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Summary

Cluster analysis is frequently performed in many application fields to find groups in data.

For example, in medicine, researchers have used gene expression data to cluster patients

suffering from a particular disease (e.g., breast cancer), in order to detect new disease

subtypes. Many cluster algorithms and methods for cluster validation, i.e., methods for

evaluating the quality of cluster analysis results, have been proposed in the literature.

However, open questions about the evaluation of both clustering results and novel cluster

algorithms remain. It has rarely been discussed whether a) interesting clustering results

or b) promising performance evaluations of newly presented cluster algorithms might be

over-optimistic, in the sense that these good results cannot be replicated on new data or

in other settings.

Such questions are relevant in light of the so-called “replication crisis”; in various research

disciplines such as medicine, biology, psychology, and economics, many results have turned

out to be non-replicable, casting doubt on the trustworthiness and reliability of scientific

findings. This crisis has led to increasing popularity of “metascience”. Metascientific

studies analyze problems that have contributed to the replication crisis (e.g., questionable

research practices), and propose and evaluate possible solutions. So far, metascientific

studies have mainly focused on issues related to significance testing. In contrast, this

dissertation addresses the reliability of a) clustering results in applied research and b)

results concerning newly presented cluster algorithms in the methodological literature.

Different aspects of this topic are discussed in three Contributions.

The first Contribution presents a framework for validating clustering results on validation

data. Using validation data is vital to examine the replicability and generalizability of

results. While applied researchers sometimes use validation data to check their clustering

results, our article is the first to review the different approaches in the literature and

to structure them in a systematic manner. We demonstrate that many classical cluster

validation techniques, such as internal and external validation, can be combined with

validation data. Our framework provides guidance to applied researchers who wish to

evaluate their own clustering results or the results of other teams on new data.

The second Contribution applies the framework from Contribution 1 to quantify over-

optimistic bias in the context of a specific application field, namely unsupervised micro-

biome research. We analyze over-optimism effects which result from the multiplicity of

analysis strategies for cluster analysis and network learning. The plethora of possible

analysis strategies poses a challenge for researchers who are often uncertain about which

method to use. Researchers might be tempted to try different methods on their dataset

and look for the method yielding the “best” result. If only the “best” result is selec-

tively reported, this may cause “overfitting” of the method to the dataset and the result

might not be replicable on validation data. We quantify such over-optimism effects for



four illustrative types of unsupervised research tasks (clustering of bacterial genera, hub

detection in microbial association networks, differential network analysis, and clustering

of samples).

Contributions 1 and 2 consider the evaluation of clustering results and thus adopt a

metascientific perspective on applied research. In contrast, the third Contribution is a

metascientific study about methodological research on the development of new cluster

algorithms. This Contribution analyzes the over-optimistic evaluation and reporting of

novel cluster algorithms. As an illustrative example, we consider the recently proposed

cluster algorithm “Rock”; initially deemed promising, it later turned out to be not gen-

erally better than its competitors. We demonstrate how Rock can nevertheless appear

to outperform competitors via optimization of the evaluation design, namely the used

data types, data characteristics, the algorithm’s parameters, and the choice of compet-

ing algorithms. The study is a cautionary tale that illustrates how easy it can be for

researchers to claim apparent “superiority” of a new cluster algorithm. This, in turn,

stresses the importance of strategies for avoiding the problems of over-optimism, such as

neutral benchmark studies.



Zusammenfassung

Clusteranalyse wird in vielen Anwendungsbereichen durchgeführt, um Gruppen in Daten

zu finden. Beispielsweise verwenden Forscher in der Medizin Genexpressionsdaten, um Pa-

tienten mit einer bestimmten Krankheit (z.B. Brustkrebs) zu clustern, mit dem Ziel, neue

Untergruppen der Krankheit zu entdecken. Viele Clusteralgorithmen und Methoden für

Clustervalidierung, d.h. Methoden zur Bewertung der Qualität von Clusteringergebnissen,

wurden in der Literatur vorgeschlagen. Jedoch bleiben offene Fragen in Bezug auf die Be-

wertung von Clusteringergebnissen und neuer Clusteralgorithmen. Bis jetzt wurde selten

diskutiert, ob a) interessante Clusteringergebnisse oder b) vielversprechende Bewertun-

gen neu präsentierter Clusteralgorithmen überoptimistisch sein könnten, in dem Sinne,

dass sich die guten Ergebnisse nicht auf neuen Datensätzen oder in anderen Szenarien

replizieren lassen.

Solche Fragen sind im Angesicht der sogenannten Replikationskrise relevant: In verschie-

denen Forschungsfeldern, z.B. Medizin, Biologie, Psychologie und Wirtschaftswissenschaf-

ten, stellte sich heraus, dass viele wissenschaftliche Befunde nicht replizierbar sind. Dies

ließ die Vertrauenswürdigkeit und Zuverlässigkeit wissenschaftlicher Befunde als fraglich

erscheinen. Diese Krise hat zu einer erhöhten Popularität von
”
Metawissenschaft“ geführt.

Metawissenschaftliche Studien untersuchen Probleme, die zur Replikationskrise beigetra-

gen haben (z.B. zweifelhafte Forschungspraktiken); zudem schlagen sie mögliche Lösungen

vor und evaluieren diese. Bis jetzt haben sich metawissenschaftliche Studien vor allem auf

Probleme im Zusammenhang mit Signifikanztesten konzentriert. Im Gegensatz dazu be-

trachtet diese Dissertation die Zuverlässigkeit von a) Clusteringergebnissen in angewand-

ter Forschung und b) Bewertungen von Clusteralgorithmen, die in der methodologischen

Literatur neu vorgestellt werden. Verschiedene Aspekte dieser Themen werden in drei

Beiträgen diskutiert.

Der erste Beitrag präsentiert ein Framework für die Validierung von Clusteringergebnis-

sen auf Validierungsdaten. Der Gebrauch von Validierungsdaten ist essenziell, um die

Replizierbarkeit und Verallgemeinerbarkeit von Ergebnissen zu prüfen. Wissenschaftler

in angewandter Forschung benutzen manchmal Validierungsdaten, um ihre Clusteringer-

gebnisse zu überprüfen. Unser Artikel ist der erste, in dem die verschiedenen Ansätze in

der Literatur auf systematische Weise strukturiert werden. Wir verdeutlichen, dass viele

klassische Ansätze für Clustervalidierung, wie etwa interne und externe Validierung, mit

Validierungsdaten kombiniert werden können. Unser Framework bietet Orientierung für

Wissenschaftler in angewandter Forschung, die ihre eigenen Clusteringergebnisse oder die

Ergebnisse anderer Forschungsteams auf neuen Datensätzen evaluieren wollen.

Der zweite Beitrag wendet das Framework aus dem ersten Beitrag an, um überoptimisti-

schen Bias zu quantifizieren. Dies wird im Kontext eines spezifischen Anwendungsfeldes

vorgenommen, nämlich unüberwachter (
”
unsupervised“) Mikrobiomanalyse. Wir unter-



suchen überoptimistische Effekte, die aus der Vielfalt an Analysestrategien für Cluster-

analyse und Netzwerkgenerierung resultieren. Die Vielzahl möglicher Analysestrategien

stellt eine Herausforderung für Forscher dar, die oftmals unsicher sind, welche Metho-

de sie verwenden sollten. Forscher können daher versucht sein, verschiedene Methoden

auf ihrem Datensatz auszuprobieren und nach derjenigen Methode zu suchen, die das

”
beste“ Ergebnis liefert. Wenn jedoch nur das

”
beste“ Ergebnis selektiv berichtet wird,

könnte dies
”
Overfitting“ der Methode an den Datensatz verursachen. Das Ergebnis ist

dann möglicherweise nicht auf Validierungsdaten replizierbar. Wir quantifizieren solche

überoptimistischen Effekte für vier beispielhafte Forschungsfragen (Clustering von Bakte-

riengattungen, Entdeckung zentraler Knoten in Netzwerken basierend auf Assoziationen

zwischen Mikroben, Vergleiche derartiger Netzwerke zwischen zwei Gruppen, und Cluste-

ring von Proben).

Beiträge 1 und 2 behandeln die Bewertung von Clusteringergebnissen und werfen somit

einen metawissenschaftlichen Blick auf angewandte Forschung. Im Gegensatz dazu ist

der dritte Beitrag eine metawissenschaftliche Studie über methodologische Forschung zur

Entwicklung neuer Clusteralgorithmen. Dieser Beitrag untersucht die überoptimistische

Bewertung und Präsentation neuer Clusteralgorithmen. Als illustratives Beispiel betrach-

ten wir den kürzlich vorgestellten Clusteralgorithmus
”
Rock“. Dieser wurde zunächst als

vielversprechend angesehen; wie sich jedoch später herausstellte, ist der Algorithmus im

Allgemeinen nicht besser als konkurriende Algorithmen. Wir demonstrieren, dass Rock

dennoch so präsentiert werden kann, als würde er besser als konkurrierende Algorithmen

abschneiden, nämlich durch Optimierung des Evaluationsdesigns, genauer gesagt der ver-

wendeten Datentypen, Dateneigenschaften, der Parameter des Algorithmus und der Wahl

der konkurrienden Algorithmen. Unsere Studie ist ein warnendes Beispiel und beleuch-

tet, wie einfach es für Forscher sein kann, die vermeintliche Überlegenheit eines neuen

Clusteralgorithmus zu behaupten. Dies wiederum hebt die Bedeutung von Strategien zur

Vermeidung von Überoptimismus hervor, beispielsweise die Wichtigkeit neutraler Bench-

markstudien.
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1 Background and motivation

Cluster analysis describes a range of data-analytic techniques for finding groups in data.

Cluster algorithms are applied in different research fields, such as medicine, biology, psy-

chology, and economics. For example, in the field of cancer research, researchers have

frequently used gene expression data or other molecular data to cluster cancer patients

in order to find new disease subtypes (see, e.g., for breast cancer, Burstein et al., 2015;

Curtis et al., 2012; The Cancer Genome Atlas Network, 2012). Such subtypes can have

clinical implications and may guide targeted treatment (Garrido-Castro et al., 2019; Prat

et al., 2015).

Apart from clustering patients, further insights about cancer come from single-cell anal-

ysis. Recent technological advances have enabled the simultaneous measurement of gene

expression in a multitude of individual cells (single-cell RNA-seq). Based on this data, the

cells can be clustered to detect cell types or cell states (Duò et al., 2018). For example,

Zheng et al. (2017) analyzed clusters of immune cells in liver cancer, and Pastushenko

et al. (2018) applied cluster analysis to study tumor transition cell states.

Finally, another approach to study cancer comes from microbiome research which focuses

on communities of microbes, for example, those living in the human gut. The human

microbiome is assumed to play an important role in the health of an individual (Shreiner

et al., 2015). While causal statements are difficult to make, changes in the microbiome are

hypothesized to be associated with cancer. Dohlman et al. (2021) and Loftus et al. (2021)

clustered bacteria to better understand the microbial community structure in colorectal

cancer samples.

A multitude of cluster algorithms and methods for evaluating clustering results has been

proposed in the literature. Yet, issues remain regarding the reliability and trustworthiness

of a) clustering results in applied research, and b) results concerning newly presented

cluster algorithms in the methodological literature. With regards to point a), scarce

attention has been directed to the question of whether interesting clustering results are

replicable or not (i.e., whether they can be confirmed in subsequent studies), and how

replicability might be assessed. Moreover, one might wonder whether the plethora of

existing clustering methods poses a challenge in itself; for example, might clustering results

be non-replicable on validation data due to “method selection bias” (when researchers have

picked the “best” method after trying many different ones on their dataset)? Finally, with

regards to point b), one might suspect that promising performance evaluations of newly

presented cluster algorithms are often over-optimistic, i.e., the good evaluation results do

not hold up on other datasets or in alternative study designs.

So far, these issues have been rarely addressed in the cluster analysis literature, yet they

appear relevant in light of the “replication crisis” that has plagued empirical scientific in-

vestigation in recent decades (Baker, 2016). Many scientific findings from diverse research
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disciplines have turned out to be non-replicable, i.e., the results could not be confirmed

in subsequent studies. Several large-scale replication projects reported a low percent-

age of successful replications in fields such as preclinical cancer research (Begley & Ellis,

2012; Errington et al., 2021), psychology (Open Science Collaboration, 2015), economics

(Camerer et al., 2016), and social science (Camerer et al., 2018). An influential (and

controversial) paper from Ioannidis (2005) even argued that “most published research

findings are false”.

The replication crisis has contributed to the rise of metascience (Schooler, 2014). Meta-

science (also called metaresearch) is broadly defined as “science on science”, i.e., metasci-

entific studies analyze the scientific process itself. Metascience is not necessarily a novel

discipline; as Hardwicke et al. (2020) point out, the roots of metascience may be traced

back to the scientific revolution in the 16th and 17th century, when philosophers such as

Francis Bacon argued for rigorous scientific methods guided by skepticism (Bacon, 1620/

1995). In the following centuries, metascientific considerations could be regarded as a

branch of philosophy of science; philosophical methods were applied to study empirical

science, and the term “metascience” was used mostly in this context until some decades

ago (see, e.g., Pearce and Rantala, 1983). Metascience moved beyond the discipline of

philosophy in the 20th century, when researchers started to apply empirical methods to

study empirical science (Hardwicke et al., 2020). For example, Sterling (1959) noted that

most findings published in major psychological journals were reported to be statistically

significant. The phenomenon that “positive” results are much more likely to be published

than “negative” results has since come to be known as “publication bias”.

The popularity of metascience surged in the 21st century due to the aforementioned

replication crisis. Metascientific studies now employ a broad spectrum of theoretical and

empirical approaches to analyze problems that have contributed to the crisis (Hardwicke

et al., 2020). These problems include questionable research practices such as p-hacking,

cherry-picking, data dredging, or HARKing (for a brief overview, see Andrade, 2021).

Such practices often exploit the multiplicity of analysis strategies ; typically, there are

many researcher degrees of freedom regarding the choice of analysis plan (Gelman &

Loken, 2014; Simmons et al., 2011). These degrees of freedom might be problematic

when coupled with selective reporting (reporting only the “best” or “most interesting”

results). The multiplicity issue plays an important role in this thesis, and will be discussed

in more detail below in Section 5.

Researchers do not necessarily engage in questionable research practices in an intentional

or malicious manner, but might fall into the trap of self-deception (Nuzzo, 2015) when

encountering ambiguity in methodology and results. Selective reporting is often strongly

motivated by institutional incentive structures; journals, funders, and universities typi-

cally prefer “novel” and “interesting” results.

So far, metascience has focused mainly on issues related to significance testing (e.g., Head
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et al., 2015; Simonsohn et al., 2014; Wasserstein et al., 2019), with several studies also

considering explanatory and/or predictive modeling (Hoffmann et al., 2021; Patel et al.,

2015; Steegen et al., 2016).1 Moreover, some studies have discussed the replication crisis

in the context of machine learning and artificial intelligence (Hutson, 2018), often with a

focus on supervised learning (Hullman et al., 2022; Kapoor & Narayanan, 2022).

In contrast, metascientific studies on cluster analysis (unsupervised learning) are rare. An

exception is the study of Beijers et al. (2022) where specification curve analysis (Simon-

sohn et al., 2020) was used to analyze the impact of the multiplicity of clustering methods

on the resulting number of clusters in a psychiatric dataset. Moreover, there are some

articles which used mostly formal and philosophical arguments to take a critical look at

certain practices in cluster analysis. Such studies could be classified as metascientific in

the broader sense. For example, Hennig (2015) cautioned that researchers should be more

wary of using datasets that come with a “true” clustering for evaluating the performance

of cluster algorithms. He argued that there is hardly ever a unique “true” clustering, and

that a “good” clustering always depends on the context and the aim of the analysis (see

also Von Luxburg et al., 2012 for similar considerations).

Another direction of research on cluster analysis related to metascience has recently

emerged in computer science; for the ReScience initiative (Rougier et al., 2017), some

research teams have attempted to reproduce and replicate the results of papers present-

ing new cluster algorithms (Eijkelboom et al., 2022; Teule et al., 2021), see Section 5 for

more details.

Despite the examples listed, a lack of research into metascientific aspects of clustering, in

particular topics such as (non)replicability, multiplicity of analysis strategies, and over-

optimism still exists. This thesis aims at closing this gap by demonstrating that these

issues are not limited to significance testing or supervised learning. Besides cluster anal-

ysis, the thesis will also–to a lesser extent–consider further unsupervised approaches,

namely methods for network generation.

Metascience not only studies problems related to the replication crisis, but also aims to

identify and evaluate potential solutions (Hardwicke et al., 2020), such as open science

practices (Nosek et al., 2015), preregistration (Nosek et al., 2018), and neutral comparison

studies (Boulesteix et al., 2013; Boulesteix et al., 2017). In this spirit, this thesis not only

analyzes problems, but also discusses possible solutions.

The remainder of this thesis is structured as follows. In the first part of the thesis, I will

introduce various concepts and methods relevant for this work, starting with Section 2

which will discuss some popular cluster algorithms as well as methods for cluster vali-

dation. While Contributions 1 and 3 mostly use datasets that have a simple structure,

1It is often not possible to strictly distinguish between metascientific studies that study significance
testing and those that study exploratory/predictive modeling, given that model coefficients are often
tested for significance. In cluster analysis, significance testing can also play a role when evaluating the
clustering results (see Contribution 1), but this will not be the main focus of the thesis.
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Contribution 2 considers microbiome data, which is more complex and will be explored

in Section 3. Based on microbiome data, microbial networks can be generated, which

in turn can be used as input for network-based clustering approaches. Such clustering

methods will be explained in Section 4. In Section 5, I will discuss some terms from the in-

troduction (in particular, replication, validation data, over-optimism, and multiplicity of

analysis strategies) in more detail. The three Contributions of the thesis are summarized

in Section 6. Section 7 provides an outlook on possible future directions of research.

In the second part of the thesis, the three Contributions are attached. These are Con-

tribution 1 (Ullmann, Hennig, et al., 2022) which discusses validating clustering results

on validation data, Contribution 2 (Ullmann et al., 2023) which covers over-optimism

in unsupervised microbiome research, and Contribution 3 (Ullmann, Beer, et al., 2022)

which is about the over-optimistic evaluation and reporting of novel cluster algorithms.

2 Classical cluster algorithms and cluster validation

This section explains some popular cluster algorithms such as k-means and hierarchical

clustering, as well as methods for evaluating clustering results. Before considering any

specific cluster algorithm, I will begin with some general remarks.

2.1 Basic concepts in cluster analysis

The goal of clustering is to assign a set of entities {x1, . . . , xm} to k groups (clusters)

C1, . . . , Ck. Objects inside of a cluster should be “similar” to each other, and “dissimilar”

from objects in other clusters. What exactly “(dis)similar” here means cannot be defined

uniquely because it depends on the particular cluster concept of each cluster algorithm

(Hennig, 2015). Therefore, different cluster algorithms will often yield different clusterings

on the same dataset. For example, k-means aims to find spherical clusters, while DBSCAN

looks for regions of higher density that are not necessarily spherical.

Cluster algorithms can be divided into hard (crisp) and soft (fuzzy) clustering methods

(Hennig & Meila, 2015). In hard clustering, each entity can be assigned to only one

cluster. In soft clustering, each entity can belong to multiple clusters, and a weight γil

denotes the degree of membership of object xi to cluster Cl. In the Contributions of this

thesis, we regard hard clustering as the “default” case, and do not consider algorithms

specifically designed for soft clustering. However, many presented arguments could also

be applicable in soft clustering.

Both hard and soft clusterings can be considered as flat clusterings. In contrast, a hier-

archical clustering consists of sequences of nested clusters, which can be visualized as a

dendrogram (for more details, see the paragraph on hierarchical clustering below).

Cluster algorithms typically start from either object-by-variable data or (dis)similarity
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data (Van Mechelen et al., 2018). This is depicted in Table 1. Part (a) shows the

structure of an n× p object-by-variable dataset. We assume that the n objects represent

samples drawn from a population (e.g., patients with breast cancer), while the p variables

represent a fixed set (e.g., a set of genes for which gene expression is measured). In

Contribution 1, we distinguish between the following two cases. It might be of interest to

either cluster the n samples (inferential clustering, which aims to gain insights about the

underlying population from which the samples were drawn) or to cluster the p variables

(descriptive clustering, which aims to describe the fixed set of interest). This distinction

is explained in more detail in Contribution 1. Instead of n × p object-by-variable data,

the data might also be available in the form of a (dis)similarity matrix. Table 1(b) shows

an n × n (dis)similarity matrix of the n samples for inferential clustering, Table 1(c) a

p× p (dis)similarity matrix of the p variables for descriptive clustering.

