its optimal value 0.15 from Table 1. Rock indeed appears to perform better
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here than its competitors over a broader range of numbers of samples, not just for the
optimal setting. However, at smaller sample sizes, the difference to k-means, spectral
clustering andMeanShift is less impressive than atRock’s optimal setting ofn = 1000.

Dimensionality. The Blobs dataset is analyzed in Fig. 3b, varying the number of
dimensions over {2, 3, 4, 5, 10, 15, 20}. The sample size is set at 300 and the number
of generated blobs is 2, according to Table 1. Rock performs better than competitors
mainly for small dimensions. Once the number of dimensions exceeds 5, Rock cannot
outperform k-means and Spectral Clustering.

Jitter. The amount of jitter is varied for the Two Moons dataset, see Fig. 3c. We tried
the following jitter amounts: 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. The sample size
is set to the optimal value of 1000 according to Table 1. Rock performs better than
its competitors for the jitter set at 0.15 and above. However, for lower jitter values,
Rock cannot outperform DBSCAN. Moreover, for jitter values of 0.25 and 0.30, the
difference from Rock to k-means, spectral clustering and Mean Shift is quite low and
not as impressive as at the optimal setting of 0.15.

To summarize, the performance of Rock is not robust with respect to variation of
the data parameters, which leads to potential for over-optimization. While Rock is
indeed better than its competitors for certain ranges of the data parameters, there are
also settings for which Rock either does not perform better than the competitors, or the
performance advantage is small. Thus the apparent “superiority” of Rock is generally
less impressive than indicated by the results found from the TPE optimization in
Table 1.

4.1.3 Influence of the random seed

For the analyses mentioned so far, the mean AMI over ten random seeds was consid-
ered. However, it is also possible that a researcher chooses a particular random seed
for which Rock performs well. As seen in Fig. 3c, Rock is outperformed by DBSCAN
on the Two Moons dataset for a jitter value of 0.05 and 1000 samples. This statement
is based on the AMI averaged over 10 random seeds. But could there also be particular

Fig. 4 Performance of the cluster algorithms on the Two Moons dataset (sample size = 1000, jitter = 0.05)
over 100 random seeds
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random seeds for which Rock does perform well? In Fig. 4, we display the behavior
of Rock and its competitors over 100 different random seeds. Since Rock performs as
well as DBSCAN for some particular seeds, there is potential for an over-optimizing
researcher to pick such a seed.While deliberately trying multiple seeds and presenting
only the best one can be considered as malicious behavior, it is also possible that the
seed set by the researcher is by chance a “good one”, and that the researcher does
not consider a dependence of the performance on the random seed. To avoid such
unintentional over-optimism, it is advisable to account for sampling variability and
average over multiple random seeds, even when the cluster algorithm itself is deter-
ministic. While the practice of sampling multiple datasets from a data distribution
is well-known in statistics, this is sometimes neglected when evaluating data mining
tasks like clustering.

4.2 Optimizing the algorithm’s parameters

We analyze how the hyperparameter tmax of Rock can be optimized. In contrast to the
previous sections, we now consider the absolute performance of Rock, given that a
researcher would presumably not only try to outperform competitors, but also strive
to obtain AMI values for Rock which are close to 1.

Additionally to Two Moons, Blobs and Rings, we consider the four real datasets
mentioned inSect. 3.2:Digits,Wine, Iris,BreastCancer. For theTwoMoons,Rings and
Blobs datasets, we used the optimal data parameters from Table 1 and only generated
a single illustrative dataset for each type by using 42 as a random seed. In accordance
with typical evaluation of cluster algorithms, we do not split the datasets into training
and test sets (see, however, the discussion in Sect. 6.2).

Figure 5 shows the performance of Rock asmeasured by theAMI, over tmax ranging
from 1 to 30.

It can be seen that for different datasets, different tmax values are optimal. An
optimistic researcher could report (only) the best tmax and the corresponding perfor-
mance for each dataset. Optimizing hyperparameters of a cluster algorithm based on
the “ground truth” of datasets (here via the AMI) is frequently seen in the literature.