Table 1: Data input for cluster algorithms

(a) n× p data

Var 1 . . . Var p

id 1 . . . . . . . . .
...

...
. . .

...

id n . . . . . . . . .

(b) n× n data

id 1 . . . id n

id 1 . . . . . . . . .
...

...
. . .

...

id n . . . . . . . . .

(c) p× p data

Var 1 . . . Var p

Var 1 . . . . . . . . .
...

...
. . .

...

Var p . . . . . . . . .

An object-by-variable dataset of type n × p can be transformed into a (dis)similarity of

type n× n or p× p by applying a suitable (dis)similarity measure (such as the Euclidean

distance, Pearson/Spearman correlation, etc.). For the reverse route, multidimensional

scaling techniques can be used (Borg & Groenen, 2005).

In the following section, each cluster algorithm will be explained in turn along with which

data structure it takes as input (i.e., object-by-variable or (dis)similarity data). A special

case of similarity data is network data. Algorithms specifically designed for network data

will be considered in Section 4 below, after discussing methods for network generation in

Section 3.

2.2 Popular clustering methods

This section introduces some classical cluster algorithms, namely k-means, hierarchical

clustering, DBSCAN, and Mean Shift, which are used in the three Contributions to illus-

trate the raised issues. Note, however, that our results should not be considered as strictly

specific to these particular algorithms. These clustering methods are merely used as ex-

amples, and we would expect that similar illustrations could also be performed with other

algorithms (this remark also applies to the network-based cluster algorithms discussed

further below). The algorithms are therefore sketched only briefly, with more detailed

information available in the given references.
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When describing the algorithms, I assume without loss of generality that the n objects

(samples) are to be clustered. Otherwise, if the p variables are to be clustered, the roles

of objects and variables can simply be switched. Note that Contribution 1 also generally

uses the terms “objects” to refer to the entities to be clustered.

k-means In its classical form, k-means (Lloyd, 1982) is based on real-valued object-by-

variable data. Let k be the desired number of clusters. The aim is to find a clustering C =

{C1, . . . , Ck} such that each cluster Cl is represented well by its centroid cl (thus k-means

tries to find spherical and equally sized clusters). This can be formulated in mathematical

terms as follows. Let xi ∈ Rp, i = 1, . . . , n denote the objects to be clustered. Then the

centroid cl of Cluster Cl is calculated as cl =
1

|Cl|
∑

xi∈Cl
xi, where |Cl| denotes the number

of objects in cluster Cl. The goal is to minimize the sum of squares error:

SSE(C) =
k∑

l=1

∑
xi∈Cl

∥xi − cl∥2 (1)

The classical k-means method of Lloyd (1982) aims to (approximately) minimize (1)

with an iterative algorithm consisting of the following steps. 1) Initialization: k random

“centroids” are chosen from the set of objects {x1, . . . , xn}. 2) Each object xi is assigned to

the nearest centroid (in terms of Euclidean distance), resulting in a preliminary clustering

C̃. 3) The centroids are updated, i.e., the centroid of each cluster C̃l in C̃ is calculated.

Steps 2) and 3) are then repeated until the algorithm converges, i.e., until the cluster

memberships do not change anymore. Note that this algorithm does not necessarily find

the global minimum of (1). In particular, the performance of the algorithm depends on

the initialization of the centroids, and some random initializations may lead to suboptimal

performances. A popular strategy is to repeat the random initialization several times and

choose the best end result according to criterion (1).

Hierarchical clustering Hierarchical clustering refers to a class of cluster algorithms

which return hierarchies as output, i.e., sequences of nested clusters. This can be visual-

ized with dendrograms (Figure 1). A flat clustering with a specified number of clusters k

can be derived from a hierarchical clustering by horizontally cutting through the dendro-

gram at a suitable height.

Methods for hierarchical clustering can be divided into two categories, namely agglomer-

ative vs. divisive approaches. Agglomerative clustering starts with n clusters, each con-

sisting of a single object, and successively merges these clusters into larger ones. Divisive

clustering starts with a single cluster containing all objects, and successively partitions

this cluster into smaller clusters. In the following, I focus on agglomerative clustering,

which is the more popular approach.

Agglomerative clustering can be performed with linkage functions. This requires data in
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Figure 1: Dendrogram showing an exemplary hierarchical clustering of objects named
{A,B, . . . , H}. The dendrogram was generated with the dendextend R package (Galili,
2015).

the form of a dissimilarity matrix as input. Let d(xi, xj) denote the dissimilarities of the

objects xi, xj. In each step of the cluster algorithm, the most similar (least dissimilar)

clusters are merged, where the dissimilarity d(C, C̃) of two clusters is calculated based on

the dissimilarities of the objects in the clusters. The concrete calculation depends on the

linkage function:

• Complete linkage (Sorensen, 1948): d(C, C̃) = max{d(x, y) : x ∈ C, y ∈ C̃}

• Single linkage (Sneath, 1957): d(C, C̃) = min{d(x, y) : x ∈ C, y ∈ C̃}

• Average linkage (Sokal & Michener, 1958): d(C, C̃) = 1
|C||C̃|

∑
x∈C,y∈C̃ d(x, y)

The different linkage functions can produce clustering results with different properties

(Everitt et al., 2011). Single linkage is often not recommended in practice, as it can lead

to so-called chaining effects: two clusters which are intuitively “separated” from each

other, but connected by a chain of intermediate points, may be joined together early in

the agglomerative process, which is frequently undesired. See Everitt et al. (2011) for an

illustration of this issue.

DBSCAN DBSCAN (Ester et al., 1996) is a density-based algorithm, i.e., clusters are

conceptualized as regions of higher density which might not be necessarily spherical, but

could also be elongated, drawn-out, etc. The algorithm accepts a dissimilarity matrix as

input, based on a distance d. Moreover, two input parameters ϵ > 0 and minPts ∈ N
are required. In the following, the objects to be clustered are called “points”. DBSCAN

is based on placing “connected” points in the same cluster. More precisely, the following

concepts are used (Ester et al., 1996):

• A core point p is a point with at least minPts points (including p itself) in its

ϵ-neighborhood, where the latter is defined as the set {q : d(p, q) ≤ ϵ}.
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• A point p is directly density-reachable from a point q if d(p, q) ≤ ϵ (i.e., p is in the

ϵ-neighborhood of q) and q is a core point.

• A point p is density-reachable from a point q if there is a chain of points p1 . . . , pm,

p1 = q, pm = p such that pi+1 is directly density-reachable from pi.

• A point p is density-connected to a point q if there is a point o such that both p and

q are density-reachable from o.

A cluster C is then defined as a set of points such that a) if point p is in C and q is

density-reachable from p, then q is also in C, and b) if points p, q are in C, then p, q must

be density-connected.

The DBSCAN algorithm finds such clusters by starting with an arbitrary point p and

evaluating its ϵ-neighborhood. If p is a core point, then the density-connected cluster

including p is determined. Once this cluster is computed, the algorithm visits a new

point. This procedure does not necessarily assign every point to a cluster. Points that

remain unclustered after the algorithm stops are called noise points and can be considered

as outliers.

For fixed values of ϵ and minPts, the above definition of clusters does not necessarily

imply a unique clustering. More precisely, the dataset may contain border points (points

which are neither core points nor noise points) that are density-reachable from more than

one cluster, and thus could be assigned to different clusters. DBSCAN assigns such border

points to the first cluster that they are reachable from (Schubert et al., 2017). This means

that the clustering found by DBSCAN does not necessarily remain the same if the order

of the points in the dataset is permuted. However, as Schubert et al. (2017) noted, this

is a rare issue in practice.

Mean Shift The Mean Shift algorithm (Fukunaga & Hostetler, 1975) takes real-valued

object-by-variable data as input. The objects are thus interpreted as points in the stan-

dard Euclidean space. Mean Shift proceeds as follows: For each point p, its local area is

considered. This local area can be defined as an ϵ-neighborhood. In Mean Shift clustering,

ϵ is called the bandwidth (which is the only input parameter of the algorithm). The mean

of all points in the local area is computed, and the point p is “shifted” towards this mean.

Starting from the new position of p, the procedure is then repeated until p arrives at its

final position. After this shifting process is concluded for all points, different points with

a similar final position are assigned to the same cluster.

The idea of this procedure is that each point will be gradually shifted towards positions

in increasingly denser regions, i.e., towards “density modes”. In fact, the algorithm seeks

to estimate the local maxima (modes) of the probability density function from which the

data was sampled (Cheng, 1995; Comaniciu & Meer, 2002). These modes correspond

intuitively to cluster centers.
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Modifications of Mean Shift include the Rock algorithm (Beer et al., 2019) that is used in

Contribution 3 to demonstrate over-optimistic presentation of novel cluster algorithms.

Rock replaces the bandwidth-defined local area with a K-nearest neighbor approach, i.e.,

in each step, the points are shifted towards the mean of their K nearest neighbors.

2.3 Evaluating the results of cluster algorithms

Once a clustering is obtained, how can its quality be evaluated? Different cluster validation

procedures have been proposed to answer this question. These are described in more detail

in Contribution 1 and are only briefly summarized here. Internal validation is based

only on the data which was used for clustering. Typically, so-called internal validation

indices are calculated, for example, indices measuring the homogeneity and/or separation

of the clusters. In contrast, external validation uses external information that was not

used for clustering. For example, the agreement of a clustering with a previously known

categorization is evaluated. For visual validation, plots are generated to visualize the

clustering (e.g., principal component plots, heatmaps,...). Researchers can inspect these

plots to judge the clustering quality. Stability evaluation is based on the following idea: Let

C be a clustering of the datasetD resulting from the clustering methodM . The dataD was

sampled from a distribution F . Suppose that further datasets D(1), . . . , D(H) are sampled

from F , and the methodM is applied to these datasets to obtain clusterings C(1), . . . , C(H).

If these clusterings are similar to each other and/or similar to the original clustering C, this
indicates a high degree of stability. Different approaches exist for measuring the similarity

of the clusterings. As the distribution F is not known in practice, F is approximated by

resampling techniques (e.g., subsampling or bootstrapping).

In applied research, cluster validation techniques can be used for evaluating a single clus-

tering, but also for comparing multiple clusterings. Moreover, the validation procedures

can be used in methodological research to evaluate the performance of cluster algorithms

(see Contribution 3). A particular focus of this thesis lies on combining classical vali-

dation techniques with validation on validation data, a concept extensively discussed in

Contribution 1 (see also Sections 5.2 and 6).

3 Microbiome data and microbial networks

In all three Contributions of this thesis, various datasets are used for demonstration or

illustration of the raised issues. Contributions 1 and 3 mostly use simple data examples,

in the form of real-valued n×p object-by-variable data that can be interpreted in standard

Euclidean space. On the other hand, Contribution 2 (as well as an example in the sup-

plement of Contribution 1) focuses on microbiome data which has a particular structure,

and thus also requires specific data analysis techniques (Gloor et al., 2017). This section
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explains basic properties of microbiome data. Moreover, methods for generating microbial

association networks are discussed. Network-based analyses are considered extensively in

Contribution 2.

3.1 Microbiome count data

The term microbiome refers to the community of microbes (including bacteria, archaea,

fungi, and viruses) that live in a particular environment, e.g., the human gut. Microbiome

data is typically obtained by collecting n samples (e.g., stool samples from n persons to

study the gut microbiome). Possible goals are to find out which – and how many –

microbes are contained in each of these samples, and how these microbes are associated

with each other.

For this purpose, so-called marker genes of microbes can be sequenced. For bacteria, a

very popular marker gene is the 16S ribosomal RNA (rRNA) gene. This gene is suitable

because it contains highly variable regions that can serve to distinguish between different

types of bacteria (Li, 2015). Such a variable region can be targeted with high-throughput

amplicon sequencing. The resulting sequences are then clustered into operational tax-

onomic units (OTUs). That is, sequences that differ by less than a specific threshold

(e.g., 3%) are clustered together (Callahan et al., 2016). (Note that this thesis does not

specifically consider this clustering task, rather, we focus on cluster analysis performed

at a later step in the network analysis, see below.) Each OTU can be seen as a proxy for

a bacterial species (Li, 2015). The clustering into OTUs accounts for sequencing errors;

small differences between sequences are often caused by technical error, not by genuine

biological differences. The downside is a certain loss of information, i.e., the fine-scale

variation that is, in principle, accessible by modern sequencing techniques, cannot be

detected. Newer computational methods (Callahan et al., 2016) can correct sequencing

errors without OTU clustering. The resulting sequences are called amplicon sequence

variants (ASVs). In Contribution 2, we consider OTU data. However, the study design

of Contribution 2 would also apply to ASV data.

The result of the sequencing process can be represented as an n×p count matrix consisting

of non-negative integers, see Table 2(a). Each entry wij denotes how often taxon j was

observed in sample i (“taxon” is a general term for a taxonomic group and stands here

for an OTU or an ASV). Additionally, the count table comes with metadata about the

taxonomic categorization of the OTUs or ASVs; by consulting a bacterial database, each

taxon can be assigned a taxonomic lineage, i.e., information about which higher-level

taxonomic ranks the taxon belongs to, such as genus, family, order, etc. (Li, 2015). As an

example, the taxonomic lineage of the famous bacterial species Escherichia coli (E. coli)

is displayed in Table 3 (Schoch et al., 2020).

The count data is sometimes agglomerated to a higher taxonomic level (for example, the
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Table 2: Microbiome data

(a) n× p count matrix

taxon 1 . . . taxon p

id 1 w11 . . . w1p

...
...

. . .
...

id n wn1 . . . wnp

(b) p× p adjacency matrix

taxon 1 taxon 2 . . . taxon p

taxon 1 0 a12 . . . a1p
taxon 2 a21 0 . . . a2p

...
...

...
. . .

...

taxon p ap1 ap2 . . . 0

Table 3: Taxonomic lineage of the bacterial species Escherichia coli (E. coli). Together
with other species, E. coli belongs to the genus Escherichia, and so on.

Taxonomic classification

Domain: Bacteria

Phylum: Pseudomonadota

Class: Gammaproteobacteria

Order: Enterobacterales

Family: Enterobacteriaceae

Genus: Escherichia

Species: Escherichia coli

genus level, which is the case in Contribution 2). The structure of this agglomerated

data would then again look like Table 2(a), with a “taxon” now standing, e.g., for a

genus. Consequently, the number p of taxa is reduced. Agglomeration is sensible if one

is interested in specific functions that different bacterial species share with their higher-

level taxonomic group (Röttjers & Faust, 2018). Moreover, agglomeration may facilitate

the interpretation of microbial association networks (see below). On the other hand,

agglomeration can lead to information loss.

3.2 Microbial association networks

Microbial count data can be used for different types of analyses. This section focuses on

inferring a microbial association network from the data, i.e., a network in which each node

represents a microbial taxon, and each edge represents an association between two taxa.

Such networks will be used in Contribution 2 to demonstrate over-optimism effects. See

Figure 2 for the visualization of an exemplary network. Microbial networks are important

tools to better understand the complex interactions between microbes that live in a specific

habitat (Faust et al., 2012). They may help to generate new hypotheses, e.g., about key

players in the microbiome (Röttjers & Faust, 2018).

Networks with many nodes and edges can be difficult to interpret. This issue can be

partially addressed by agglomeration to a higher taxonomic level, as this reduces the
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Figure 2: Exemplary network generated with the NetCoMi R package (Peschel et al.,
2021). This network shows associations between a subset of microbes living in the human
gut, based on OTU count data from the American Gut Project (McDonald et al., 2018).
Edges are colored according to the direction of the association (green: positive, red: neg-
ative). The edge widths represent the association strengths. Nodes are colored according
to a clustering of the network with fast greedy modularity optimization (Clauset et al.,
2004). The size of a node represents its degree centrality, which is defined as the number
of adjacent nodes (Freeman, 1978). For better interpretability, labels could be added to
the nodes (e.g., with information about the taxonomic rank), but to keep the visualization
clear, this was not done here.

number of taxa and thus the number of nodes in the networks (Röttjers & Faust, 2018).

A microbial association network can be represented as a p × p adjacency matrix as in

Table 2(b). Each entry aij represents the edge weight, i.e., the strength of the association

between taxa i and j, with aij = 0 signifying that there is no association (and thus no

edge) between i and j. The entries on the diagonal are zero to indicate that there are

no self-loops in the network. We assume that the network is undirected, and thus the

adjacency matrix is symmetric.

How can such a network be generated, i.e., how can an adjacency matrix be obtained

from a count matrix? This requires calculating the associations between the taxa. For

this purpose, one cannot directly apply classical correlation measures, such as Pearson

correlation, to the count matrix. This is not valid due to the compositional nature of the

count data (Gloor et al., 2017). For each sample i, the counts sum up to a fixed number

m(i) =
∑p

j=1 wij, which is called the sequencing depth or library size. The sequencing

depth does not correspond to the true total bacterial abundance in the sample. Instead,

the depth is determined by technical factors, and constitutes an upper limit of the se-

quencing instruments. Put differently, if the instrument has delivered a read of a taxon,

that read is then not available anymore for further counts. Moreover, the sequencing

depth varies between samples due to technical reasons (Gloor et al., 2017).
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Consequently, the counts must be interpreted as relative abundances: only the proportions

wij/m
(i) carry information, not the absolute abundances wij. Evidently, for each sample,

the proportions sum up to one. This constraint implies that, in particular, the count data

cannot be interpreted in standard Euclidean space. Instead, the proportions are elements

of the so-called simplex space (Aitchison, 1982).2

As a consequence of compositionality, classical correlation measures such as the Pear-

son or Spearman correlation cannot be applied to the count matrix directly. As Lovell

et al. (2015) illustrate, completely different absolute abundances can give rise to the

same relative abundances. Uncorrelated absolute abundances can yield correlated rela-

tive abundances, or vice versa. In particular, not accounting for compositionality can lead

to spurious negative correlations (Friedman & Alm, 2012): if the proportion of a taxon

increases, the proportions of the other taxa must necessarily decrease, simply because the

proportions must add up to one.

To calculate associations between taxa, the count data is thus first normalized. Suitable

normalization methods are discussed in the next paragraph.3

Normalization and zero handling. Aitchison (1982) proposed the centered log-ratio

(clr) transformation, which maps proportions from the simplex space into the Euclidean

space. For each sample i, the count vector w(i) = (wi1, . . . , wip) is transformed as follows:

clr
(
w(i)

)
=

(
log

(
wi1

g(w(i))

)
, . . . , log

(
wip

g(w(i))

))
,

where g
(
w(i)

)
is the geometric mean of w(i). Note that clr

(
w(i)

)
= clr

(
w(i)/m(i)

)
, i.e.,

the clr transformation yields the same results for the absolute counts as for the relative

abundances.

Both the logarithm and the division by the geometric mean require non-zero counts.

This poses a challenge as microbiome count data is typically sparse, i.e., contains many

zero counts. Some taxa may indeed have low abundance, and thus be present in only

few samples. However, zero counts can also stem from technical issues related to the

sequencing process (Tsilimigras & Fodor, 2016).

To make the clr applicable to sparse count data, a pseudo count of one can be added

to the data. However, as Yoon et al. (2019) note, this addition is somewhat arbitrary,

and may have undesired effects on subsequent analyses. The authors thus proposed the

2Note that the property of compositionality is not restricted to microbiome data, but extends more
generally to data obtained with high-throughput sequencing, including RNA-Seq gene expression data
(Quinn et al., 2018), due to the same technical constraints of sequencing instruments as described above.

3For simplicity, I will use the term “normalization” both for log-ratio transformations, such as the
centered log-ratio (clr) transformation, as well as for normalizations to effective library size, such as the
variance-stabilizing (VST) procedure (both clr and VST are described below). Some authors emphasize
the distinction between “transformation” and “normalization” (Quinn et al., 2018), but a more detailed
discussion of this issue goes beyond the scope of this thesis.
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modified clr transformation (mclr), which applies the clr to non-zero counts only, and

leaves the zero counts unmodified. Alternative approaches to deal with zero counts are

summarized in Tsilimigras and Fodor (2016) and Peschel et al. (2021).

An alternative to normalization based on log-ratios (such as the clr and mclr) is the

variance-stabilizing transformation (VST; Anders and Huber, 2010), which is based on

fitting a negative binomial distribution to the count data, and aims to (approximately)

eliminate the dependence of the variance of the counts on the mean. Like the clr, the

VST requires prior handling of zeros.

Association estimation. Normalization methods such as the clr and VST alleviate

some issues related to compositionality, by correcting for varying sequencing depths and

mapping the proportions into standard Euclidean space. Classical correlation measures

can then be applied to the transformed data. There is some evidence that normalization

with the clr or VST combined with Pearson correlation yields consistent correlation esti-

mates, provided the sample size is not too small (Badri et al., 2020). Moreover, classical

correlation measures are well-known and easy to understand. We thus include normal-

ization with clr/mclr/VST coupled with Pearson or Spearman correlation as part of the

methods for generating microbial networks in Contribution 2.

However, some issues related to compositionality and/or association estimation may re-

main when applying Pearson or Spearman correlation, even after normalizing the data

(Tsilimigras & Fodor, 2016). Therefore, alternative methods for association estimation

have been proposed. These include 1) latent correlation estimation, 2) partial correlation

estimation, and 3) proportionality measures.

Latent correlation estimation (Yoon et al., 2020; Yoon et al., 2021) refers to estimating

the latent correlation (“latentcor”) matrix of a truncated Gaussian copula model. More

precisely, the microbial counts are modeled as realizations of a Gaussian copula variable

which is truncated to reflect that the counts are either zero or positive. Compared to the

Pearson correlation, the latentcor approach is better suited to deal with excess zeros in

the microbial count matrix (Yoon et al., 2019). The latentcor estimation is applied to

mclr-transformed data (as mentioned above, the mclr transformation leaves the zeros in

the count data intact).

Methods for estimating partial correlations include the SPRING approach (Yoon et al.,

2019), which starts by calculating the latentcor matrix and then applies the neighborhood

selection technique (Meinshausen & Bühlmann, 2006) to infer conditional dependencies.

That is, for each pair of taxa, the associations between the two taxa conditioned on all

other taxa are estimated. In contrast to classical correlation methods, SPRING can thus

distinguish between direct and indirect associations. An alternative to SPRING is the

SPIEC-EASI method (Kurtz et al., 2015), which also estimates partial correlations, but

starts from the Pearson correlation matrix of the clr-transformed data instead of the
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latentcor matrix. For Contribution 2, we use the newer SPRING method.

An alternative approach for association estimation is the concept of proportionality (Lovell

et al., 2015; Quinn et al., 2017), which we also consider in Contribution 2. To describe the

underlying idea, let w
(•j)
rel =

( wij

m(i)

)
i=1,...,n

denote the j’th column of the relative abundance

matrix. If the relative abundances w
(•j)
rel ,w

(•k)
rel of two taxa j, k are proportional to each

other, then the underlying absolute abundances are also proportional. Put differently,

proportionality is a property of the underlying absolute abundances which can be inferred

from the observed relative abundances. Thus, proportionality is a suitable measure for

association strength. To calculate the “extent” of proportionality, a factorization of the

log-ratio variance var(log(w
(•j)
rel /w

(•k)
rel )) can be used (see Lovell et al., 2015 and Quinn

et al., 2017 for details). While proportionality is a compositionally aware method (i.e.,

it takes compositionality directly into account), the data should still be clr-transformed

before applying the proportionality measure, such that associations between different pairs

of taxa are on the same scale and thus comparable (Lovell et al., 2015).

Sparsification of associations. After calculating associations between the taxa, the

association matrix can be transformed into a p × p adjacency matrix as in Table 2(b),

which represents a network as described above. However, this matrix may not be sparse,

in which case the resulting network is dense (i.e., all or almost all nodes are connected),

which hampers interpretability. Therefore, sparsification is frequently applied to the

associations, i.e., small associations are set to zero (meaning that there is then no edge

between these taxa in the network). Sparsification can be performed, for example, with

a cut-off value: associations with an absolute value below a specified threshold are set to

zero (Friedman & Alm, 2012). For the Pearson and Spearman correlation estimates, one

can also apply a suitable significance test (e.g., a t-test or a bootstrap test) and only keep

the associations that are significantly different from zero (Peschel et al., 2021).

Summary of the network generation steps. The workflow for generating microbial

association networks based on count data is summarized in Figure 3. Note that this is a

somewhat simplified depiction. Not every normalization method requires prior zero han-

dling (e.g., the mclr transformation). Moreover, some methods for association estimation

come with inbuilt sparsification (e.g., the SPRING method which estimates partial cor-

relations in a sparse manner). More details about correctly combining methods for each

of the four steps can be found in Peschel et al. (2021) and in Contribution 2.

Once the network is generated, further analyses can be applied, including clustering to

identify groups of nodes. In the terminology of Section 2.1 and Contribution 1, descrip-

tive clustering of the microbes is performed. Network-based clustering approaches are

described in Section 4 below. Besides these approaches, we also apply hierarchical clus-

tering to the unsparsified association matrices (details are given in Contribution 2). While
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zero handling
e.g., pseudo count

normalization
e.g., clr, mclr,

VST,...

association estimation
e.g., Pearson, Spearman,

latentcor, SPRING,

proportionality,...

sparsification
e.g., threshold,

t-test,...

Figure 3: Simplified workflow for generating microbial association networks from micro-
biome count data.

the main focus of this thesis is on clustering, we also consider other analyses based on mi-

crobial association networks in Contribution 2. These include hub detection (identifying

“influential” nodes of the network) or differential network analysis (comparing networks

between different groups or conditions), as described in detail in Contribution 2. Finally,

Contribution 2 not only considers the clustering of microbes, but also the clustering of

samples (which constitutes inferential clustering in the terminology of Section 2.1 and

Contribution 1). For this task, the focus is not on associations between microbes, but on

similarities between samples. This is explained in detail in Contribution 2.

4 Network-based cluster algorithms

This section explores methods for clustering the nodes of a network, namely modularity

optimization (Blondel et al., 2008; Clauset et al., 2004), spectral clustering (Ng et al.,

2001; Weiss, 1999), and the manta algorithm (Röttjers & Faust, 2020). As in the previous

section, a network is represented by a p×p adjacency matrix A = (aij), with aij denoting

the weight of the edge between nodes i and j.

Modularity optimization The general aim of network-based cluster algorithms is to

identify clusters of nodes such that nodes within a cluster are strongly connected (i.e.,

edges within a cluster have a high weight), while there are few respectively only weak

connections between different clusters (i.e., edges between the clusters have a low weight).

For a given network clustering, this property can be quantified by the modularity measure.

In turn, network clustering can be performed by optimizing this measure.

Let C = {C1, . . . , Ck} be a clustering (partition) of the network nodes. Let δC(i, j) be

equal to 1 if nodes i and j are in the same cluster, and 0 otherwise. Moreover, let

Wsum =
∑

i,j aij be the sum over all edge weights in the network, and di =
∑p

j=1 aij the

(weighted) degree of node i. Then the modularity q(C) is defined as follows (Newman,

2004; Newman & Girvan, 2004):

q(C) = 1

Wsum

∑
i,j

(
aij −

didj
Wsum

)
δC(i, j) (2)

The idea behind the modularity measure can be best understood for the special case of
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an unweighted network, i.e., aij = 1 if there is an edge between i and j, and aij = 0

otherwise. Then the number of edges in the network is Wsum/2, and the fraction of

within-cluster edges is
(∑

i,j aijδC(i, j)
)
/Wsum. Suppose that the edges between nodes

are assigned randomly, given the fixed node degrees di. Then the probability of an edge

existing between nodes i and j is given by didj/Wsum. Therefore, if the fraction of within-

cluster edges is equal to what is expected for the randomized network, the modularity

q(C) is zero. On the other hand, higher modularity values indicate fractions “better than

chance”, and thus a better quality of the clustering.

Contribution 2 uses two approaches for modularity optimization, namely the fast greedy

algorithm of Clauset et al. (2004) and the Louvain method of Blondel et al. (2008). Both

methods have similarities to agglomerative hierarchical clustering (Section 2.2), as they

start by putting each node in its own cluster, and then proceed to successively merge

clusters to achieve increases in modularity.

Spectral clustering The name “spectral clustering” (Ng et al., 2001; Weiss, 1999) is

derived from the term spectrum, i.e., the set of the eigenvalues of a matrix. For spectral

clustering, the matrix of interest is the graph Laplacian L of the adjacency matrix A.

The unnormalized graph Laplacian is defined as L = D −W , with D = diag(d1, . . . , dp)

the diagonal matrix of the weighted degrees. Normalized versions of the graph Laplacian

can also be used, see Von Luxburg (2007) for an overview. The graph Laplacian and its

eigenvalues and eigenvectors are connected to properties of the network (Mohar, 1991).

Spectral clustering consists of the following steps (Von Luxburg, 2007), with the adjacency

matrix A and a fixed number of clusters k as input:

1. Compute the graph Laplacian L of A.

2. Compute the k first eigenvectors u1, . . . ,uk of L.

3. Let U ∈ Rp×k be the matrix with the eigenvectors u1, . . . ,uk as its columns. For

j = 1, . . . , p, let yj ∈ Rk be the vector corresponding to the j’th row of U .

4. Apply the k-means algorithm to group the vectors y1, . . . ,yp into clusters C̃1, . . . , C̃k.

5. The clustering of the network nodes is given by clusters C1, . . . , Ck with Cl := {j :

yj ∈ C̃l}.

While this procedure appears rather abstract at first, it can be shown that the algorithm

fulfills the general aim of network-based clustering as stated above (i.e., edges within a

group should have a high weight, and edges between the groups a low weight). Spectral

clustering does not optimize modularity, but instead approximates a “graph cut” proce-

dure (Von Luxburg, 2007) which involves the minimization of the sums of edge weights

between different clusters.
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In contrast to the other network-based algorithms described in this section, which are

typically applied only to networks, spectral clustering is also frequently applied to (real-

valued) n×p object-by-variable data. In this case, the generation of the network adjacency

matrix is often considered as a part of the spectral clustering pipeline; the object-by-

variable data is first transformed into a similarity matrix, and then sparsified to obtain an

adjacency matrix. For Contribution 2, we apply spectral clustering to the similarity matrix

obtained by calculating microbial associations as described in Section 3 above. While

sparsification could be performed with the approaches described in that section (e.g.,

the threshold method), we use another approach that is popular for spectral clustering,

namely obtaining the sparsified adjacency matrix by computing the K-nearest neighbor

graph based on the similarity matrix (Von Luxburg, 2007). This is why we classify

spectral clustering as a similarity-based approach in Contribution 2, instead of grouping

it together with modularity optimization and manta.

manta In contrast to modularity optimization and spectral clustering, manta (Röttjers

& Faust, 2020) was specifically designed for microbial association networks and takes

biological principles into account, such as “the enemy of my enemy is my friend”. That

is, even if there is no direct association between two microbial species in the network, they

might still be clustered together if they have a shared negative association with another

species. To incorporate such effects, manta accepts adjacency matrices with negative edge

weights as input, which is not the case for modularity optimization or spectral clustering.

Based on the adjacency matrix, manta generates a scoring matrix by iterating expansion

and inflation of the edge weights, a process inspired by the Markov cluster algorithm

(Van Dongen, 2000) which aims to find clusters based on random walks on the adjacency

matrix. The scoring matrix is then clustered via agglomerative hierarchical clustering.

5 Concepts related to the replication crisis

This section explains in more detail some terms that were briefly mentioned in the in-

troduction, including replication, validation data, multiplicity of analysis strategies, and

over-optimism. These concepts are related to each other (for example, I define over-

optimistic results as findings that cannot be successfully replicated or validated), and are

relevant for all Contributions of this thesis. As a more general understanding of the terms

is helpful before defining how they might apply to cluster analysis, the present section

discusses the concepts in a broader context, mostly without specific reference to cluster

analysis. Section 6 as well as the three Contributions will then explore the concepts specif-

ically for clustering. In particular, Contribution 1 extensively discusses what replication

and validation mean for evaluating clustering results.

Throughout this section, I distinguish between the terms in the context of applied stud-
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ies vs. methodological studies. For example, an applied study might be a study which

clusters cancer patients to find new disease subtypes, or a study in which a network is

learned from a microbiome dataset to elucidate the structure of the gut microbiome in

individuals with a certain illness. A typical example of a methodological study is a study

introducing a new cluster algorithm. This thesis considers both aspects; Contributions 1

and 2 adopt a metascientific perspective on applied studies, while Contribution 3 focuses

on methodological science. The terms discussed in this section can differ between the two

cases. For example, replicating the results of an applied study does not necessarily mean

the same as replicating the results of a methodological study.

5.1 Reproducibility and replicability

When discussing “replicability”, it is important to distinguish this term from “repro-

ducibility”. The latter concept is also briefly explained in this section, although the focus

remains on replicability.

The terms “reproducibility” and “replicability” are not used uniformly between (or even

within) different research disciplines (Goodman et al., 2016; Nosek & Errington, 2020;

Plesser, 2018). Given the lack of a broad consensus, this section takes a pragmatic ap-

proach; some (but not all) varying definitions of the terms are discussed, with a focus on

how the terms are ultimately used in this thesis.

Reproducibility and replicability in applied research. A good starting point is

the 2× 2 matrix of Whitaker (2016) in Table 4. According to this scheme, reproducibility

is defined as obtaining the exact same results when applying the same methods to the

same data. Being able to reproduce one’s own results or the results of other teams can

be considered as a minimum standard in science (Hofner et al., 2016), but is often not

fulfilled in practice, e.g., due to insufficient documentation and issues with data and/or

code sharing (Gabelica et al., 2022; Gundersen & Kjensmo, 2018; Hardwicke et al., 2018).4

Replicability is defined according to Table 4 as applying the same methods to different

data and obtaining similar results. Due to sample variation, the results from new data

will not typically be the exact same as from the original dataset. Therefore, it may be

difficult to judge whether the results of a replication study indeed “successfully” replicate

the original results. In the context of significance testing, different approaches have been

proposed for defining replication success (e.g., Hedges, 2019; Held, 2020).

While the 2× 2 scheme in Table 4 is rather clear-cut, one might argue that the definition

of replication is too narrow, in particular the focus on applying the “same methods”. In

4While reproducibility is discussed less in the Contributions of this thesis compared to replicability,
we have made efforts to make our results reproducible, by using openly available datasets as well as
publishing the full codes on Github with instructions for reproduction (for Contributions 2 and 3) or
including the code in a supplement (for Contribution 1).
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Table 4: The 2×2 scheme of Whitaker (2016) for defining reproducibility and replicability
in applied research. The scheme is used in this section as a starting point for discussing the
definitions. Overall, the present thesis uses the term “replicability” in a slightly broader
sense.

data

same different

methods
same reproducibility replicability

different robustness generalizability

their discussion about replication, Nosek and Errington (2020) argued for less focus on

the “repetition of the technical methods” because of the difficulty, non-sensibility, or even

impossibility of repeating the exact same procedures and measurements in a new study (for

example, when conducting a new survey study in a different country, the original survey

must be translated and perhaps also adapted to the cultural context). Instead, Nosek and

Errington (2020) focused on the interplay between theory/hypotheses and evidence that

is central to empirical science. In research studies, empirical evidence provides support

(or not) for claims deduced from a theory. Nosek and Errington (2020) then defined

replication as “a study for which any outcome would be considered diagnostic evidence

about a claim from prior research”.5

The authors acknowledged that under this somewhat broader definition, not everyone will

agree whether a particular study is indeed a replication study (let alone when replication

can be considered “successful”). Moreover, Nosek and Errington (2020) mentioned that in

practice, using the same or very similar methods as in the original study can be a reason-

able starting point for replication, particularly in fields where theoretical understanding

is not yet profound. Nevertheless, the flexibility of the broader definition of replication

has its advantages, also in the context of this thesis. For example, in Contribution 1,

so-called result-based validation is discussed, which is not based on applying the same

methods again, but might still be considered relevant for replicability (see Section 6 for

more details). I therefore broadly define replication as re-assessing a claim on new data

respectively in a new study, which may often (but not necessarily always) include applying

the same methods as in the original study. This flexible definition also fits better with

our understanding of the term “replication” in the context of methodological research, as

will be discussed next.

5In comparison with the definition of replication according to the 2× 2 scheme in Table 4, Nosek and
Errington (2020) kept the focus on different data, but the applied methods may not be the exact same.
Their definition of replication thus verges into the territory of “generalizability” according to the 2 × 2
scheme. However, Nosek and Errington (2020) still discerned replicability from generalizability: “[T]o be
a replication, 2 things must be true: outcomes consistent with a prior claim would increase confidence in
the claim, and outcomes inconsistent with a prior claim would decrease confidence in the claim.” While
replications must fulfill both criteria, generalizability tests do not necessarily fulfill the second criterion.
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Reproducibility and replicability in methodological research. The concept of

reproducibility can be transferred with relative ease to methodological research, namely

by defining reproducibility as obtaining the same results when using the same methods,

data, and code as the original authors. Defining replication, however, is to some extent

even less clear-cut for methodological research than for applied research. There is not

much literature on this topic, with exceptions mostly from the field of computer science

(Plesser, 2018; Rougier et al., 2017), and there is again a lack of consensus among au-

thors. Some researchers focus on the aspect of implementation. For example, Rougier

et al. (2017) defined replication as “writing and then running new software based on the

description of a computational model or method provided in the original publication”. In

the same article, the authors introduced the ReScience initiative which aims at encourag-

ing reproduction and replication in computer science. For this initiative, several studies

have since attempted to reproduce and replicate papers about new cluster algorithms or

clustering frameworks (Eijkelboom et al., 2022; Teule et al., 2021). These papers did not

always strictly follow the replication definition of Rougier et al. (2017), and instead also

considered other modifications to the original study design, such as alternative datasets.

This fits with the broader definition of Boulesteix et al. (2020) who stated that “the goal

of [replication] studies would be to confirm the results of previous methodological papers,

using, say, alternative simulation designs, other real data sets and a different implementa-

tion”. While this definition encompasses many cases, it still remains challenging to define

replication exactly. To illustrate this, take a study which evaluates a new method, say

method A, with a particular study design including several (simulated or real) datasets,

competing methods, and evaluation criteria. Is a replication study then constrained to

evaluating method A on new datasets or with different simulation designs, but with the

same competing methods and evaluation criteria as in the original study? Could a study

which uses new datasets, but additionally more competing methods or other evaluation

criteria, also be counted as a replication study, or is this a generalizability test (recall the

2 × 2 scheme of Whitaker, 2016 in Table 4 above, which defines using different “meth-

ods” as generalizability)? What about a study which uses the same datasets to evaluate

method A, but different competing methods or evaluation criteria? Is this (only) a ro-

bustness test?

As mentioned above, Nosek and Errington (2020) defined replication as “a study for which

any outcome would be considered diagnostic evidence about a claim from prior research”.

For this definition, it is essential what the “claim from prior research” is. Typically,

authors of a study introducing a new method claim that their method is superior over

previous approaches in some sense. Usually, the method is not claimed to be better in

every setting, but it is frequently (explicitly or implicitly) implied that the method’s su-

periority extends beyond the particular datasets that the authors considered. However,

the authors often do not clearly define this range of assumed superiority (see Nießl, Hoff-
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mann, et al., 2022 for a detailed discussion of this issue), which makes it difficult to define

what a replication should look like.

Overall, further research is required on this topic. The lack of clarity regarding the

definition of replicability in methodological research is related to the fact that there is

much less metascientific literature on methodological research than on applied research

(for some exceptions, see the aforementioned articles of Boulesteix et al., 2020 and Nießl,

Hoffmann, et al., 2022; as well as Boulesteix, Stierle, et al., 2015; Lohmann et al., 2021;

Nießl, Herrmann, et al., 2022; Pawel et al., 2022; and further references in Contribution

3).

For the purposes of this thesis, I use the definition of Boulesteix et al. (2020), that is, repli-

cation may encompass using “alternative simulation designs, other real data sets and a

different implementation”. To this list, I tentatively add using different competing meth-

ods and/or alternative evaluation criteria (while acknowledging that other researchers

might prefer to define this as “generalizability”). For the replication of studies which

introduce new methods, re-evaluating the method in a neutral comparison study is of

particular importance. A neutral comparison study is a study whose authors do not have

a vested interest in one of the competing methods, and are (as a group) approximately

equally familiar with all considered methods (Boulesteix et al., 2013; Boulesteix et al.,

2017).