Fig. 5 Varying the hyperparameter tmax of Rock for different datasets
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But as mentioned above, this could be over-optimistic with regards to the future per-
formance of the algorithm: the evaluation of a novel algorithm is ultimately supposed
to give hints about how well the algorithm will perform in future applications. But
applied researchers usually do not know the “true” cluster labels of their datasets, as
otherwise there would be no need for clustering. Thus the applied researchers cannot
use a “ground truth” to determine a good tmax value for their specific datasets, and
will thus obtain worse results for their datasets than the performances reported in the
original paper which introduced the cluster algorithm. We will further discuss this
issue in Sect. 5.1.

An alternative to reporting the best tmax for each dataset individually is to look
for a tmax value that leads to good performance for multiple datasets. For example,
tmax = 12 yields reasonable performance values for Blobs, TwoMoons and Iris. Thus,
optimistic researchers might only report these three datasets with tmax = 12 and claim
that this choice of tmax will performwell for future datasets. However, such a statement
would likely be over-optimistic as tmax = 12 was chosen on only a few datasets, and
considering the varied behavior of the different datasets for different tmax in Fig. 5.

Over-optimismcannot only result fromoptimizing the hyperparameters of the novel
algorithm, but also from simultaneously neglecting to optimize the hyperparameters
of the competing algorithms. As an example, we compare Rock with DBSCAN on the
TwoMoons dataset, with the data parameters optimized for Rock from Table 1. Recall
that in Sect. 4.1, we did not perform hyperparameter optimization, and instead used
hyperparameter defaults or heuristics for the algorithms which could be reasonably
justified (see also the appendix A): for Rock, tmax = 15 as in the original paper of Beer
et al. (2019), and for DBSCAN,minPts = 2·#of dimensions, leading tominPts = 4
for Two Moons, and eps = 0.2. The AMI for Rock for this case is 0.7881 ± 0.1583
(mean and standard deviation over ten random seeds), see also Table 1. This mean
value is different from the AMI value in Fig. 5 at tmax = 15, because a single seed was
used for the latter. The AMI performance of DBSCAN was only 0.0007 ± 0.0024.

We then performed hyperparameter optimization for both cluster algorithms (with
regards to the absolute AMI performance over ten random seeds). For Rock, we per-
formed a simple grid search over tmax ∈ {1, 2, . . . , 30}. The optimal performance
is at the previously used default tmax = 15, thus again yielding a mean AMI of
0.7881 ± 0.1583. This is not surprising, given that tmax = 15 was used in Sect. 4.1
to optimize the data parameters of Two Moons such that Rock obtains superior per-
formance (although the performance difference was used as the optimization criterion
in that section). For DBSCAN, we performed hyperparameter optimization with the
TPE, and obtained optimal parameters of minPts = 41 and eps = 0.4, leading to
a performance of 0.8300 ± 0.0244, which is a major improvement over the previous
performance of DBSCAN. Thus DBSCAN outperforms Rock after hyperparameter
optimization. This demonstrates that if researchers decide to perform hyperparameter
optimization for the cluster algorithms to be compared, they should conduct the opti-
mization not only for their own algorithm, but also equally carefully for all competing
methods.

Returning to the topic of data type optimization (Sect. 4.1), Fig. 5 also shows the
potential for picking specific datasets for which Rock performs reasonably well (e.g.
Blobs, Iris, Two Moons) and discarding the ones with worse performance (Digits,
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Rings). Again, over-optimization is marked by selective reporting: while no cluster
algorithm can be expected to perform well on all types of data, it is still important to
report data types for which a novel algorithm fails to detect clusters, to illuminate the
limitations of the new method.

4.3 Optimizing the choice of competing algorithms

Here we revisit the results from Sect. 4.1 to analyze whether there is potential for pick-
ing specific competing cluster algorithms such that Rock appears better. For example,
Fig. 3a–c show that Rock often performs better than DBSCAN, which was also due
to neglecting hyperparameter optimization for DBSCAN, cf. Sect. 4.2. By picking
suitable data parameter ranges, an over-optimistic researcher could praise the drastic
performance improvement from Rock over DBSCAN. The same figures show that
Rock is often better than Mean Shift. Thus, there is the potential for the following
narrative: “Rock is an improvement of Mean Shift”. As the figures show, this claim
would sweep some caveats under the carpet. For example, the other competitors, k-
means and spectral clustering, are (almost) as good as Rock for the Blobs dataset in
Fig. 3b.

5 Discussion

We have illustrated that selective presentation of performance results can lead to over-
optimistic assessment of a novel cluster algorithm. Neglecting to show limitations of a
new algorithm can lead to users applying it in inappropriate settings for the algorithm,
which leads to unusable results. In this section, we discuss potential further aspects
of over-optimism that we did not focus on, but would be interesting to study in future
work.

5.1 Hyperparameter tuning and development of the algorithm

As explained in Sect. 4.2, the current standard of reporting the performance of a
novel algorithmwith hyperparameters optimized to the clustering “ground truth” (e.g.,
with a grid search) is likely over-optimistic. Using the ground truth of datasets for
performance evaluation of a novel algorithm has a further drawback: as the number of
datasets labeled by experts is limited, researchers using these datasets optimize their
algorithm’s characteristics on these few labeled real world datasets, or alternatively use
(unrealistic) synthetic datasets. Datasets such as TwoMoons and Blobs are frequently
used, but providevery limited information about how the cluster algorithmwill perform
in much more complex applied settings.

The optimization to a few datasets might not only concern the hyperparameters
of the algorithm, but also the characteristics of the algorithm which are explored in
the development phase. For example, Rock contains some “hidden hyperparameters”
such as the growth rate of the number of neighbors considered in each iteration, or the
weighting of the different nearest neighbours (Beer et al. 2019). These characteristics
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are not intended to be changed by the user, but were decided on by the researchers dur-
ing the development of the algorithm. However, if such characteristics are optimized
according to the performance on just a few selected datasets, then this might result in
an over-optimistic “overfitting” effect.

5.2 Evaluationmeasure

For all our experiments in this paper we used the Adjusted Mutual Information (AMI)
as measure for the quality of clustering. Other partition similarity indices such as
the Normalized Mutual Information (NMI, Strehl and Ghosh 2002), Adjusted Rand
Index (ARI, Hubert and Arabie (1985)), Accuracy and F1-measure are often used in
the field (see also Albatineh et al. (2006), for an overview). They all range in [−1, 1]
resp. [0, 1] and describe how well the clustering results correspond to a ground truth,
but have slightly different behaviors (Pfitzner et al. 2009). These indices are also called
external validation indices, because they require an externally known partition (the
ground truth) for evaluation. Yet evaluating a clustering based on the given “ground
truth”might not always be the best choice. There could be interesting cluster structures
in the data which differ from the given “true” labels, particularly because there is no
unique definition of what a “good” clustering is (Hennig 2015). Moreover, as pointed
out above, many real world datasets do not come with given labels. Thus researchers
might also use internal validation indices (Halkidi et al. 2015) which do not require
knowledge of the “true” labels, but evaluate a clustering based on internal properties
of the data alone. Popular internal indices which measure within-cluster homogeneity
and between-cluster heterogeneity/separateness include the Average Silhouette Width
index (Kaufman and Rousseeuw 2009), the Caliński-Harabasz index (Caliński and
Harabasz 1974), and the Davies-Bouldin index (Davies and Bouldin 1979). Such
indices can also be used for performance evaluation of novel clustering algorithms,
yet they might be susceptible to the over-optimism mechanisms outlined above. For
example, researchers could optimize datasets and data characteristics with respect to
an internal index, such that this index indicates a good performance for the new cluster
algorithm, analogous to the optimization with the AMI discussed in Sect. 4.1.