Like for replication in applied research, it is difficult to judge what constitutes “successful

replication” of a methodological study. While the thesis does not discuss this issue in

detail, notably worse results in replication studies will be considered as an indicator of

over-optimism (see Section 5.3 below).

Besides the difficulty of defining (successful) replication, there are also many practical

challenges when attempting to replicate a method’s performance result with another study

design. Nießl, Hoffmann, et al. (2022) performed an illustrative experiment (in which I

was involved as a co-author) considering different exemplary methods, including clustering

methods, that were recently proposed in the literature. More precisely, Nießl, Hoffmann,

et al. (2022) considered pairs of methods (say, method A and method B) that were

proposed by different authors for the same data analysis task (e.g., clustering cancer

patients based on multi-omics data), and were evaluated by the original authors with study

design A and B, respectively. Nießl, Hoffmann, et al. (2022) then evaluated method A with

study design B, and method B with study design A (an approach that Nießl, Hoffmann, et

al., 2022 call “cross-design validation”), to check whether the original performance results

could be replicated with alternative study designs. In accordance with my tentative

definition of replication as given above, the term “alternative study design” here refers

not only to additional or different datasets, but also to different competing methods and

evaluation criteria. The experiment not only demonstrated researcher degrees of freedom

in the assessment of novel methods (see Sections 5.3 and 6 below), but also illustrated
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many practical challenges encountered when conducting replications of methodological

studies, e.g., the choice of a method’s parameters when applying it to new datasets.

5.2 Validation on validation data

The term “validation”, particularly “validation on validation data”, refers to re-assessing

a certain result or model on a dataset other than the original one. The term thus has some

similarities with “replication”. However, we use validation as a somewhat broader term.

Replication, particularly in the context of applied research, has a strong focus on “new”

data (e.g., independent samples from a different study center). In contrast, validation data

might be genuinely new data, but could also be obtained by splitting a single dataset into

training/discovery and test/validation data. This broader definition is why we mostly

use the term “validation” in Contributions 1 and 2 instead of “replication”. In our

understanding, validation procedures (e.g., the procedures we discuss in Contribution

1 for clustering) might be used for replication in a new study with new data, but may also

be used by authors to check their own results, using data that was obtained by splitting

the original dataset before the start of the analysis.

This usage of the term “validation data” is inspired by supervised learning, where the

concept is much more established compared to cluster analysis. Here, validation data

might also refer to either split-apart or new data. For example, a prediction model assess-

ing cardiovascular risk can be evaluated via internal validation; the model is fitted on one

part of the data (the training data) and evaluated on the other part (the test or validation

data). Often, the split into training and validation data is repeated multiple times, lead-

ing to resampling procedures such as cross-validation. Additionally, the prediction model

may be evaluated (either by the same authors or by others) with external validation, i.e.,

by assessing the model’s predictions on genuinely “new” data, i.e., independent samples

(Steyerberg & Harrell, 2016). Note that these terms should not be confused with internal

and external validation of clustering results (Section 2.3).

The above paragraph refers to supervised modeling in applied research, i.e., evaluating

a concrete model fitted on a particular dataset. On the other hand, in methodological

research, the performance of a model-fitting procedure is typically of more interest.6 Vali-

dation data is used for both purposes, but for resampling schemes such as cross-validation,

careful attention must be paid to which of the two purposes the scheme serves (Bates et

al., 2021).

What does this mean for validation in the context of cluster analysis? Supervised learning

is different from unsupervised learning. In particular, clustering a dataset does not yield

6For example, in an applied study, researchers might want to estimate how well a particular model for
predicting cardiovascular risk, fitted via the Random Forest method on a specific dataset, will perform
for new samples. In contrast, in methodological research, researchers might be interested in the mean
performance of the Random Forest method over multiple samplings from a certain distribution. See
Boulesteix, Hable, et al. (2015) for a mathematical formulation of this distinction.
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a fitted “model” that can then be used to classify new samples from a validation dataset.

Still, some analogies regarding the use of validation data can be drawn. For the context

of applied research, I will discuss this in Section 6, where Contribution 1 is described in

more detail. This thesis does not contain a similarly extensive discussion of validation

data in the context of methodological research on clustering, although the topic is touched

upon in Contribution 3. It would be interesting to explore this topic in more detail, as

briefly discussed in Section 7.

Table 5 contains an overview of the terms “reproducibility”, “replication”, and “validation

data” as used in this thesis. As stressed before, this should be considered as a pragmatic

outline instead of a definite account.

Table 5: Usage of the terms reproducibility, replication, and validation on validation data
in this thesis.

applied studies methodological studies

reproducibility obtaining the exact same results when using the same
methods, data, and code as the original authors

replication re-assessing a claim from
prior research on new data,
often using the same or very
similar methods

re-assessing a claim from
prior research on new data,
with a different simulation
design, or with a different
implementation, potentially
also with alternative com-
peting methods and evalu-
ation criteria

validation on
validation data

re-assessing results from a
present study or from prior
research on validation data
(either new data or data ob-
tained by splitting the orig-
inal dataset)

re-assessing results from a
present study or from prior
research on validation data
(either new data or data ob-
tained by splitting the orig-
inal dataset), potentially
also combined with varying
other aspects of the study
design (see the points in
“replication”)

5.3 Over-optimism and the multiplicity of analysis strategies

For the purposes of this thesis, over-optimistic results are defined as findings that cannot

be successfully replicated or validated. While slightly worse results on replication or

validation data might be due to chance (sample variation), I use the term over-optimism

for systematic biases. In particular, Contributions 2 and 3 consider the bias that arises
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from the multiplicity of analysis strategies (Gelman & Loken, 2014; Hoffmann et al., 2021;

Steegen et al., 2016) combined with selective reporting.

The term “multiplicity of analysis strategies” refers to the following issue: for a given

research question, there is often a plethora of acceptable analysis options and it is fre-

quently unclear which analysis strategy is the “best one”, leading to method uncertainty

(Klau et al., 2020). Consequently, studies contain many researcher degrees of freedom

(Simmons et al., 2011). In applied studies, these degrees of freedom might, e.g., refer to

the choice of network generation method or cluster algorithm for analyzing the dataset

at hand (see Contribution 2). In methodological studies, there are also many degrees of

freedom regarding the study design, i.e., the choice of the datasets, simulation design,

competing methods, evaluation criteria, etc. (see Nießl, Herrmann, et al., 2022; Nießl,

Hoffmann, et al., 2022; and Contribution 3).

The multiplicity of analysis strategies may lead to over-optimistic results if multiple analy-

sis options are tried and only the best result is reported (selective reporting, sometimes also

called cherry picking), while less desirable results are left in the figurative “file drawer”

(Rosenthal, 1979). In this case, there is risk of having “overfitted” the analysis choice

to the data. The term overfitting is typically used in the context of supervised learning,

often in relation to the (hyper)parameters of a model. When these (hyper)parameters

are overly fitted to the noise and “irrelevant” characteristics of the training data, the

model will perform worse on validation data. While overfitting is often considered in the

context of fitting a model with a single algorithm, several studies have demonstrated that

overfitting can also occur through trying different algorithms (e.g., different classifica-

tion methods) and only reporting the best model (Bernau et al., 2013; Boulesteix, 2010;

Boulesteix & Strobl, 2009; Westphal & Brannath, 2020).

Apart from the context of supervised learning, the negative effects of selective reporting

have mostly been studied in the context of significance testing, where the multiplicity

of analysis options can be exploited with p-hacking (Stefan & Schönbrodt, 2022). For

example, researchers who want to perform a t-test for testing the difference between two

groups might try different options for outlier handling and imputation of missing values,

and report only the strategy that yields the lowest p-value of the t-test (which is obviously

a questionable research practice).

To the best of my knowledge, the only study which explicitly analyzes the multiplicity of

clustering strategies was performed by Beijers et al. (2022). Using a psychiatric dataset,

the authors studied the impact of the multiplicity of clustering methods on the resulting

number of clusters. This multiplicity was visualized with specification curve analysis (Si-

monsohn et al., 2020). However, Beijers et al. (2022) did not consider selective reporting,

i.e., the effects of only reporting the “best” result. In contrast, Contributions 2 and 3

not only illustrate that the multiplicity of analysis strategies and degrees of freedom in a

study design can lead to varied results, but also demonstrate over-optimism arising from
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selective reporting.

In applied research, the multiplicity issue has been illustrated by a growing number of

multi-analysts studies, for example in psychology (Schweinsberg et al., 2021; Silberzahn et

al., 2018) and neuroscience (Botvinik-Nezer et al., 2020). The organizers of these studies

asked multiple research teams to analyze the same dataset to test the same hypothesis

(also called “crowdsourcing research”). There was notable variation in the chosen analysis

strategies, as well as in the resulting conclusions. Our approach in Contributions 2 and

3 is different; we do not let multiple researchers analyze a dataset, but instead “model”

the behavior of a single research team who tries multiple methods for network generation

and clustering on a dataset (Contribution 2), or varies multiple aspects of the study

design for demonstrating the “superiority” of a novel clustering method (Contribution 3).

This hypothetical research team then selects only the “best” result or study design. In

principle, Contributions 2 and 3 could also be interpreted as “modeling” the behavior of

multiple teams, with each team trying a different analysis strategy, and only the team

with the “best” result being able to publish their findings (e.g., due to publication bias).

In this section, I have so far considered over-optimism as unsuccessful replication or

validation, stemming from the multiplicity of analysis strategies. Still, other notions of

over-optimism are conceivable. For example, over-optimism can be caused by the misuse

of statistical tests, e.g., by selective inference, also called “double-dipping”. In applied

studies, the following “cluster evaluation” procedure is still frequently performed. To

demonstrate that the clusters are dissimilar from each other, the differences between

the cluster means are tested. But as the clustering of the data is used to define the

null hypothesis (double-dipping), the Type I error rate is inflated (Gao et al., 2022). In

this sense, statements such as “there is a statistically significant difference between the

clusters” are likely over-optimistic.

Results generated via double-dipping may be successfully replicable (if the authors of

the replication study again use the faulty test procedure), but this replicability obviously

does not imply that the results are not over-optimistic. Several studies have recently

proposed valid post-inference procedures for testing differences between clusters (Chen &

Witten, 2022; Gao et al., 2022; Grabski et al., 2022; Zhang et al., 2019). While this is

an important issue, this thesis will not consider this aspect further, and instead focuses

on over-optimism caused by the multiplicity of analysis strategies coupled with selective

reporting.

6 Summary of the Contributions

The three Contributions of this cumulative thesis consider different aspects of replication,

validation, and over-optimism in the context of cluster analysis. This section summarizes

each Contribution.
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Contribution 1 This article (Ullmann, Hennig, et al., 2022) discusses the role of vali-

dation data for the evaluation of clustering results in applied research. We address how a

clustering obtained on a “discovery dataset” can subsequently be validated on validation

data. As discussed in Section 5.2, validation data can result from splitting a single dataset

into discovery and validation sets, but could also consist of new independent data. The

article was motivated by the observation that applied researchers who perform cluster

analysis sometimes use validation data, but that systematic overviews of such procedures

were lacking. We thus reviewed the literature to identify various existing approaches, and

then structured these approaches in a systematic framework.

We distinguish between two main approaches for using validation data, namely result-

based and method-based validation. Result-based validation has certain analogies to the

evaluation of a supervised model on validation data as discussed in Section 5.2 (although

the analogy should not be overstretched). A clustering obtained on the discovery data is

used to “predict” clusters of the entities in the validation data, thus yielding a clustering

on the validation data. The quality of that clustering is then evaluated, e.g., with classical

cluster validation techniques. Indeed, using validation data does not conflict with classical

cluster validation techniques such as internal, external, and visual validation (Section 2.3).

Rather, these classical procedures can be combined with validation data.

Method-based validation refers to re-applying the same method that yielded the clustering

on the discovery data to the validation data. The two clusterings can then be compared,

e.g., again via classical cluster validation. This validation approach is evocative of the def-

inition of replication according to the 2×2 scheme of Whitaker (2016) that was explained

in Section 5.1 above, where replication was defined as applying the same methods to new

data. Indeed, the method-based validation approach could be used for the replication

of a clustering study, with the validation data being a new dataset. However, as also

mentioned in Section 5.1, there are more flexible definitions of replication such as the one

given by Nosek and Errington (2020). Following this definition, it might also be possible

to use result-based validation in replication studies.

As mentioned in Section 2.1, we consider both inferential clustering (where the entities

to be clustered form a sample drawn from an underlying population) and descriptive

clustering (where the entities to be clustered form a fixed set of specific interest). This

distinction is relevant for various aspects of the validation framework. For example, in

descriptive clustering, the objects to be clustered are the same for both discovery and

validation data. For result-based validation, “predicting” the clusters on the validation

data is thus trivial; the cluster memberships on the validation data are simply the same

as on the discovery data. On the other hand, in inferential clustering, the objects to be

clustered are different between discovery and validation data. Therefore, “predicting”

the clusters of the objects in the validation data is not trivial, and requires a proper

classification step.
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Our framework offers guidance to applied researchers who wish to validate or replicate

a clustering result. However, we stress that specific recommendations are difficult to

make, because a suitable validation approach always depends on the context and aim

of a concrete applied study. To help researchers become better acquainted with the

concepts discussed in the article, we have illustrated different validation approaches in

the supplement. This is presented in the style of a tutorial with R code and openly

available datasets.

Contribution 2 This Contribution (Ullmann et al., 2023) is again positioned within

the context of applied research, more specifically, microbiome research. The validation

framework from Contribution 1 is used to demonstrate over-optimistic effects in unsuper-

vised microbiome analysis. Using an exemplary microbiome dataset from the American

Gut Project (McDonald et al., 2018), we quantify over-optimistic bias stemming from the

multiplicity of methods for network generation and clustering.

For this purpose, we model the approach of a hypothetical researcher who has four unsu-

pervised microbiome research tasks in mind: 1) clustering bacterial genera, 2) detecting

“hubs” (influential nodes) in microbial association networks, 3) differential network anal-

ysis (comparing networks between two sample groups), and 4) clustering samples. For

each task, the hypothetical researcher tries multiple methods and chooses the method

yielding the “best” result according to a specific evaluation criterion (e.g., for the first

research task, the evaluation criterion is the agreement of the clustering with a previ-

ously known taxonomic categorization). Note that we do not assume that the researcher

does this with malicious intentions–their behavior might simply be caused by uncertainty

regarding which of the many available methods should be used.

This behavior is modeled as follows. For each research task in turn, the microbiome

dataset is repeatedly split into discovery and validation sets.7 Multiple method combina-

tions are applied on the discovery data. For the first three research tasks, these method

combinations include different options for steps involved in generating microbial associ-

ation networks, as displayed in Figure 3. For the fourth research task, multiple method

combinations are obtained by varying methods for calculating (dis)similarities between

samples. For the first and fourth research task, clustering methods are also part of the

method combinations. These include, for example, the network-based cluster algorithms

described in Section 4.

After applying multiple method combinations on the discovery data, the combination

yielding the “best” result is chosen according to the respective evaluation criterion. The

hypothetical researcher would stop here, and report only the best result. To estimate

7We split a single dataset into two parts instead of using an independent dataset as validation data.
For the latter approach, we could not have determined whether worse performance on the validation data
indeed stemmed from the multiplicity of analysis strategies combined with selective reporting, or was
simply due to substantial differences between discovery and validation data.
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the over-optimistic bias induced by this selective reporting, we re-apply the best method

combination to the validation data. (In the terminology of Contribution 1, we use method-

based validation.) The results are then compared between discovery and validation data.

Worse results on the validation data imply over-optimistic bias. Indeed, for all four

research tasks, we detect notable over-optimism effects.

These results illuminate the importance of strategies for avoiding over-optimism. For

example, guidance from neutral comparison studies could help to reduce the multiplicity

of possible analysis strategies before the start of the analysis. Preregistration of the

analysis plan, as well as reporting the results of all attempted methods, might also help

prevent over-optimistic effects.

Contribution 3 In contrast to Contributions 1 and 2, Contribution 3 (Ullmann, Beer,

et al., 2022) adopts a metascientific perspective on methodological research. The article

analyzes the over-optimistic presentation of novel cluster algorithms. In methodological

research in general, authors who present a new method typically claim that this method

is superior to existing approaches. However, such claims cannot always be taken at face

value, because publication bias constitutes an incentive for authors to present their new

method as favorably as possible (Boulesteix, Stierle, et al., 2015). Therefore, studies

introducing new methods are likely to be over-optimistic, in the sense that the good

performance results cannot be replicated in comparison studies later performed by other

authors.

What mechanisms lead to the over-optimistic presentation of a new method? For super-

vised learning, this question was addressed by Jelizarow et al. (2010) and Pawel et al.

(2022). Each study considered a “promising” novel method (for classification or regres-

sion), which in reality was not superior to other methods. Yet, the authors were able to

demonstrate that a favorable presentation of the new method’s performance could still

be achieved, namely by exploiting researcher degrees of freedom in the evaluation design.

This issue was also discussed by Dehghani et al. (2021), who noted that in many subfields

of supervised machine learning, there is no consensus on which study design should be

used for evaluating a novel method. This, in turn, allows researchers to find an experi-

mental setup that best fits their new method. Another related work is the study of Nießl,

Hoffmann, et al. (2022) (see Section 5.1), who demonstrated researcher degrees of free-

dom regarding the performance assessment of novel methods by conducting a cross-design

validation experiment as described above.

We apply an approach similar to the studies of Jelizarow et al. (2010) and Pawel et al.

(2022), to analyze over-optimization mechanisms specifically for the case of new clustering

methods. Indeed, we argue that over-optimistic evaluation concerns novel cluster algo-

rithms just as much as novel methods for supervised learning. To illustrate the issue, we

use the recently proposed cluster algorithm Rock (Beer et al., 2019) as an example. Rock
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was initially deemed to be a promising approach, but was later revealed to generally not

perform better than alternative clustering methods. We demonstrate that Rock can still

appear superior to competing methods by “optimizing” the study design and selectively

reporting only the “optimal” design settings. More precisely, this concerns 1) optimizing

the datasets on which Rock is evaluated, 2) optimizing Rock’s hyperparameters without

using validation data in a suitable way (or neglecting to properly tune the hyperparame-

ters of the competing methods), and 3) optimizing the choice of the competing methods.

Recall that Section 5.3 defined over-optimistic results as findings that cannot be success-

fully replicated or validated. We show that Rock’s performance result, as obtained with

the above optimizations, is indeed over-optimistic by demonstrating that the “superior-

ity” of the algorithm disappears when we use a study design different from the “optimal”

settings (e.g., when using datasets different from the “optimal” ones).

Our illustration provokes the discussion of possible solutions to the problem of over-

optimism in methodological clustering research. For example, we recommend that after

developing a novel clustering method, researchers should evaluate this method on fresh

validation data that has been kept apart during the development phase and initial assess-

ment of the algorithm (e.g., to detect possible overfitting of the algorithm’s hyperparam-

eters to the datasets used in the initial phase). We also note the importance of neutral

benchmark studies, whose results will often be more reliable than the results of studies

which introduce new methods. As publication bias is an institutional issue, we also stress

the role of journals, funders, universities, etc. in tackling the over-optimism problem.

7 Outlook

Based on the ideas presented in this thesis, this section discusses possible directions for

future research.

Illustrating over-optimism in different applied research fields Contribution 2

demonstrates over-optimism effects stemming from the multiplicity of clustering strate-

gies in the context of microbiome analysis. The issue of multiplicity coupled with selec-

tive reporting is not constrained to microbiome research; in numerous other application

contexts, there is also uncertainty about which method(s) to use for clustering, and over-

optimistic bias is to be expected. It would therefore be of interest to quantify the extent

of over-optimistic effects in further research fields. An approach analogous to the study

design of Contribution 2 could be used for that purpose.

Dealing with the multiplicity of clustering strategies Contribution 2 discusses

some strategies for alleviating the problem of over-optimistic effects in applied clustering

research. For example, we advise against selectively reporting a single clustering result af-
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ter multiple methods were tried. Instead, reporting the results of all analyses is preferable.