The multitude of possible evaluation criteria—external or internal – gives rise to
another potential source of over-optimism: Researchers could try different measures
and pick the one that is most favorable to their novel algorithm. While researchers
might be understandably uncertain about which evaluation measure to choose, they
should not try different measures and then pick only the most favorable one after
having seen the results. Researchers should carefully consider before starting the
experimental evaluation which performance criterion is of particular interest in the
considered context. If multiple measures are tried, then these should all be reported.

5.3 Preprocessing

Preprocessing the data can significantly influence the results of clustering. In our study,
we scaled all the datasets. There are different normalizations that may be applied to the
data, as well as methods to remove outliers or noise to improve the clustering results.
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To avoid over-optimism, researchers should refrain from trying different preprocessing
methods and reporting only the one most favorable to their new algorithm. Moreover,
the same preprocessing steps should be applied to all datasets and for all compared
cluster algorithms. Otherwise, if only the new algorithm is combined with suitable
preprocessing, it might have an unfair advantage. A clear distinction should be made
between preprocessing steps and steps belonging to the new cluster algorithm.

5.4 Theoretical evaluation

While we focus on the experimental evaluation of cluster algorithms with simulated or
real-world datasets, it would also be interesting to study over-optimism in the context
of theoretical analyses of algorithms. For example, researchers often make claims
about their novel algorithms which they prove mathematically. But they could use
very specific assumptions to yield the desired results. It might not always be easy
for readers to judge how unrealistic these assumptions are, i.e., to which extent the
assumptions restrict the use of the algorithm in real-world applications.Authors should
thus alwaysmake their theoretical assumptions very clear, and thoroughly discuss how
restrictive they are.

While theoretical analyses can, in principle, be affected by over-optimism, they are
often a vital part of the evaluation of novel cluster algorithms. Theoretical results, if
carefully deduced, can give a more complete picture of the algorithm’s capabilities.
Authors who thoroughly analyze their novel algorithm from a theoretical perspective
might also use this background knowledge to choose a suitable and clearly defined
experimental study design, such that unintentional over-optimization in the experi-
mental part of the analysis could sometimes be partially avoided.

6 Possible solutions

Aswe have illustrated, there might be a strong over-optimistic bias when introducing a
new cluster algorithm. How can such a bias be avoided or corrected? We discuss three
options that all researchers can consider using in their research: (1.) avoiding selective
reporting and analyzing robustness, (2.) evaluating the new method on independent
data, and (3.) performing neutral benchmark studies. Moreover, we discuss (4.) how
changing incentives in research culture and the publication system (that are beyond
the control of individual researchers) might help to reduce over-optimism.

6.1 Avoiding selective reporting and analyzing the robustness of the algorithm

Our results have shown that over-optimistic presentation ultimately requires a certain
amount of selective reporting, i.e., reporting only specific scenarios in which the new
algorithm performs well. This might happen if many different scenarios are tried
and only the “best” ones are reported, while the others are buried in the file drawer.
Researchers might also omit the analysis of certain scenarios a priori, for example,
when only considering data simulated according to a specific model. Such constraints
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should be clearly explained, and the performance of the algorithm should not be
oversold.

In the context ofmodel-based cluster algorithms (seeMcLachlan et al. (2019) for an
overview), selective reportingmight be easier to detect. For example, ifmainly datasets
generated by the model of the newly developed algorithm are chosen, and/or the novel
algorithm is compared with competing methods that were developed for the detection
of clusters generated by other models, then the novel algorithm immediately has an
advantage, which can be easily spotted. Nevertheless, there is still potential for an
over-optimistic selection of datasets and comparative methods among all “reasonable”
possibilities. Moreover, other potential sources of over-optimism discussed above,
such as (hyper)parameter optimization, are also existent for model-based clustering.
Readers and reviewers of articles about novel model-based cluster algorithms should
keep this in mind, and the authors themselves must be careful to avoid over-optimistic
choices.