But how can researchers report and visualize multiple clusterings in a clear and accessi-

ble manner? As previously mentioned, Beijers et al. (2022) visualized the multiplicity of

clustering methods for analyzing a psychiatric dataset with specification curve analysis

(Simonsohn et al., 2020). Alternatives to specification curve analysis were recently sum-

marized by Hoffmann et al. (2021), including, e.g., “multiverse analysis” (Steegen et al.,

2016) and the “vibration of effects” framework (Patel et al., 2015). These approaches were

designed for significance testing and/or explanatory and predictive modeling. It might

be interesting to explore whether the frameworks could be transferred to the case of clus-

ter analysis, and whether they might help applied researchers in reporting the results of

different clustering methods in a systematic manner.

Additionally or alternatively to reporting the multiplicity of methods and results, re-

searchers could try to integrate method uncertainty (Hoffmann et al., 2021). More pre-

cisely, the results of different cluster algorithms could be combined into a single clustering

via cluster ensemble methods (Fred & Jain, 2005; Strehl & Ghosh, 2002), an approach

inspired by ensemble learning in supervised classification.

However, cluster ensembles combining the results of very different algorithms should not

be applied blindly. Recall from Section 2.1 that each cluster algorithm is based on a certain

cluster concept. Before the start of the analysis, researchers should carefully think about

which type of clusters they are looking for, and which concept best suits the context

and aim of their analysis (Hennig, 2015). Still, even if researchers can decide on a single

cluster concept, there are often several algorithms which address the same or a similar

concept (e.g., network-based cluster algorithms as explained in Section 4). In this case,

combining the results of these algorithms via a cluster ensemble approach might reduce

over-optimistic bias, compared to trying multiple algorithms and selectively reporting a

single result.

Neutral comparison studies Both Contributions 2 and 3 stress the importance of

neutral benchmark studies to compare different clustering methods. Van Mechelen et al.

(2018) provided guidance for performing such studies. Several neutral benchmark studies

have already been published. For example, Hennig (2022) compared popular clustering

methods on several real datasets in a rather general context (i.e., without focusing on a

particular application field). Benchmark studies comparing clustering methods in more

specific contexts have also been performed, e.g., regarding clustering methods for single-

cell RNA-seq data (Duò et al., 2018), or methods for cancer subtyping using multi-omics

data (Duan et al., 2021). In addition to these existing studies, it would be desirable if

further benchmark studies were published. For example, there is a lack of such studies in

the context of microbiome data.

As new clustering methods are continually introduced each year, systematic benchmark

31



studies risk being “outdated” soon after publication. To alleviate this issue, benchmark

studies should be published together with a public repository containing the used code and

datasets, ideally in such a way that other researchers could easily add novel methods to the

existing comparisons (Weber et al., 2019); for an example of this practice, see the study

of Duò et al. (2018) mentioned above. In the same context (single-cell RNA-seq data),

Germain et al. (2020) developed an R framework that can be used for the benchmarking

of clustering pipelines. The flexibility of the framework allows for extensible benchmarks.

Ultimately, such efforts reflect a move from “static” to “dynamic” benchmarking (Mangul

et al., 2019; Robinson & Vitek, 2019). Note, however, that software infrastructures which

allow the continual updating of benchmark studies can be time-consuming to develop and

maintain. It would be informative to explore best practices for this process.

Using validation data in methodological clustering research As mentioned in

Section 5.2, this thesis discusses using validation data for clustering evaluation mostly in

the applied context. Regarding the methodological context, Contribution 3 mentions the

importance of using fresh datasets after developing a novel clustering method (see also

Section 6 above), and briefly touches upon using validation data obtained by splitting

a single dataset. It would be interesting to analyze how validation data could be more

routinely included in methodological clustering research, both in studies introducing new

methods as well as in studies comparing existing methods. In supervised learning, using

validation data for the evaluation of methods is routine, and suitable resampling schemes

have been extensively discussed in the literature. For example, it is well known that

for evaluating a supervised classifier in combination with hyperparameter optimization,

nested resampling schemes are required in order to avoid over-optimistic performance

evaluation (Bischl et al., 2021). It might be insightful to study whether such schemes

would also be sensible for the evaluation of clustering methods, where hyperparameters

(such as the number k of clusters) are frequently optimized, e.g., via resampling-based

stability methods.

Clarifying the distinction between exploratory and confirmatory research in

cluster analysis Cluster analysis is often considered to be exploratory; the clustering is

performed to gain a first impression of the data, without fixed hypotheses in mind. This

raises the question whether careful validation of the results, e.g., with validation data,

is as important as it would be for confirmatory research. Indeed, if the cluster analysis

is performed purely for exploratory purposes, then following a strict procedure including

validation data may not always be required (as long as it is clearly reported that the

analysis was exploratory in nature). Yet cluster analysis may not always be constrained

to exploratory research. Consider the first example in Section 1, namely the clustering

of cancer patients (Burstein et al., 2015; Curtis et al., 2012; The Cancer Genome Atlas
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Network, 2012). The authors of these studies did not just perform cluster analysis for

visualization purposes or to gain a first impression of the data; rather, the clear aim was

to detect novel cancer subtypes. While there were no pre-specified hypotheses in the sense

of confirmatory hypothesis testing, the authors aimed to find clusters related to clinical

outcomes, e.g., clusters associated with survival. In Contribution 2, we also assume that

the hypothetical researcher has specific evaluation criteria in mind when clustering the

microbiome data, even if the cluster analysis is a priori unsupervised.

If researchers have specific aims when performing the clustering, this might go beyond

the scope of exploratory research, and careful validation of the results is of particular im-

portance, even more so if the clustering is eventually intended to be used in practice (e.g.,

using cancer subtypes to develop tailored treatments). Cluster analysis may also verge

into confirmatory research if researchers try to replicate the clustering result of another

research team. To the best of my knowledge, it has not been systematically discussed,

so far, in what sense cluster analysis may sometimes be considered as “confirmatory”. A

more detailed discussion of this issue might be of interest, particularly with regards to

what this means for suitable validation procedures.

In summary, this thesis has discussed topics such as validation, (non-)replicability, and

over-optimism in the context of cluster analysis. Going forward, I hope that this thesis

motivates the use of good research practices in cluster analysis, which subsequently would

help increase reliability and replicability for both clustering results in applied research and

performance evaluations of novel clustering methods.
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Abstract

Cluster analysis refers to a wide range of data analytic techniques for class dis-

covery and is popular in many application fields. To assess the quality of a

clustering result, different cluster validation procedures have been proposed in

the literature. While there is extensive work on classical validation techniques,

such as internal and external validation, less attention has been given to vali-

dating and replicating a clustering result using a validation dataset. Such a

dataset may be part of the original dataset, which is separated before analysis

begins, or it could be an independently collected dataset. We present a system-

atic, structured review of the existing literature about this topic. For this pur-

pose, we outline a formal framework that covers most existing approaches for

validating clustering results on validation data. In particular, we review classi-

cal validation techniques such as internal and external validation, stability

analysis, and visual validation, and show how they can be interpreted in terms

of our framework. We define and formalize different types of validation of

clustering results on a validation dataset, and give examples of how clustering

studies from the applied literature that used a validation dataset can be seen as

instances of our framework.
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Algorithmic Development > Statistics
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1 | INTRODUCTION

Cluster analysis refers to data analytic techniques for structure and class discovery. It is popular in a range of fields, for
example, medicine, biology, market research, social science, and data compression. However, when conducting cluster
analysis, researchers are confronted with an overwhelming number of existing methods. They must preprocess the data,
choose a clustering algorithm, and set parameters, such as the number of clusters (Van Mechelen et al., 2018;
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Zimmermann, 2020). It is often unclear a priori which choice should be made for the analysis, and even once a choice
is made, it may remain unclear how good the quality of the resulting clustering is.

These problems have prompted the development of so-called cluster validation techniques, see Handl et al. (2005)
and Hennig (2015a) for overviews. The literature distinguishes between internal validation (where the clustering is eval-
uated based on internal properties, such as compactness and separateness of the clusters) and external validation
(where the clustering is evaluated by comparing the clusters with respect to one or more variables not used for cluster-
ing, e.g., a survival time or a true class membership). Less attention has been given to the validation and replication of
clustering results on a validation dataset, for which we introduce a structured framework that summarizes the existing
literature in a systematic manner. A validation dataset could be part of the original dataset, set apart before the start of
the analysis, or it could be a separate dataset, obtained, for example, from a different study centre.

The idea of validating a clustering on another dataset is not new and has appeared in the methodological literature
decades ago (Breckenridge, 1989; McIntyre & Blashfield, 1980). In applied literature involving cluster analysis, it is not
uncommon for authors to validate their clustering results on new data, be it with the procedure of McIntyre and
Blashfield (1980) or another method. To the best of our knowledge, these approaches have never been systematically
structured and evaluated, and different validation strategies are scattered across different works and application fields.
This contrasts with the abundant methodological literature devoted to validation in the context of supervised classifica-
tion (or more generally, supervised learning). This contrast may be partly due to the fact that cluster analysis—as
opposed to supervised classification—is often viewed as exploratory research. The validation of clustering results is
rightly considered to be less straightforward than the validation of a prediction model because “true labels” are
unknown (Von Luxburg et al., 2012). Indeed, it is difficult to define exactly what is meant by validating a clustering on
validation data. Answering this question is the key aspect of our framework.

In this article, we aim to give a systematic review of the various strategies used in the literature for validating clus-
tering results on validation data. These existing approaches are combined into a structured framework. In this frame-
work, we define and formalize the concept of validation on a validation dataset. In particular, we demonstrate that
many classical validation techniques, such as internal and external validation, stability analysis, and visual validation,
can be linked to evaluation on validation data: using validation datasets does not replace these approaches; rather, clas-
sical validation can be combined with validation data. Moreover, we show how clustering studies from the applied liter-
ature that used a validation dataset can be classified into our framework.

Why do researchers consider validation and replication of clustering results on a validation dataset to be important?
The answer is closely tied to the clustering aim, which could either be inferential or descriptive. We define these terms
as follows:

• Inferential clustering: The objects being clustered form a sample drawn from an underlying population for which
inference is of interest, rather than making statements about the specific objects in the original dataset.

• Descriptive clustering: The data form a fixed set of entities of specific interest, and statements such as objects 1, 5, and
99 form a cluster are of interest.

As an example of the difference between inferential and descriptive clustering, consider an n�p dataset including the
expression levels (continuous values) of p genes for n patients suffering from a particular disease, see Figure 1.

On the one hand, it may be of interest to perform clustering analyses of the patients to see if there are subpopula-
tions of patients with systematically different gene expressions. This would be inferential clustering. For example,
researchers have frequently used gene expression data to detect distinct breast cancer subtypes (Burstein et al., 2015;
Curtis et al., 2012; Kapp et al., 2006; Lehmann et al., 2011; Sørlie et al., 2003; Sotiriou et al., 2003). Such subtypes can
have clinical implications and may guide targeted treatment (Garrido-Castro et al., 2019; Prat et al., 2015). On the other
hand, an n�p gene expression dataset could also be used to perform clustering of the (fixed set of) p genes to see if
there are groups of specific genes that behave similarly, which might suggest a similar function or involvement in a
common molecular process. This is an example of descriptive clustering. For example, researchers have used cluster
analysis to find different groups of cancer-related genes (Freudenberg et al., 2009; Yang et al., 2014; Zhang et al., 2014).

For both clustering aims, using validation data is of crucial importance. To illustrate this, we again use the gene
expression example, see Figure 1. First, we consider inferential clustering of breast cancer patients. All the papers for
breast cancer subtype detection cited above used validation datasets to confirm the results of their own analyses and/or
to validate previously reported subtypes. Indeed, a clustering of cancer patients would not be of much use if it only held
on a single dataset. Due to the inferential nature of the clustering, the researchers' aim is to better understand the
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disease and to find options for treatment with respect to the underlying population, for example, the population of all
breast cancer patients. In particular, the clustering should not only hold for patients from a single hospital or a single
country. To make sure that the clustering is not just an artifact of a single dataset, researchers thus use independently
collected samples for validation, or at least split their dataset into discovery and validation sets.

Now consider the example of the descriptive clustering of cancer-related genes. While the set of genes is fixed,
researchers typically want the gene clustering to hold more generally than only for the n specific patients. The genes'
functions or involvement in molecular processes should reflect biological principles that hold for all patients with the
particular cancer type, and researchers thus want to recover the clustering on datasets with other patients having the
same disease. Again, validation datasets are used for this purpose. In this sense, descriptive clustering can have an infer-
ential component, with the difference to “inferential clustering” (as defined above) being that the objects to be clustered
are fixed and do not represent samples drawn from an underlying population. This has implications for choosing a suit-
able validation dataset and validation strategy, as will be discussed in more detail in Section 3 below.

Similar arguments about the importance of replicability and generalisability of clusterings results (as given for the
example of gene expression data above) hold more generally for most cluster analysis applications, which can typically
be classified as either inferential or descriptive clustering. For example, in market segmentation (inferential clustering
of customers), the resulting clusters should be replicable such that managers can consistently market their products to
the customer groups (Dolnicar & Leisch, 2010; Müller & Hamm, 2014). In text and keyword analysis, where words are
clustered to reveal overarching topics (descriptive clustering), it is interesting to see whether topics stay stable on valida-
tion data, or whether some changes appear (Ding et al., 2001). Across different application fields, researchers usually
want their results to be as generalizable as possible. Interesting properties of a clustering result should hold not only for
a single specific dataset, but should also reappear when clustering validation data sampled from the same, or even

FIGURE 1 Schematic representation of clustering on a gene expression dataset. (a) Inferential clustering of the patients and

(b) descriptive clustering of the genes. For illustration purposes, there are 10 patients s1,…,s10 in the discovery data, 10 patients s11,…,s20 in
the validation data, and 15 genes Y 1,…,Y 15. For inferential clustering, the objects to cluster (here, patients) are different between discovery

and validation data, as indicated by using different symbols (squares vs. triangles). The two resulting clusterings nevertheless look somewhat

similar: a smaller cluster on the top left, and a larger cluster on the bottom right. For descriptive clustering, the objects to cluster (here, genes

Y 1,…,Y 15, marked by circles) remain the same across both datasets. However, their positions are slightly shifted in the validation data,

because the gene expression values now stem from patients s11,…,s20. Consequently, genes Y 13 and Y 15 (marked in red) are clustered

differently on the validation data
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different distributions. Validating clusterings on validation data also enables researchers to evaluate results reported by
other research teams. The confirmation of results on validation data is a vital part of research in general, and it has
received considerable attention in recent years due to the so-called “replication crisis” (Hutson, 2018). In the context of
classical hypothesis tests and effect estimates, many published results have turned out to be non-replicable, that is, they
could not be confirmed on independent data [e.g., in psychology (Open Science Collaboration, 2015), cancer research
(Begley & Ellis, 2012), or economics (Camerer et al., 2016)]. Replication is thus vital for assessing the credibility of sci-
entific claims (Nosek & Errington, 2020). For cluster analysis, our article appears to be the first one to systematically
review and discuss this topic.

Our framework, which is described in detail in Section 3, is based on the following two-step cluster analysis proce-
dure (see also Figure 2):

1. The primary cluster analysis and method selection step: Using the original dataset or a part of it (in the following
called “discovery data”) a single clustering method is selected (where the “method” includes not only the choice of
clustering algorithm, but also parameters such as the number of clusters and diverse pre/postprocessing steps), for
example, via its performance with respect to internal/external validation indices.

2. The validation step: Important aspects of the clustering resulting from this method are validated on another dataset
or the rest of the original dataset (in the following denoted by “validation data”). The validation data should be
completely hidden from the method selection process of Step 1—analogously to the evaluation of supervised classi-
fiers, where the selected model (including the chosen parameters) must be finally evaluated using validation data
that was not used in any way for parameter tuning or model selection (Boulesteix et al., 2008; Simon et al., 2003).

The “important aspects” of the clustering that are checked in Step 2 usually depend on the research question and
the field of application. Consider again the above example of clustering cancer patients, based on expression levels of
cancer-related genes, for the purpose of finding subtypes of that disease. In this context, the following properties might
be relevant aspects of the clustering:

• Suppose that Step 1 has resulted in two clusters. One cluster is much larger than the other, with about 80% percent
of the patients in this cluster. One might be interested in whether this pattern of one large cluster and one smaller
cluster can be replicated in Step 2.

• Assume it is found that the clustering chosen in Step 1 is related to survival time, that is, the patients' survival times
differ depending on which cluster they belong to. Can this finding be replicated in Step 2 for patients in the valida-
tion data?

In the literature, the term “cluster validation” is sometimes used to refer to the use of validation techniques as a tool to
compare different clusterings and select the most appropriate. This use of terminology would place validation within
Step 1. But when validation techniques are used as selection tool, it is still an open issue whether the results generalize
to new data, and this is addressed by Step 2.

The phrase “cluster validation” also appears in the literature about benchmarking of clustering methods
(Boulesteix & Hatz, 2017; Van Mechelen et al., 2018; Zimmermann, 2020). A benchmarking study is a systematic com-
parison of different clustering methods on a class of data distributions or datasets. Validation techniques may be used to
compare different methods. Benchmark studies thus analyze the “validity” of clustering methods and provide general
guidance on which method to use. In contrast, our review considers the validation of specific results of applied cluster-
ing studies.

This article is structured as follows: in Section 2, we give an overview of the different uses of the term “validation”
and perspectives on validity found in the clustering literature. We then present our validation framework in detail in
Section 3. In Section 4, we demonstrate in an exemplary manner how clustering studies from the applied literature can

FIGURE 2 Two-step procedure for validating clustering results
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be sorted into the framework. Section 5 contains a final discussion. In the Supporting Information, we present an illus-
tration of the discussed validation strategies using openly available real-world data, where the data analysis is per-
formed with thoroughly commented R code.

2 | DIFFERENT PERSPECTIVES ON “VALIDITY” IN CLUSTER ANALYSIS

We identified four approaches that address the validity of clusterings in the literature: (1) the comparison of “true” clus-
ter labels with inferred clusters, (2) internal and external validity indices, (3) stability analyses, and (4) visual validation.
These four approaches are briefly reviewed in the following subsections. An additional approach, hypothesis testing, is
briefly discussed in Section 5. Internal and external validation, stability, and visual validation form the building blocks
of our framework, see Section 3.

2.1 | Recovery of “true” clusters and analogies to the validity of supervised
classification models

According to this perspective, a clustering of a dataset is “valid” if it corresponds to the “true” cluster structure in the
data. Correspondingly, a clustering method is called “valid” if it can recover the “true” clusters in the data
(Breckenridge, 1989; Milligan & Cooper, 1987). A related view is presented in the paper of Dougherty et al. (2007),
which shows a connection to the term “validity” in the context of supervised classification. For supervised classification
models, the validation of a classifier relates to estimating the prediction error on a test set, that is, how well the classifier
can predict the known “true” labels of the instances in the test set. Dougherty et al. (2007) demonstrate that this
approach can be transferred to cluster analysis. However, this requires datasets with known cluster labels. Yet, in prac-
tice, cluster analysis is usually applied to real datasets for which the “true” cluster labels of the data points are
unknown. Note that even in the rare case of a cluster analysis performed on a dataset with given “true” cluster labels,
these may not be unique, and there might be other equally legitimate cluster structures in the data, which can be even
more interesting and useful as a result of the analysis than the one previously know (see Färber et al., 2010;
Hennig, 2015b). When validating a clustering on validation data, the validation step used in supervised classification
usually cannot be mimicked. The idea of Dougherty et al. (2007) thus mainly makes sense in the context of benchmark
studies comparing clustering methods using simulated data with known “true” cluster labels. The ability of the methods
to recover the true clusters may then be used as a performance criterion. To evaluate clusterings in applied studies,
other options for validation are needed.

2.2 | Internal and external validation

In the absence of “true” cluster labels, assessing “cluster validity” often uses so-called internal indices or external
information—leading to the terms “internal validation” and “external validation,” respectively.

• Internal validation uses only the data that was used for clustering. Typically, internal validation consists of cal-
culating an index that is supposed to measure how well the clustering fits the data (Halkidi et al., 2015). Such
indices often exploit the proximity structure of the data, for example, by measuring the homogeneity and/or
the separation of the clusters. Examples are the Average Silhouette Width index (Kaufman &
Rousseeuw, 2009) and the Cali�nski–Harabasz index (Cali�nski & Harabasz, 1974). These indices combine mea-
surements of the homogeneity and the separation of a clustering into a single value, in order to balance a small
within-cluster heterogeneity and a large between-clusters heterogeneity. There are also indices that measure
only isolated aspects of a clustering (e.g., only the homogeneity or only the separation of the clusters), see
Akhanli and Hennig (2020).