Ideally, researchers should report scenarios in which their algorithm performed
worse, to give a more realistic picture of the limitations of the novel approach. This
may also require researchers to check the robustness of their algorithm (cf. Sect. 2.3):
if the cluster algorithm is not robust with respect to certain data parameters, this should
be honestly reported. Discussing the evaluation results for various parameter choices
could also be beneficial as there is often not a single “best” choice and different
parameters could be useful in different applications (Cerioli et al. 2018).

6.2 Validation on independent data

It is advisable to evaluate a new algorithm’s performance on fresh data that was not
used for developing the algorithmand assessing its performance (Jelizarowet al. 2010).
As we have demonstrated in Sects. 4.1 and 4.2, looking for specific data parameters or
tweaking the algorithm’s hyperparameters might cause unintentional overfitting to the
datasets used during the research process. As discussed in Sect. 5.1, overfitting to the
used datasets could also concern the algorithm’s characteristics that were engineered
in the development phase. The algorithmmight not perform quite as well on new data,
which would constitute a more realistic assessment of its performance.

More realistic performance values might also be obtained by taking inspiration
from supervised classification and splitting the used datasets into “training” and “test”
sets (Ullmann et al. 2021). Then hyperparameters such as tmax are optimized on the
training set, and the chosen tmax is evaluated on the test set to assess performance.
This could partially avoid “overfitting” of the hyperparameters to the data. However,
a) this splitting procedure does not say anything about the performance on genuinely
new data/data from different distributions, and b) when using the ground truth for
optimization on the training set, this does not solve the problem that applied researchers
who wish to use the new cluster algorithm in practice usually do not know the ground
truth of their datasets, and thus cannot use the hyperparameter optimization procedure
of the original authors. Therefore, it is advisable for authors who introduce a new
algorithm to discuss and evaluate criteria for hyperparameter choice that do not require
the ground truth, for example internal validation indices. Such indices could be used to
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choose hyperparameters on the training set, and to evaluate the chosenhyperparameters
on the test set to ensure that potential overfitting effects are detected.

6.3 Neutral benchmark studies

Awareness about the dangers of selective reporting and the importance of evalua-
tion on fresh data might help to alleviate the problem of over-optimism. Academic
teaching/training and illustrative studies such as ours can contribute to creating such
awareness.Moreover, followingguidelines formethodological computational research
can help researchers avoid over-optimism (Boulesteix 2015). Ultimately, this will
probably not solve the problem completely. Researchers are incentivized by the pub-
lication system to present their new algorithm favorably, which is unlikely to change
in the short term (see 6.4). They are also more competent with respect to their own
methods—and thus more likely to use them optimally than competing methods when
conducting the evaluation. Thus, neutral benchmark studies are additionally required.

A neutral benchmark study is characterized by the comparison of existing algo-
rithms (instead of the introduction of a new method), and neutrality of the authors,
i.e., the authors do not have a vested interest in a particular method showing better
performance than the others and are as a group approximately equally familiar with
all considered methods, see Boulesteix et al. (2013, 2017) for an extensive discussion
of these concepts. As mentioned in the introduction, neutral benchmark studies are
less likely to suffer from over-optimism and usually offer a more realistic performance
evaluation than studies presenting new methods.

In the field of clustering methodology, neutral benchmark studies are rarer than for
supervised classification. Lately, however, there have been some advances: guidelines
for performing benchmark studies for cluster algorithmswere published inVanMeche-
len et al. (2018). Following these guidelines, Hennig (2021) compared nine popular
cluster algorithms, mainly with respect to various internal validation indices, but also
regarding the recovery of the “true” clusterings. For an overview of previous cluster
benchmark studies, see Van Mechelen et al. (2018) and Hennig (2021). In principle,
the guidelines of Van Mechelen et al. (2018) could and should also be followed by
non-neutral researchers who evaluate their new algorithm.

6.4 Changing incentives in the culture of research and the publication system

The three possible solutions presented so far are in principle accessible to individual
researchers or teams of researchers. Ultimately, however, each researcher is subject
to the constraints of the research and publication system. For example, researchers
might hesitate to report limitations of their novel algorithm, because this could reduce
their chances of getting published. Moreover, it can still be difficult to publish a neu-
tral comparison study as many journals and conferences—stressing the importance of
“novelty”—prefer studies introducing new methods (Boulesteix et al. 2018). In our
view, changes in this attitude are necessary to further reduce over-optimism.Accepting
neutral benchmark studies for publication should become more widespread. Further-
more, reporting limitations of novel algorithms should not be considered a “failure”
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and instead an integral part of a healthy research culture. Journals and conferences
should actively encourage authors to report scenarios in which their new algorithm
does not perform optimally, or at least should not consider such reporting to be a
cause for rejection. At the same time, editors and reviewers play an important role
in filtering manuscripts in which authors do not carefully justify their experimental
choices and only present very specific settings, which may be a hint that the results
could potentially be over-optimistic. It should be taken into account, however, that
even when a persuasive justification is given, the authors might still have arrived at
these choices by (intentional or unintentional) over-optimization.

7 Conclusion

We have shown that studies which introduce new cluster algorithms might be affected
by over-optimistic presentation of the results. For illustrative purposes, we have
demonstrated different over-optimismmechanisms using the recently developed Rock
algorithm as an example. While this is a specific example, we believe that these mech-
anisms might similarly apply to other novel clustering algorithms. We have also given
some recommendations for avoiding over-optimism. It is our hope that going forwards,
these guidelines will be taken into account. After all, overselling of novel methods
does not contribute to genuine scientific progress.
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A Appendix

In this appendix we give some details about the implementation outlined in Sect. 3.2.
More information can be found in our fully reproducible code which is available
at https://github.com/anonresearcher461/over-optimism. All experiment were per-
formed with Python6, version 3.9.5.

A.1 Adjustedmutual information (AMI)

Here we give the mathematical definition of the Adjusted Mutual Information Score
(AMI, Vinh et al. 2010) which we use to compare the calculated clusterings with the
“true” cluster labels. To define the AMI, we first discuss the entropy H of a single
clustering and the Mutual Information (MI) of two clusterings. See Vinh et al. (2010)
and Meila (2015) for more detailed explanations.

Let C and C ′ be two clusterings with k respectively l clusters. Let ni j , i =
1, . . . , k, j = 1, . . . , l the number of data points which are in cluster i of C and
cluster j of C ′. Let ni• and n• j be the respective marginal sums, and n the overall
number of data points.

The entropy H of clustering C is defined as

H(C) = −
k∑

i=1

ni•
n
log

(ni•
n

)
.

The entropy can be interpreted as the level of uncertainty associatedwith the clustering
C . The Mutual Information (MI) of the clusterings C,C ′ is defined as

MI (C,C ′) =
k∑

i=1

l∑
j=1

ni j
n

log

(
ni j/n

ni•n• j/n2

)
.

The MI measures to which extent knowledge of the clustering C reduces uncertainty
about the clustering C ′. The MI is a symmetric measure, and it holds that

0 ≤ MI (C,C ′) = MI (C ′,C) ≤ min(H(C), H(C ′)).

6 https://www.python.org, visited: 05/31/21.
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The MI can be normalized to ensure the measure ranges in [0, 1], yielding the
Normalized Mutual Information (NMI):

NMI (C,C ′) = MI (C,C ′)
avg(H(C), H(C ′))

.