• External validation makes use of additional (external) information that was not used for clustering. For example,
when clustering a cancer gene expression dataset, one may use the survival time of patients to determine whether
the clustering of patients based on gene expression can predict survival. The term “external validation” also encom-
passes the recovery of previously known “true labels” as presented in Section 2.1.
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2.3 | Stability

Many authors consider stability to be a crucial aspect of cluster validity. The idea is that a good clustering method
should yield similar partitions when applied to multiple datasets drawn from the same data distribution (Ben-David
et al., 2006; Von Luxburg, 2010). In this spirit, a specific clustering of a single real dataset may be considered as vali-
dated if the clusterings obtained from datasets generated from the same data distribution are similar. There are several
methods of generating multiple datasets to emulate the data distribution of the dataset to be analyzed, for example, by
drawing subsamples from the original dataset (Hennig, 2007).

Stability analysis dates back to McIntyre and Blashfield (1980), Morey et al. (1983), and Breckenridge (1989). These
authors considered the replicability of a clustering result on a validation dataset. To generate the validation dataset, the
original data is split into two halves (by splitting along the objects to be clustered for inferential clustering, or by split-
ting across the variables of the dataset for descriptive clustering). This is followed by assessing whether the clustering
obtained in the first half can be replicated in the second half. For descriptive clustering, because the objects in the two
halves are the same, replicability can be assessed directly with a partition similarity index such as the Adjusted Rand
Index (ARI; Hubert & Arabie, 1985; Rand, 1971), the Jaccard index (Jaccard, 1908), or the FM index (Fowlkes &
Mallows, 1983). See Meila (2015) and Albatineh et al. (2006) for overviews of partition similarity indices. For inferential
clustering, the objects to cluster are not the same in the two data halves, and thus the objects from the second half have
to be classified into the clusters of the first half, before the clusterings can be compared with a partition similarity index
(see Section 3.3 for details). Such stability analyses will indeed be a special case of the broader validation framework
presented in Section 3.

In the decades that followed, however, the focus of stability analysis shifted away from this concept and more
towards method or model selection. Like other validation techniques, stability analyses are used in Step 1 (see Figure 2)
as a basis for the selection of a suitable clustering method and its parameters, such as the number of clusters (Ben-Hur
et al., 2002; Bertrand & Mufti, 2006; Dolnicar & Leisch, 2010; Dudoit & Fridlyand, 2002; Fang & Wang, 2012; Fu &
Perry, 2020; Lange et al., 2004; Levine & Domany, 2001; Monti et al., 2003; Tibshirani & Walther, 2005; Wang, 2010). In
these approaches, stability analysis selects the clustering method that is most stable over multiple subsamples. The sub-
samples are drawn without replacement or in a cross-validation manner, or are bootstrap samples drawn with replace-
ment from the data. For example, different numbers of clusters k can be considered in turn, and the k that leads to the
most stable clustering, or the smallest k that exceeds a stability threshold, can be chosen. These studies typically con-
sider inferential clustering, such that the term “subsamples” refers to subsets of objects to be clustered. Some schemes
require the comparison of clusterings on subsets of objects that consist of disjunct subsamples of the original dataset
and thus have no overlap (e.g., Dudoit & Fridlyand, 2002; Fang & Wang, 2012; Lange et al., 2004; Tibshirani &
Walther, 2005; Wang, 2010). This requires the aforementioned supervised classification step for classifying observations
of one sample to the clusters of the other sample. However, the approaches could in principle be modified to also apply
to descriptive clustering.

When splitting the dataset multiple times to determine the stability of a clustering method or parameter, eventually
information from the whole dataset enters the method selection process. Thus putting aside a validation dataset that is
only used after the method selection is advised. Even if a clustering is chosen by stability analysis on a discovery dataset,
it is not guaranteed that this clustering can be validated on a validation dataset.

Stability analysis can also be combined with classical internal validation indices by checking whether internal
validation indices have similar values for multiple clusterings calculated on subsamples of the data (Jain &
Moreau, 1987), see also Dangl and Leisch (2020) for a related approach. This idea will also be part of our frame-
work in Section 3.

2.4 | Visual validation

Cluster analysis is often exploratory without fixed predefined expectations from the user. Patterns in the data that qual-
ify to be interpreted as clusters can have very diverse appearances. Some key characteristics of clusters, such as being
areas of high density separated by areas of lower density, are difficult to translate into easily computable statistics. Fur-
thermore, many clustering methods rely on model assumptions and cluster concepts, the appropriateness of which is
hard to diagnose by means other than visual. This explains why visual validation is important in cluster analysis.
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Clusters can be declared valid based on visualization if they correspond to clearly visible patterns in the data, or in some
cases if the assumptions required for the chosen clustering method look valid.

Useful plots for visual cluster validation can be distinguished into:

1. General purpose data plots in which found clusters can be indicated by colors or glyphs, such as scatterplots, matrix
plots, principal components biplots, multidimensional scaling, or parallel coordinates plots (Cook & Swayne, 2007,
chapter 5). There are also projection pursuit approaches that generate “interesting” data projections, potentially
showing clustering structure, without requiring the clustering as input (e.g., Tyler et al., 2009).

2. Plots set up to visualize a specific clustering, which can be further classified as:

a. Plots that visualize the original data directly, such as cluster heatmaps (Hahsler & Hornik, 2011; Wilkinson &
Friendly, 2009) or projections to optimally discriminate clusters (Hennig, 2004).

b. Plots that visualize the clustering solution without representing the original observations directly such as dendro-
grams, silhouette plots, and neighborhood graphs (Leisch, 2008).

We refer to the Supporting Information for an illustration of some of these methods.
Plots that visualize the original data directly can be used to assess patterns in data space, although these plots

come with either information loss by dimension reduction, or heavy reliance on aspects such as variable and obser-
vation ordering. The advantage of plots that optimize objective functions dependent on the clustering, such as dis-
criminant projections or heatmaps with orderings determined by the clustering, is that they have better chances to
bring out the data patterns corresponding to the clustering than general purpose plots. On the other hand, they
may lead to an overoptimistic assessment of the validity of the clustering, or an interpretation of spurious patterns.
Validation data that is kept separate from the beginning of the analysis may help to avoid overoptimism, see
Section 3.4.

Some of the plots that do not represent the original observations directly can also be valuable for cluster validation.
The silhouette plot accompanies the Average Silhouette Width index (Kaufman & Rousseeuw, 2009) and gives
observation-wise information about the quality of assignment in the given clustering; dendrograms visualize the hierar-
chical merging process and can sometimes reveal issues, such as potentially meaningful clusters disappearing at higher
levels of the hierarchy.

3 | A SYSTEMATIC FRAMEWORK FOR VALIDATING A CLUSTERING ON A
VALIDATION DATASET

In this section, we present a systematic framework for validating a clustering on a validation dataset that includes many
existing approaches from the literature as special cases and revisits them more formally. We also show how the valida-
tion methods that we reviewed in the last section are incorporated into the framework.

We first discuss what is meant by a “validation dataset” in Section 3.1. In Section 3.2, we give an overview of proper-
ties of a clustering result that may be validated on the validation set (these properties are strongly related to the classical
validation procedures discussed in Section 2). In Section 3.3, we outline the distinction between method-based and
result-based validation on a validation dataset. In Section 3.4, we combine the concepts of Sections 3.2 and 3.3 into an
overview of strategies for validation on validation data. In Section 3.5, we discuss how to judge whether “successful”
validation has been achieved.

3.1 | Validation datasets

The term “validation dataset” can refer to a dataset composed of independently collected data (e.g., collected by other
researchers or in a different laboratory) which is similar enough to the original data for cluster evaluation to be possi-
ble. In practice, however, genuinely independent data is often not available. In this case, one might split a single dataset
into a discovery and a validation set.

Apart from this consideration, the structure of the validation data depends on two further aspects: (a) The data for
clustering can either be object by variable data or object by object proximity data (where the term “proximity” denotes
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either similarities or dissimilarities), see Van Mechelen et al. (2018). Here, “objects” denote the entities which are to be
clustered. (b) The aim of the clustering could either be inferential or descriptive, as defined in the introduction
(Section 1).

For inferential clustering, the validation data consists of more objects to cluster. On the other hand, for descriptive
clustering, validation data does not consist of more objects because the set of objects to be clustered is fixed. Consider
the example of the n�p gene expression dataset as described in the introduction. This dataset can be understood as an
object by variable dataset in two ways. For inferential clustering of the patients, the patients are the “objects” and the
genes the “variables.” A validation dataset consists of more patients. For descriptive clustering of the genes, now the
genes constitute the “objects,” and the patients are the “variables.” A validation dataset consists of more variables, that
is, again of more patients.

In Table 1, we give a general overview of the structure of the validation data, where we distinguish between inferen-
tial and descriptive clustering as well as between object by variable and object by object data.

If separately collected data is not available, and the dataset must be split into discovery and validation sets, a 50/50
split ratio is usually chosen. Indeed, we believe that this choice makes sense in most cases: validation strategies often
require the number of data points in the validation set to not be too small when trying to validate certain properties
obtained from the clustering on the discovery set. A similar argument has been made in the context of stability analysis
(Lange et al., 2004).

3.2 | Clustering properties to be validated

In the literature, we identified four categories of properties of clusterings that researchers may want to validate.
(Int) Internal properties of the clusters (that turn up when clustering the discovery data), for example:

• descriptive measures of the clusters such as the values of the cluster centroids or the relative sizes of the clusters,
• the value of an internal validation index calculated for the clustering result, and
• subsets of variables that characterize the clusters.

(Ext) Associations of the clusters with external variables or agreement of the clustering with an externally known
partition. Some examples:

• Clusters of cancer patients have different mean survival rates.
• A clustering of genes shows some agreement with known functional gene labels. For example, a clustering may be

compatible with known partitions of the genes into functional categories. Less restrictively, some particular genes, of
which this was previously expected, may be in the same cluster.

(Vis) Characteristics that can be assessed using visualization: do the clusters correspond to distinctive meaningful
patterns in the data? Do the clusters look how they were supposed to look like? This could refer to model assumptions
for the clustering method, or a priori hypotheses or requirements by the researcher.

TABLE 1 Structure of the validation data depending on inferential versus descriptive clustering and object by variable versus object by

object data

Inferential clustering Descriptive clustering

Object by variable data Validation data: further objects, same variables Validation data: further variables, same objects

If a single dataset is split Split performed along the objects Split performed along the variables

Object by object data Validation data: proximity matrix of further
objects

Validation data: proximity matrix of same
objects, but with proximities derived from
another source (e.g., based on different
underlying variables).

If a single dataset is split Objects can be split into two disjoint sets, yielding
two smaller proximity matrices (one
representing the discovery data, the other the
validation data).

Impossible to split proximity data directly into
discovery and validation data, but may be
possible to split underlying variables.
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(Stab) Stability of cluster membership: Does cluster membership remain stable when the same method (algorithm,
number of clusters, etc.) is applied to the validation data? Since the objects in the discovery and the validation set are
disjunct in the case of inferential clustering, this involves supervised classification of objects of one dataset to clusters of
the other dataset.

Most subsections of Section 2 correspond to a category in the above list, with the exception of Section 2.1 (recovery
of “true” clusters). If the “true” cluster labels are indeed known, this can be considered as a part of (Ext).

3.3 | Method-based and result-based validation

The validation of a clustering on a specific dataset can refer either to the validity of the used clustering method, or the
validity of the clustering result itself. While this distinction is often not made clear in the literature on classical valida-
tion procedures, it has important implications for how validation on a validation dataset is performed. We thus distin-
guish between method-based and result-based validation on validation data, as illustrated in Figure 3. In the following,
we explain these terms in more detail.

We denote the discovery data by D1 and the validation data by D2. The clustering chosen on D1 in Step 1 (method
selection, see Figure 2) is called C1. Given C1, the validation dataset can be handled in two different ways:

FIGURE 3 Method- and result-based validation for inferential and descriptive clustering. We use the same data example as in Figure 1.

The top panel (a) and (b) (method-based validation) is from Figure 1. For inferential clustering (a), re-applying the clustering method to the

validation data again detects a smaller cluster on the top left and a larger one on the bottom right. For descriptive clustering (b), the

clustering Cmd
2 on the validation data groups the elements Y 13 and Y 15 (marked in red) differently than the clustering C1 on the discovery

data. The bottom panel (c) and (d) (result-based validation) illustrates the classification procedures that yield Ctf
2 . The clusterings C

tf
2 are

depicted as polygons. The colors of the polygons match the corresponding clusters on the discovery data. For inferential clustering, nearest-

centroid classification is depicted: the green and yellow crosses represent the centroids of C1. The samples in the validation data are then

assigned to the nearest centroid. In this particular example, the resulting clustering Ctf
2 in (c) is equal to Cmd

2 in (a): in our terminology, the

criterion (Stab) is perfectly fulfilled. For descriptive clustering (d), the most obvious way of transferring C1 to the validation data is to set the

cluster memberships in Ctf
2 equal to those of C1. In particular, the elements Y 13 and Y 15 are clustered as in C1. Comparing Ctf

2 with Cmd
2 in

(b) shows that the cluster memberships are not perfectly stable according to criterion (Stab)
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a. The same clustering method that yielded C1 (i.e., same algorithm, same number of cluster k, etc.) can be applied to
D2, yielding a clustering Cmd

2 on D2 (“md” for “method”). C1 and Cmd
2 can then be compared with respect to aspects

(Int), (Ext), or (Vis). We call this approach method-based validation. It puts a focus on the structural similarity of the
clustering results as generated by the method.

b. Instead of applying the clustering method again, C1 can be “transferred” to the validation data by using a supervised
classifier to predict the cluster labels of the validation set (explained in more detail below). This results in a cluster-
ing Ctf

2 on D2 (“tf” for “transferred”). The transferred clustering can be compared to the original clustering C1 with
respect to aspects (Int), (Ext), or (Vis). We call this approach result-based validation. It puts a focus on whether the
specific clustering result is also sensible for the validation data.

We now explain what we mean by “transferring” the clustering. For descriptive clustering, Ctf
2 is simply C1 (recall

that for descriptive clustering, the objects to be clustered are the same for D1 and D2, and thus C1 can immediately be
considered to be a clustering of D2). For inferential clustering, the objects to be clustered are different in the discovery
and validation sets, so some proper “transfer” is required. This can be done using a supervised classifier (using the
labeled discovery set D1,C1ð Þ as “training set”) to assign the objects in D2 to the clusters in C1 (Akhanli &
Hennig, 2020; Lange et al., 2004). For example, one can calculate the centroids of the clusters in C1, and then assign
each sample in D2 to its nearest centroid (“nearest-centroid classifier”). As Ctf

2 is supposed to be an “extension” or
“transfer” of the original clustering to the validation data, one should use a classifier that fits the assignment rule
of the chosen clustering algorithm as closely as possible. The nearest-centroid classifier is suitable for k-means,
which indeed clusters points by assigning them to the nearest centroid (Lloyd, 1982). For suitable classifiers for other
clustering algorithms see Akhanli and Hennig (2020).

For (Stab) (stability of cluster membership), the clustering method needs to be applied again to D2. We check
whether the cluster memberships resulting from applying the method to the validation data are similar to the cluster
memberships resulting from transferring the original clustering to the validation data. This combines (a) and (b).

3.4 | Overview of validation strategies

Table 2 combines the concepts of Sections 3.2 and 3.3 into an overview of strategies for validation on validation data.
The precise choice of indices, plots, and so forth depends on the specific context of the analysis. We refer to Section 4
for illustrative examples from the applied literature.

Here are some considerations regarding the different strategies. The commented R code in the Supporting Information
illustrates the following paragraphs with real-world datasets and concrete choices for indices and visualization tools.

3.4.1 | Validating (Int): Internal properties of the clustering

When applying result-based validation, the clusters of Ctf
2 correspond to those of C1. This makes the comparison easier.

For method-based validation, the clusters of Cmd
2 are not automatically associated one-to-one with the clusters of C1.

Such an association is not needed when calculating internal indices that refer to a whole clustering, and comparing the
index values between the clusterings on discovery and validation data. However, one may also be interested in compar-
ing characteristics of specific clusters such as cluster centroids. In this case, there needs to be a matching of the clusters
of Cmd

2 to the clusters of C1, usually assuming that their number is the same. There are various methods to do this. For

TABLE 2 Strategies for validation on validation data

Method-based validation Result-based validation

Compare C1, Cmd
2 with respect to: Compare C1, C

tf
2 with respect to:

(Int) Internal properties Internal properties

(Ext) External associations External associations

(Vis) Visual properties Visual properties

(Stab) Compare Cmd
2 , Ctf

2 with respect to cluster membership
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example, in centroid-based clustering one could match the centroids so that the sum of distances between centroids of
matched clusters is minimal (Mirkin, 2005). Breckenridge (2000) suggests associating each cluster of Cmd

2 to a cluster of
Ctf
2 (e.g., by choosing the cluster association that maximizes the sum of the intersections of the clusters). The one-to-one

cluster association of Ctf
2 to C1 can then be used to assign each cluster of Cmd

2 to one of C1.

3.4.2 | Validating (Ext): Associations with external variables or agreement with externally
known partitions

As for method-based validation of internal properties (Int), here too it may be necessary to match the clusters of Cmd
2 to

those in C1 and the remarks made above apply again. Note that this is not necessarily required. For example, testing
whether the clusters are associated with an external variable, such as survival time, without interpreting the association
of specific clusters, does not require matching.

For result-based validation of descriptive clustering, the partition Ctf
2 is actually equal to C1. This makes certain

approaches such as testing an association between cluster membership and an external variable on both discovery and
validation data meaningless.

3.4.3 | Validating (Vis): Visual patterns

Using the same variables for D1 and D2 as in inferential clustering, some plots such as scatterplots or parallel coordi-
nates plots can visualize both Cmd

2 and Ctf
2 in a straightforward manner comparable to C1. Some other plots such as

principal components biplots, other linear projection plots such as those in Hennig (2004), and multidimensional scal-
ing require a selection of an optimal projection space for the dataset to be plotted. Although this could be done on the
validation data, for inferential clustering, plotting the validation dataset on the projection space defined by the discov-
ery dataset (and its clustering, if the projection space depends on it) allows for a more direct comparison. For linear pro-
jection methods, this requires a standard linear projection given the coordinate axes determined from D1. For
multidimensional scaling, there are techniques to embed new observations into the projection space defined by the
original observations, for example, Gower (1968). For descriptive clustering, on the other hand, embedding the observa-
tions of D2 in the space defined by D1 is not informative as the points would be identical, so here an optimized projec-
tion space for D2 must be found.

Some other plots, such as the silhouette plot and cluster heatmaps (as long as observations are ordered only by a
partition rather than a full dendrogram), may benefit from matching clusters for determining their order, see the com-
ments on internal validation (Int) in Section 3.4.1.

The results of visual validation are subjective, and although plots are reproducible given both discovery and valida-
tion datasets, the way the researcher arrives at a validity verdict will not be reproducible. Displaying the involved plots
will give the reader the chance to form their own conclusions.

3.4.4 | Validating (Stab): Stability of cluster membership

Here one needs to compute both Ctf
2 and Cmd

2 . These are then compared with an index for comparing partitions. The
rationale behind this is as follows: cluster memberships in C1 and Cmd

2 are compared to check whether repeated appli-
cation of the clustering method leads to stable cluster memberships. For descriptive clustering, C1 can be compared to
Cmd
2 directly (here C1 is equal to Ctf

2 ). For inferential clustering, C1 and Cmd
2 cannot be compared directly because they

are partitions of different sets of objects. Thus Ctf
2 is used as a surrogate for C1 on D2. Different choices of a partition

similarity index are possible, for example, the ARI, the Jaccard index, or the FM index (for overviews, see Meila, 2015;
Albatineh et al., 2006).

3.5 | When is a clustering successfully validated?

Due to random variation, researchers will hardly ever achieve the exact same results on discovery and validation data.
So far, there seem to be no systematic approaches for judging “validation success” in the context of validating clustering
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results on validation data. In this section, we review the current status and outline which aspects would be interesting
to study in further research.