Different choices for the “average” avg are possible, e.g., the arithmetic mean, the
geometric mean, the minimum or maximum. We use the arithmetic mean (Kvalseth
1987), which is the scikit-learn default.7

Both theMI andNMI tend to increase with an increasing number of clusters, even if
the information sharedmutually between the clusterings does not actually increase. To
account for this effect, the MI can be adjusted for chance: the MI ofC,C ′ is compared
with the expected MI for two random clusterings drawn from a permutation model
(see Vinh et al. (2010) for details). The Adjusted Mutual Information Score (AMI) is
thus calculated as follows:

AMI (C,C ′) = MI (C,C ′) − E[MI (C,C ′)]
avg(H(C), H(C ′)) − E[MI (C,C ′)] . (2)

The AMI attains its maximum value of 1 if the two clusterings are identical, and
equals 0 if the MI between the two clusterings is equal to the MI value expected for
two random partitions. Negative values occur if the agreement between C and C ′ is
“worse” than chance.

A.2 Scaling of the datasets

All datasets used in our study were scaled with the scikit-learn standard scaler8, by
subtracting the mean and dividing by the standard deviation of each variable. That is,
for each dataset D = (xi j )i=1,...,n, j=1,...,d , with n samples and d dimensions, each
entry xi j is scaled according to

xi j − 1
n

∑n
i=1 xi j√

1
n

∑n
i=1

(
xi j − 1

n

∑n
i=1 xi j

)2
A.3 Details about the blobs dataset

The Blobs dataset9 consists of isotropic Gaussian clusters, i.e., each cluster k ∈
{1, . . . , K } (with K the number of generated clusters) corresponds to a Gaussian
distribution with covariance matrix σ 2

k Id , where σ 2
k ≥ 0 and Id is the d-dimensional

7 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html,
visited: 05/31/2021.
8 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html, visited:
05/31/2021.
9 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html, visited: 05/31/
2021.
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identity matrix. We chose a standard deviation of σk = 3 k
K for each cluster k. This

generates different variances for the clusters, making some clusters more compact and
thus easier to detect, and others more scattered and harder to find.

A.4 Bayesian optimization (BO) and the tree-structured parzen estimator (TPE)

BO approaches (see Shahriari et al. (2016) for an introduction) are popular for
optimization problems of the type argmaxx∈X f (x), where f : X �→ R is
expensive to evaluate. In each step of a BO procedure, f is modelled with a
surrogate model, based on a library of evaluations of f from previous steps:
((x (1), f (x (1)), . . . , (x (k−1), f (x (k−1))). The surrogate model is used to construct
an acquisition function, which is cheaper to evaluate and easier to optimize than
f , yielding the optimal argument x (k). Then (x (k), f (xk)) is added to the library,
and the process is repeated by updating the surrogate model. The concrete surrogate
model and the acquisition function of the TPE were chosen by Bergstra et al. (2011)
such that optimization of the acquisition function ultimately leads to optimization of
x �→ l(x)/g(x), where l(x), g(x) are two Gaussian Mixture Models. l(x) is fitted to
the observations (x (i))i that performed well so far, i.e., for which f (x (i)) > y∗ for
some threshold value y∗. g(x) is fitted to the remaining observations. The threshold y∗
is chosen as a quantile of the observed y(i) = f (x (i)) values, such that p(y > y∗) = γ

for a suitable γ ∈ (0, 1). Formore details on the TPE, see the original paper of Bergstra
et al. (2011), the Optuna documentation10, and our reproducible code.

A.5 Default settings for the hyperparameters of the cluster algorithms

For the analysis in Sect. 4.1 (optimizing datasets and data characteristics), we used
defaults or heuristics for the hyperparameters of the cluster algorithms which a
researcher could justify as “reasonable choices”. For Rock, we chose tmax = 15,
as in the original paper of Beer et al. (2019). For k-Means and Spectral Clustering
we used the number of ground truth clusters for the parameter k and the default
settings from scikit-learn. For DBSCAN, we followed Schubert et al. (2017) to set
minPts = 2d with d being the number of dimensions. Moreover, we set eps = 0.2,
which can be seen as a sensible value, given that the samples were scaled to unit vari-
ance. For estimation of the bandwidth for Mean Shift we use the scikit-learn function
estimate_bandwidth11.
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