The problem of defining “successful” validation does not only arise in cluster analysis, but generally in validation or
replication studies. Here we consider “validation” to be the broader term, and “replication” as more specific, for which
strategies of the validation framework can be used. “Replication” refers to using new data to re-assess scientific claims
made in a previous publication (Nosek & Errington, 2020). The discussion about judging replication success is ongoing
in the field of methodological research on replication studies, mostly in the context of hypothesis tests and effect esti-
mates. For example, Hedges (2019) and Held (2020) argue that, when trying to replicate a hypothesis test (that was sig-
nificant on the original data), it is not enough to check whether the test on the replication data is significant again.
Actually, the binary distinction between significance and insignificance may not be helpful, for example, when compar-
ing p values of 0.04 and 0.06 (given a significance level of 0.05). Rather, we should also check whether the effect esti-
mate in the replication study provides evidence for the claim about the effect in the original study. Some clustering
validation aspects are connected to significance tests, particularly testing for external associations in (Ext). The same
caveats apply here regarding general replication of test results.

The consideration of differences between (internal or external) validity measurements on discovery and validation
data, or the consideration of an index value for stability between discovery and validation sets, could in principle also
be framed as a testing problem of a null hypothesis formalizing some kind of equality of structure. To our knowledge,
this has not been performed yet and is left as a potential direction of future research. It can be expected that validation
data results will not be quite as good due to selection bias originating from basing selection of the final clustering on
results of the discovery data: the more different clustering algorithms or parameters are tried during the analysis on the
discovery data, the more likely it is that one of them yields a satisfying result. If only the best result is chosen, this might
be “overoptimistic” to some extent. In other words, the multiplicity of possible analysis strategies may hinder replicabil-
ity (Hoffmann et al., 2021), see also the discussion in Section 5. Observing slightly worse values on the validation data
is thus to be expected and does not necessarily mean that the validation has failed. However, if the results are severely
worse, then this suggests problematic overoptimism on the discovery data.

As it stands, it must be acknowledged that the question “is validation successful?” cannot simply be answered with
“yes” or “no”. The validation dataset may deliver high or low agreement regarding various aspects (internal and exter-
nal validity, stability, visual aspects) with what was found on the discovery data—where the clustering on the discovery
data may already have been assessed as a weaker or stronger clustering in Step 1. For example, regarding an internal
index, such as the Average Silhouette Width, it is of interest both whether the value is reasonably high on the discovery
dataset alone, and whether the validation dataset supports whatever value was found on the discovery data. Guidelines
or thresholds for interpreting index values are rarely given and in fact mostly arbitrary, so the researcher must rely on
their understanding of the index, experience, and judgment.

4 | EXAMPLES FROM THE APPLIED LITERATURE

In this section, we review application studies that conducted cluster analysis on a discovery set and then validated the
results with a validation set. Our aim is to demonstrate how these studies fit into the framework outlined above. Given
the vast amount of applied cluster analysis studies, it is impossible to list every cluster study that used a validation set.
Rather, we start by giving a short historical overview and then present some exemplary studies in Table 3.

The appearance of clustering studies that used a discovery and a validation set dates back to at least the 1960s. One
of the first clustering studies that used a validation set was Goldstein and Linden (1969) who clustered patients with
alcohol use disorder. In our terms, they performed method-based validation with respect to internal properties. Rogers
and Linden (1973) provided an early implementation of stability-based validation, (Stab). They clustered college fre-
shwomen based on personality features and used discriminant analysis as the classifier to derive Ctf

2 . (Stab) was then
presented more systematically by McIntyre and Blashfield (1980) and Breckenridge (1989).

In recent decades, many more clustering studies that use validation data have appeared. In Table 3, we list exem-
plary applied studies for the different validation types as outlined in Table 2. The studies are taken from our main field
of expertise, that is, medicine and health science. Some of these studies used multiple aspects of the validation frame-
work, but for the sake of illustration, we only list one validation type per study. We did not find an example for result-
based validation of (Vis). In general, there appear to be few studies which performed validation of visual properties on
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a validation dataset in a thorough manner. We believe future studies would benefit from considering the procedures for
(Vis), outlined above.

The studies cited in Table 3 mostly treat validation and discovery data asymmetrically (with the exception of
Freudenberg et al., 2009, and Bergström et al., 2001). This is more obvious for result-based validation: the clustering C1

is transferred to the validation data (and not the other way around). Method-based validation may appear more sym-
metric because the same method is applied to both discovery and validation data and the results are typically compared
descriptively in a symmetric fashion. However, method-based validation can be asymmetric to the extent of which the
validation data is kept apart from the method selection on the discovery data, and is only used later without model
selection to validate the results on the discovery data. Asymmetry could be made more explicit by using a suitable test
procedure to judge validation success (inspired by the methodological research on judging replication success, for exam-
ple, Held (2020) advocates for an asymmetric approach when comparing the replication study to the original study),
but as discussed in Section 3.5, such approaches do not seem to exist yet for cluster analysis.

Many studies in the literature do not strictly set apart the validation data during Step 1 (method selection). That is,
these studies use the result of the validation on the validation data for method selection (e.g., Brennan et al., 2012;
Jamison et al., 1988; Sinclair et al., 2005). In contrast, we have argued in the introduction and in Section 2.3 that for the
purpose of validating a clustering result on validation data in the sense of our framework, method selection should be
finished after Step 1.

Another validation variant is also frequently found in the literature (e.g., Ailawadi et al., 2001; Gruber et al., 2010;
Homburg et al., 2008; Kaluza, 2000; Phinney et al., 2005): method selection is performed on the whole dataset, after
which the data is split into two sets. The chosen cluster method is applied to the first set, and then validation on the sec-
ond set (the validation data) is assessed. Successful “validation” may indicate a certain robustness or stability of the
result, but in order to avoid overoptimism on the validation data, method selection should be constrained to the first
part of the split dataset, and not be performed on the whole data according to our framework.

Other studies (e.g., Alexe et al., 2006) perform a procedure that appears similar to method-based validation: they
split a dataset into two halves, use the first half as the discovery set, but obtain Cmd

2 by clustering discovery and valida-
tion data together (instead of only clustering the validation data), which again will likely yield more optimistic valida-
tion results than if Cmd

2 had been obtained based on the validation data only.

5 | DISCUSSION

We have presented a systematic framework for validating clusterings on a validation dataset that encompasses proce-
dures known from the literature. This framework might help researchers to identify a suitable approach to validate
their clustering results in future studies. However, the procedure cannot be performed in an “automated” manner.
Rather, it requires substantial input from the researchers who must decide which validation criteria are important for
them depending on the substantive context. Furthermore, specific indices and plots need to be chosen, as well as
whether the amount of agreement between results on the discovery and validation datasets is assessed as sufficient. We
have given hints about when some aspects may be of interest, but as every application is different, there are no clear
rules. This holds for the clustering process in general: while cluster analysis is often interpreted as being able to find
meaningful structure in the data “on its own”, the choice of cluster concept and method requires thorough consider-
ation by researchers (Akhanli & Hennig, 2020; Hennig, 2015b). The same is true for our validation framework.

Performing validation on the validation data adds some computational complexity to the cluster analysis. However,
the overall complexity is often less than twice the complexity that would result from only analyzing the discovery data:
frequently method selection is performed on the discovery data, and this possibly time-consuming process is not applied
to the validation data.

Regarding the choice of validation data, a validation dataset could be obtained by splitting the original dataset, or it
could be a separately collected dataset. On one hand, if the validation dataset and the discovery dataset are obtained by
splitting an originally collected dataset, it is unclear whether a successful validation allows for generalization to data
from other sources. Moreover, this reduces the size of the data and can make it more difficult to find meaningful cluster
structure in the data. On the other hand, if the validation data have been independently collected (potentially coming
from a different distribution) and the validation fails, it can be difficult to determine whether this is due to the cluster-
ing not being meaningful, or due to systematic differences between discovery and validation data. Conversely, if valida-
tion is successful, then this is all the more encouraging, because it suggests that the clustering result may be valid in a
more general context.
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Notably, the validation of clustering results on a validation dataset may also allow detection of “overoptimism” due
to “overfitting” effects: when researchers try different clustering algorithms or parameters during the analysis, they can
use classical internal and external validation methods to choose a single clustering out of these. However, the more
clustering methods tried, the more likely it is that one of them yields a satisfying result by chance. Consequently, the
reported results may be less reliable than they seem, similarly to the results of multiple tests if no adjustment is per-
formed. While this is well-understood in the context of multiple testing, this is less so in the context of clustering.
Repeating the same cluster analysis on another dataset is a sensible approach to ensure that seemingly satisfactory
results are not (solely) the product of such overfitting effects.

In future work, it would be interesting to study further aspects of cluster validation in relation to validation data
use. Hypothesis testing is an approach to cluster validation that we have not embedded in our framework. For example,
one can test if a clustering result is significantly “better” than clusterings generated by the same method on homoge-
neous datasets (for an overview, see Huang et al., 2015). This can involve internal validation indices (Dubes, 1993;
Gordon, 1998; Halkidi et al., 2002; Hennig & Lin, 2015) or stability analysis (Bertrand & Mufti, 2006; Dudoit &
Fridlyand, 2002; John et al., 2020; Smith & Dubes, 1980). We do not know of work where hypothesis testing for cluster
validation has involved validation data, but it could be of interest to derive distributions under suitable null hypotheses
for statistics that are evaluated on validation data.

In conclusion, our hope for this framework is to improve the interpretation of clustering studies that use validation
data, and to stimulate the use of validation sets in cluster analysis.
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1 Background
We present two illustrative examples for cluster validation on a validation dataset, accompanying the paper
“Validation of cluster analysis results on validation data: A systematic framework” (2021) by Theresa Ullmann,
Christian Hennig and Anne-Laure Boulesteix. This illustration is intended for readers of our paper who are
familiar with R, but are new to cluster validation on validation datasets.

In the first example we consider inferential clustering of the Wisconsin Breast Cancer dataset (Street, Wolberg,
and Mangasarian 1993). The second example presents descriptive clustering of a microbiome dataset obtained
from human intestinal tracts (Lahti et al. 2014). For both examples, we split the data into discovery and
validation sets. On the discovery data, we perform method selection and evaluate the resulting clustering with
respect to different validation criteria. We then check whether the results are replicated on the validation
dataset. Thus we demonstrate how the strategies given in Table 2 of the paper can be applied to both
example datasets.

Our analyses are written in tutorial style and only serve illustrative purposes. We try to keep the analyses as
simple as possible. For more refined studies of the example datasets, see the original sources cited above.

While the analyses for the Winsconsin Breast Cancer and the microbiome data already involve visual
validation, we also use a simple toy example to further illustrate visualisation tools in the last section of this
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document. We perform inferential clustering of the Iris dataset (Anderson 1935) and generate various plots
to compare the clusterings on discovery and validation data.

2 Inferential clustering of the Wisconsin Breast Cancer dataset
The Wisconsin Breast Cancer dataset is a popular and publicly available dataset that is often used for
performance evaluation of classifiers. Here we will use it for inferential clustering of patients.

To download the dataset from the UCI Machine Learning Repository, use the following link:

https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data

Save the file “wdbc.data” in your working directory. Then read in the data:
data = read.csv("wdbc.data", header = FALSE)

str(data)

## 'data.frame': 569 obs. of 32 variables:
## $ V1 : int 842302 842517 84300903 84348301 84358402 843786 844359 84458202 844981 84501001 ...
## $ V2 : chr "M" "M" "M" "M" ...
## $ V3 : num 18 20.6 19.7 11.4 20.3 ...
## $ V4 : num 10.4 17.8 21.2 20.4 14.3 ...
## $ V5 : num 122.8 132.9 130 77.6 135.1 ...
## $ V6 : num 1001 1326 1203 386 1297 ...
## $ V7 : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
## $ V8 : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
## $ V9 : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
## $ V10: num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
## $ V11: num 0.242 0.181 0.207 0.26 0.181 ...
## $ V12: num 0.0787 0.0567 0.06 0.0974 0.0588 ...
## $ V13: num 1.095 0.543 0.746 0.496 0.757 ...
## $ V14: num 0.905 0.734 0.787 1.156 0.781 ...
## $ V15: num 8.59 3.4 4.58 3.44 5.44 ...
## $ V16: num 153.4 74.1 94 27.2 94.4 ...
## $ V17: num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
## $ V18: num 0.049 0.0131 0.0401 0.0746 0.0246 ...
## $ V19: num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
## $ V20: num 0.0159 0.0134 0.0206 0.0187 0.0188 ...
## $ V21: num 0.03 0.0139 0.0225 0.0596 0.0176 ...
## $ V22: num 0.00619 0.00353 0.00457 0.00921 0.00511 ...
## $ V23: num 25.4 25 23.6 14.9 22.5 ...
## $ V24: num 17.3 23.4 25.5 26.5 16.7 ...
## $ V25: num 184.6 158.8 152.5 98.9 152.2 ...
## $ V26: num 2019 1956 1709 568 1575 ...
## $ V27: num 0.162 0.124 0.144 0.21 0.137 ...
## $ V28: num 0.666 0.187 0.424 0.866 0.205 ...
## $ V29: num 0.712 0.242 0.45 0.687 0.4 ...
## $ V30: num 0.265 0.186 0.243 0.258 0.163 ...
## $ V31: num 0.46 0.275 0.361 0.664 0.236 ...
## $ V32: num 0.1189 0.089 0.0876 0.173 0.0768 ...
data[1:10,1:10]

## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
## 1 842302 M 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710
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## 2 842517 M 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.08690 0.07017
## 3 84300903 M 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.19740 0.12790
## 4 84348301 M 11.42 20.38 77.58 386.1 0.14250 0.28390 0.24140 0.10520
## 5 84358402 M 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.19800 0.10430
## 6 843786 M 12.45 15.70 82.57 477.1 0.12780 0.17000 0.15780 0.08089
## 7 844359 M 18.25 19.98 119.60 1040.0 0.09463 0.10900 0.11270 0.07400
## 8 84458202 M 13.71 20.83 90.20 577.9 0.11890 0.16450 0.09366 0.05985
## 9 844981 M 13.00 21.82 87.50 519.8 0.12730 0.19320 0.18590 0.09353
## 10 84501001 M 12.46 24.04 83.97 475.9 0.11860 0.23960 0.22730 0.08543

The data consists of 569 samples (patients). Each patient underwent a breast mass biopsy. The following
variables are given: 1) the ID number of each patient, 2) the class label information, namely the clinical
diagnosis for the breast mass (B for benign, M for malignant), and 3) 30 real-valued featured that describe
different characteristics of the cells that were obtained during the biopsy. For more details, see the description
of the dataset on the UCI Machine Learning Repository.

We put the class labels into a separate vector, because we will not use this information for the clustering
itself, and only use it at a later point for external validation. Then we remove the patient ID numbers, which
we do not need for our analysis.
labels = data[,2]
data = data[,-c(1,2)]

The data now looks as follows:
data[1:10, 1:10]

## V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
## 1 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710 0.2419 0.07871
## 2 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.08690 0.07017 0.1812 0.05667
## 3 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.19740 0.12790 0.2069 0.05999
## 4 11.42 20.38 77.58 386.1 0.14250 0.28390 0.24140 0.10520 0.2597 0.09744
## 5 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.19800 0.10430 0.1809 0.05883
## 6 12.45 15.70 82.57 477.1 0.12780 0.17000 0.15780 0.08089 0.2087 0.07613
## 7 18.25 19.98 119.60 1040.0 0.09463 0.10900 0.11270 0.07400 0.1794 0.05742
## 8 13.71 20.83 90.20 577.9 0.11890 0.16450 0.09366 0.05985 0.2196 0.07451
## 9 13.00 21.82 87.50 519.8 0.12730 0.19320 0.18590 0.09353 0.2350 0.07389
## 10 12.46 24.04 83.97 475.9 0.11860 0.23960 0.22730 0.08543 0.2030 0.08243

The labels are stored separately:
labels[1:10]

## [1] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
table(labels)

## labels
## B M
## 357 212

Next, we split the data randomly into discovery and validation sets. Because we want to perform inferential
clustering, we split along the samples. Setting the random seed is important for reproducibility of the results.
Alternatively, we could shuffle the whole dataset and choose the first n/2 samples as discovery set and the
remaining samples as the validation set. (The shuffling would be important for this alternative because
otherwise, a pre-existing ordering of the samples might cause artifical differences between discovery and
validation sets.)
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set.seed(123)
n = 0.5 * nrow(data)
discov_samples = sample(nrow(data), size = n)
valid_samples = sample(setdiff(1:nrow(data), discov_samples), n)

discov_data = data[discov_samples,]
valid_data = data[valid_samples,]

As preprocessing step, we standardize all features to zero mean and unit variance, such that they are on the
same scale in Euclidean space (which is recommended for the cluster algorithms we will use later). Note
that we do this separately for discovery and validation data, to keep the information from the validation set
apart from the analysis on the discovery data. If we had standardized the features on the full dataset and
only split the data later, we would have obtained slightly different feature values. This is a first hint that
preprocessing must be carefully combined with the data splitting. We will discuss this issue in more detail for
the descriptive clustering of the microbiome data below.
discov_data = as.data.frame(scale(discov_data))
valid_data = as.data.frame(scale(valid_data))

2.1 Method selection and internal validation
Now we are ready to cluster the patients in the discovery data. First, we must decide which method to use.
At the start of the analysis, researchers are often unsure which algorithm to use, and which number of clusters
to choose. We try out both k-means and spectral clustering (for the latter, we load the kernlab package),
and consider numbers of clusters between 2 to 10. As selection criterion, we use an internal validation index,
namely the ASW, i.e., the Average Silhouette Width (Kaufman and Rousseeuw 2009), as calculated by the
cluster package. That is, we will select the combination of clustering algorithm and number of clusters that
has the highest ASW.

The ASW is calculated as 1
n

∑n
i=1 s(i), where s(i) denotes the individual silhouette value of sample i (here:

patient i). Each silhouette value ranges between -1 and 1. The higher the value, the more similar the
sample is to its own cluster relative to its distance to the other clusters. Consequently, the higher the ASW,
the better the overall clustering quality according to this criterium. For details on the calculation, see the
documentation of cluster::silhouette.

To start with the method selection, we first generate the ASW values for all method combinations.
library(cluster)
library(kernlab)

# the vectors will store the ASW values
asw_kmeans = numeric(9)
asw_spectral = numeric(9)

# the lists will store the clustering results
cluster_kmeans = vector(mode = "list", length = 9)
cluster_spectral = vector(mode = "list", length = 9)

dist_matrix_discov = dist(discov_data, method = "euclidean")

for (k in 2:10) {
cluster_kmeans[[k-1]] = kmeans(discov_data, centers = k)
cluster_spectral[[k-1]] = kernlab::specc(x = as.matrix(discov_data), centers = k)

asw_kmeans[k-1] = mean(cluster::silhouette(cluster_kmeans[[k-1]]$cluster,
dist_matrix_discov)[,3])
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asw_spectral[k-1] = mean(cluster::silhouette(cluster_spectral[[k-1]]@.Data,
dist_matrix_discov)[,3])

}

We look at the ASW values for both cluster algorithms:
asw_kmeans

## [1] 0.3534330 0.3310786 0.1716651 0.1717592 0.1505005 0.1315227 0.1226142
## [8] 0.1140580 0.1136161
asw_spectral

## [1] 0.35231282 0.28348073 0.24752441 0.09805734 0.08567037 0.05841300 0.07360816
## [8] 0.07250569 0.07335270

We see that the “best” clustering method is given by k-means clustering with k = 2 clusters (although spectral
clustering with k = 2 is nearly as good). Thus we fix the resulting clustering as C1.
best_k = 2
C_1 = cluster_kmeans[[1]]$cluster

table(C_1)

## C_1
## 1 2
## 199 85
asw_discov = asw_kmeans[1]
asw_discov

## [1] 0.353433

The ASW of approximately 0.353 indicates a moderate clustering performance.

Given that we have “optimised” the method combination to the discovery data, the ASW value might still
be slightly overoptimistic (as discussed in Sections 3.5 and 5 in the paper). We thus check whether the
ASW result can be replicated on the validation data. As described in the paper, we can perform either
method-based or result-based validation on the validation data.

For method-based validation, to obtain the clustering Cmd
2 on the validation data, we have to apply the

clustering method chosen on the discovery data to the validation data.
cluster_kmeans_valid = kmeans(valid_data, centers = best_k)
C_2_md = cluster_kmeans_valid$cluster
table(C_2_md)

## C_2_md
## 1 2
## 100 184

The ASW is then calculated for Cmd
2 :

dist_matrix_valid = dist(valid_data, method = "euclidean")
asw_valid_md = mean(cluster::silhouette(C_2_md, dist_matrix_valid)[,3])
asw_valid_md

## [1] 0.3429625

We see that the ASW for Cmd
2 is very similar to the ASW on the discovery data. So for the case of

method-based validation, there does not seem to be problematic overoptimism. We next check what happens
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in the case of result-based validation.

To obtain the clustering Ctf
2 for result-based validation, we have to transfer the clustering C1 to the validation

data. Since C1 was generated with k-means, which clusters points by assigning them to the nearest centroid,
it is natural to use the nearest-centroid classifier to assign the validation data samples to the clusters of C1.
We write a function closest.cluster that performs this assignment.
centroids_discov = cluster_kmeans[[1]]$centers

closest.cluster = function(x) {
cluster.dist = apply(centroids_discov, 1, function(y) sqrt(sum((x-y)^2)))
return(which.min(cluster.dist)[1])

}

C_2_tf = apply(valid_data, MARGIN = 1, FUN = closest.cluster)
table(C_2_tf)

## C_2_tf
## 1 2
## 194 90

Now the ASW is calculated for Ctf
2 .

asw_valid_tf = mean(cluster::silhouette(C_2_tf, dist_matrix_valid)[,3])

print(asw_valid_tf)

## [1] 0.3505059

Again, the ASW value is very similar to the value on the discovery data.

In our next steps, we will apply further validation criteria to the clustering on the discovery data and check
whether the results also hold on the validation data. We do not use these criteria to perform method selection
again, i.e., we use the clusterings C1, Cmd

2 and Ctf
2 from above. We start with visual validation and then

proceed to external validation and stability analysis.

2.2 Visual validation
Here we generate different plots for visualising the clusterings.

2.2.1 PCA plots

First, we consider principal component analysis (PCA) plots, for which we use the ggplot2 and ggfortify
packages. We display the discovery data in the first two principal components, colour samples according to their
cluster membership in C1, and draw ellipses around the centers of the clusters (see ggplot2::stat_ellipse()
for details). By setting the option loadings = TRUE in autoplot we could also turn the PCA plot into a
principal components biplot which additionally shows the variable loadings.
library(ggplot2)
library(ggfortify)
library(gridExtra)

discov_data2 = discov_data
discov_data2$clust = as.factor(C_1)
discov.pca = prcomp(discov_data)
autoplot(discov.pca, data = discov_data2, colour = "clust",

group_by = "clust", frame = TRUE, frame.type = "t") +
xlim(-0.26, 0.12) + ylim(-0.2, 0.3)
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The PCA plot shows that the two clusters are marked by higher vs. lower values on the first principal
component. However, there is no clearly visible separation between the clusters, as demonstrated by the
overlapping ellipses.

Now we want to compare the PCA plot for the discovery data with the PCA plot for the validation data. As
noted in Section 3.4 of the paper, to allow for a more direct comparison, it makes sense to plot the validation
dataset on the projection space defined by the discovery dataset (instead of calculating the PCA anew for
the validation data). Therefore we project the validation data onto the PCs of discov.pca (via scaling and
rotating).
valid_scale = scale(valid_data, center = discov.pca$center)
valid_projection = valid_scale %*% discov.pca$rotation
valid.pca = discov.pca
valid.pca$x = valid_projection

We need one more step before we can display the PCA plots for discovery and validation data next to each
other. We want the colours of the clusterings to match. That is, since cluster 1 of C1 is depicted in red in the
plot above, the “corresponding” cluster of the clustering on the validation data should also be coloured in red.
Therefore we need to match the clusters on the validation data to the clusters on the discovery data. As
explained in Section 3.4 of the paper, the clusters of Ctf

2 are automatically matched to the clusters of C1 due
to the transfer process, i.e., cluster 1 (resp. 2) of Ctf

2 corresponds to cluster 1 (resp. 2) of C1. For matching
the clusters of Cmd

2 to those of C1, we calculate the distances between the cluster centroids with the proxy
package.
library(proxy)

centroids_valid = cluster_kmeans_valid$centers
rownames(centroids_valid) = c("C_2_md: clust 1", "C_2_md: clust 2")
# centroids_discov were already calculated above
rownames(centroids_discov) = c("C_1: clust 1", "C_1: clust 2")

proxy::dist(centroids_valid, centroids_discov)

## C_1: clust 1 C_1: clust 2
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## C_2_md: clust 1 6.3397063 0.6951449
## C_2_md: clust 2 0.4766867 7.0257728

The centroid of cluster 1 (resp. 2) of C1 is closer to the centroid of cluster 2 (resp. 1) of Cmd
2 . Therefore we

rename the cluster names of Cmd
2 from (1,2) into (2,1).

C_2_md_renamed = C_2_md
C_2_md_renamed[C_2_md == 1] = 2
C_2_md_renamed[C_2_md == 2] = 1

Now we can use the renamed clustering to finally display the PCA plots for C1 vs. Cmd
2 :

valid_data2 = valid_data
valid_data2$clust_md = as.factor(C_2_md_renamed)
valid_data2$clust_tf = as.factor(C_2_tf)

p1 = autoplot(discov.pca, data = discov_data2, colour = "clust",
group_by = "clust", frame = TRUE, frame.type = "t",
main = "PCA plot for discovery data with C_1") +

xlim(-0.26, 0.12) + ylim(-0.2, 0.3)
p2 = autoplot(valid.pca, data = valid_data2, colour = "clust_md",

group_by = "clust_md", frame = TRUE, frame.type = "t",
main = "PCA plot for validation data with C_2^md") +

xlim(-0.26, 0.12) + ylim(-0.2, 0.3) +
labs(x = "PC1", y = "PC2")

grid.arrange(p1, p2, ncol=2)
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PCA plot for discovery data with C_1
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PCA plot for validation data with C_2^md

The clusterings C1 and Cmd
2 look very similar: one larger cluster on the left, and a smaller, more compact

cluster on the right, with some overlaps between both clusters.

Analogously, we display the PCA plots for the comparison of C1 and Ctf
2 :

p1 = autoplot(discov.pca, data = discov_data2, colour = "clust",
group_by = "clust", frame = TRUE, frame.type = "t",
main = "PCA plot for discovery data with C_1") +

xlim(-0.26, 0.12) + ylim(-0.2, 0.3)
p2 = autoplot(valid.pca, data = valid_data2, colour = "clust_tf",

group_by = "clust_tf", frame = TRUE, frame.type = "t",
main = "PCA plot for validation data with C_2^tf") +

xlim(-0.26, 0.12) + ylim(-0.2, 0.3) +
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labs(x = "PC1", y = "PC2")
grid.arrange(p1, p2, ncol=2)
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PCA plot for discovery data with C_1
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PCA plot for validation data with C_2^tf

Again, we see that C1 and Ctf
2 look quite similar in this visual representation.

2.2.2 Silhouette plots

Next, we consider silhouette plots. Recall the Average Silhouette Width (ASW) that we used above. As
described, it is calculated as the mean over all individual silhouette values s(i). Instead of aggregating the
values in this way, we can also display all individual values in a plot. The cluster package generates such
plots. The samples are sorted first by their cluster membership, and then by the magnitude of their silhouette
values. Here is the silhouette plot for the clustering C1 on the discovery data.
plot(cluster::silhouette(C_1, dist_matrix_discov), nmax = 80, cex.names = 1,

main = "Silhouette plot of C_1")
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The plot gives us some information that we did not know from the ASW value alone. The first cluster has a
better clusterwise ASW of 0.44, while the second cluster has a worse quality, with a clusterwise ASW of only
0.15, and several samples actually having negative silhouette values.

We now use the Silhouette plots to compare the clusterings Cmd
2 and Ctf

2 with C1. Because the silhouette
plots show the silhouette values ordered by clusters, it is advisable to match the clusters on the validation
data to the clusters on the discovery data (just as we did for the PCA plots), to ensure that the corresponding
clusters are shown next to each other. We therefore use the renamed clustering C_2_md_renamed from above
to compare the silhouette plot of Cmd

2 to the plot for C1:
par(mfrow = c(1,2))
plot(cluster::silhouette(C_1, dist_matrix_discov), nmax = 80, cex.names = 1,

main = "Silhouette plot of C_1")
plot(cluster::silhouette(C_2_md_renamed, dist_matrix_valid), nmax = 80, cex.names = 1,

main = "Silhouette plot of C_2^md")
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We can also compare the silhouettes of C1 to those of Ctf
2 :

par(mfrow = c(1,2))
plot(cluster::silhouette(C_1, dist_matrix_discov), nmax = 80, cex.names = 1,

main = "Silhouette plot of C_1")
plot(cluster::silhouette(C_2_tf, dist_matrix_valid), nmax = 80, cex.names = 1,

main = "Silhouette plot of C_2^tf")

11



Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of C_1

Average silhouette width :  0.35

n = 284 2  clusters  Cj

j :  nj | avei∈Cj  si

1 :   199  |  0.44

2 :   85  |  0.15

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of C_2^tf

Average silhouette width :  0.35

n = 284 2  clusters  Cj

j :  nj | avei∈Cj  si

1 :   194  |  0.43

2 :   90  |  0.18

In both cases, the silhouette plots for the validation data look very similar to the plot for the discovery data.

2.3 External validation
Here we use the “true” class labels (clinical diagnoses) that we have put aside in the labels vector before
the start of the cluster analysis. The Adjusted Rand Index (ARI) (Rand 1971; Hubert and Arabie 1985) is
calculated with the package mclust to determine the agreement of the cluster labels with the “true” labels.
library(mclust)

# "true" labels for the discovery data
classes_discov = as.numeric(as.factor(labels[discov_samples]))

adjustedRandIndex(C_1, classes_discov)

## [1] 0.6599149

The ARI value of about 0.660 shows that while the clustering on the discovery data is not perfectly aligned
with the clinical diagnosis, the agreement is still notably better than chance. Let us check what happens on
the validation data.
# "true" labels for the validation discovery data
classes_valid = as.numeric(as.factor(labels[valid_samples]))

adjustedRandIndex(C_2_md, classes_valid)

## [1] 0.6539913
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adjustedRandIndex(C_2_tf, classes_valid)

## [1] 0.6308588

The ARI values for both method-based and result-based validation are quite similar to the ARI value on the
discovery data.

2.4 Stability
Finally, we calculate the stability of cluster membership between discovery and validation set. As defined in
our paper, we have to compare Cmd

2 with Ctf
2 . Again, we use the ARI for this purpose.

adjustedRandIndex(C_2_md, C_2_tf)

## [1] 0.8621116

The ARI has a value of about 0.862, which indicates a high, but not perfect stability.

2.5 Summary
Overall, in this particular example and with respect to the validation criteria used, we can speak of successful
validation of the clustering results on the validation data. The index values for the clusterings on the
validation data were (nearly) as good as for the clustering on the discovery data, and the plots looked very
similar. This is perhaps not that surprising, given that we have split a rather large dataset into two parts.
The samples appear to not vary that much between discovery and validation data. This might be different
when splitting smaller datasets, or if the validation data is an independently collected dataset.

3 Descriptive clustering of the atlas1006 microbiome dataset
We will now present an example for descriptive clustering, namely the clustering of microbes. Such clusterings
can generate hypotheses about which microbes interact with each other. We use the atlas1006 dataset (Lahti
et al. 2014) which is publicly available in the microbiome R package. The dataset consists of gut microbiome
samples from over 1000 adults, and contains 130 genus-like bacterial groups. That is, for each adult, a
faecal sample was collected and it was counted how many microbes from each bacterial group appeared
in the sample. The term “genus-like group” means that each group contains several bacterial species and
corresponds roughly to a bacterial genus. Our aim is to cluster these bacterial groups/genera into higher-level
clusters. If you are new to the topic of taxonomy, the Wikipedia article on taxonomic ranks contains some
useful examples: https://en.wikipedia.org/wiki/Taxonomic_rank

First, we load the necessary packages: along with the microbiome package, we also load the phyloseq package
which offers general utilities and preprocessing functions for microbiome data, as well as the SpiecEasi
package which we later use for data normalization. The SpiecEasi package can be installed from github
with the devtools::install_github command.
#library(devtools)
#devtools::install_github("zdk123/SpiecEasi")

library(phyloseq)
library(SpiecEasi)
library(microbiome)

Next, we load the data into our environment and take a first look:
data(atlas1006)

atlas1006
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## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 130 taxa and 1151 samples ]
## sample_data() Sample Data: [ 1151 samples by 10 sample variables ]
## tax_table() Taxonomy Table: [ 130 taxa by 3 taxonomic ranks ]
otu_table(atlas1006)[1:5,1:5]

## OTU Table: [5 taxa and 5 samples]
## taxa are rows
## Sample-1 Sample-2 Sample-3 Sample-4 Sample-5
## Actinomycetaceae 0 0 0 0 0
## Aerococcus 0 0 0 0 0
## Aeromonas 0 0 0 0 0
## Akkermansia 21 36 475 61 34
## Alcaligenes faecalis et rel. 1 1 1 2 1
tax_table(atlas1006)[1:5,]

## Taxonomy Table: [5 taxa by 3 taxonomic ranks]:
## Phylum Family
## Actinomycetaceae "Actinobacteria" "Actinobacteria"
## Aerococcus "Firmicutes" "Bacilli"
## Aeromonas "Proteobacteria" "Proteobacteria"
## Akkermansia "Verrucomicrobia" "Verrucomicrobia"
## Alcaligenes faecalis et rel. "Proteobacteria" "Proteobacteria"
## Genus
## Actinomycetaceae "Actinomycetaceae"
## Aerococcus "Aerococcus"
## Aeromonas "Aeromonas"
## Akkermansia "Akkermansia"
## Alcaligenes faecalis et rel. "Alcaligenes faecalis et rel."

The atlas1006 data is saved as a phyloseq object. This means that it consists of three different subdatasets:
First, the OTU count table, which can be extracted with otu_table(). This is the dataset that we will
use for clustering. The OTU table shows how often each of the 130 bacterial groups (taxa) appears in each
sample, as described above. For example, we see that bacteria from the group “Akkermansia” appeared 21
times in the first sample.

The sample data contains some more information on the samples, but we will not need this for our analysis.

The taxonomy table (extracted via tax_table()) shows the higher taxonomic levels of the bacterial groups.
For example, the group “Akkermansia” belongs to the family “Verrucomicrobia” and to the phylum with the
same name. We will later use this information for external validation.

3.1 Preprocessing and split into discovery and validation sets
Microbiome data typically requires several preprocessing steps, which is the most involved part of our present
example. After preprocessing is finished, the clustering and validation procedures are relatively easy. If
you are less interested in the preprocessing steps, you may skip ahead towards the end of this subsection.
However, the subsection is instructive because it demonstrates how preprocessing must be carefully combined
with the split into discovery and validation sets.

A common preprocessing procedure for microbiome data is to keep only samples for which enough reads
(i.e., overall bacterial counts, also called sequencing depth) are available (samples with low sequencing depth
indicate low measurement quality). Here, we keep the samples with a minimum sequencing depth of more
than 10000 reads.
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sequencing_depths = colSums(otu_table(atlas1006))
atlas1006_filt = prune_samples(sequencing_depths > 10000, atlas1006)
atlas1006_filt

## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 130 taxa and 712 samples ]
## sample_data() Sample Data: [ 712 samples by 10 sample variables ]
## tax_table() Taxonomy Table: [ 130 taxa by 3 taxonomic ranks ]

We see that 712 samples remain. The number of taxa stays of course constant.

Now we are ready to split the data into discovery and validation sets. Note that in the OTU table displayed
above, the objects to be clustered (the bacteria) are in the rows, and the samples are in the columns. Since
our aim is to generate a descriptive clustering of the bacterial groups, they have to stay constant between
discovery and validation data. Therefore, we will split along the columns of the dataset (i.e., the samples).
We then save discovery and validation sets as phyloseq objects.
set.seed(123)
ncols = ncol(otu_table(atlas1006_filt))
n = 0.5 * ncols
discov_samples = sample(ncols, size = n)
valid_samples = sample(setdiff(1:ncols, discov_samples), n)

discov_phyloseq = phyloseq(otu_table(atlas1006_filt)[,discov_samples],
tax_table(atlas1006_filt))

valid_phyloseq = phyloseq(otu_table(atlas1006_filt)[,valid_samples],
tax_table(atlas1006_filt))

We now continue with preprocessing. It is common to remove rare taxa which occur very infrequently across
samples. That is, we keep only the taxa which have counts > 0 in at least 10% of the samples. Why did
we not already perform this step above, when we were filtering the samples? This has to do with the split
into discovery and validation data, and illustrates why one must be careful when combining the split with
preprocessing steps:

The sample filtering was performed sample-wise, i.e., with a calculation across taxa for each individual sample.
No information between samples was exchanged. We could have also performed this step after the split into
discovery and validation data, but then we might have ended up with different sizes of the discovery and
validation sets.

For the filtering of taxa, however, information between samples is used. For each bacterial group, the row in
the OTU table is traversed to look for samples where no counts are present. That is, it makes a difference
whether one performs this step before or after splitting the dataset into two sample sets. As in our previous
example for inferential clustering, we try to avoid using information from the validation data for the analysis
on the discovery data. Therefore, we perform the filtering of taxa on the discovery data, which gives us the
final set of objects to be clustered. On the validation set, we keep the same taxa. This means, of course, that
there might be taxa in the validation set which do not have counts > 0 in at least 10% of the validation
samples (although this is not the case in this particular example).
taxa_counts_discov = rowSums(sign(otu_table(discov_phyloseq)))
discov_phyloseq = prune_taxa(taxa_counts_discov > 0.1 * n, discov_phyloseq)
valid_phyloseq = prune_taxa(taxa_counts_discov > 0.1 * n, valid_phyloseq)
discov_data = otu_table(discov_phyloseq)
valid_data = otu_table(valid_phyloseq)

discov_phyloseq

## phyloseq-class experiment-level object
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## otu_table() OTU Table: [ 117 taxa and 356 samples ]
## tax_table() Taxonomy Table: [ 117 taxa by 3 taxonomic ranks ]
valid_phyloseq

## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 117 taxa and 356 samples ]
## tax_table() Taxonomy Table: [ 117 taxa by 3 taxonomic ranks ]

We see that 117 bacterial groups have remained.

For the cluster analysis below we will use hierarchical clustering, which requires a distance or dissimilarity
matrix as input. We would like to calculate this dissimilarity matrix based on the Pearson correlations
between the bacterial taxa. However, the OTU count tables in its current state cannot be used for calculating
the correlations, given that we are not in Euclidean space. Instead, we have positive integer-valued counts
which sum up to the fixed sequencing depths. In microbiome analysis, this is known as the “compositional
nature” of the data.

We thus have to use a transformation to move the data points into Euclidean space. A popular choice is
Aitchison’s centered log ratio (clr) transformation (Aitchison 1982), which is implemented in the SpiecEasi
package. As the clr cannot deal with zeros in the data, we first have to add a pseudo count of 1. Note that
the clr transform does only perform calculations inside samples, and not between samples. Thus, we could
also have applied this transformation before the split into discovery and validation sets.
discov_data = discov_data + 1
discov_data = SpiecEasi::clr(x.f = discov_data, mar = 2, base = exp(1))

valid_data = valid_data + 1
valid_data = SpiecEasi::clr(x.f = valid_data, mar = 2, base = exp(1))

The transformed OTU count tables now look as follows:
discov_data[1:5, 1:5]

## Sample-635 Sample-687 Sample-318 Sample-778
## Actinomycetaceae -2.4305869 -2.4908494 -2.53827082 -1.929597
## Akkermansia -0.1280018 0.3423639 0.79393369 2.297236
## Alcaligenes faecalis et rel. -1.3319747 -1.7977022 -1.43965853 -1.524132
## Allistipes et rel. 3.2461669 2.7131573 -0.05336417 2.002228
## Anaerofustis -2.4305869 -2.4908494 -2.53827082 -2.622745
## Sample-340
## Actinomycetaceae -2.844564
## Akkermansia 0.869008
## Alcaligenes faecalis et rel. -1.745952
## Allistipes et rel. 2.082690
## Anaerofustis -2.844564
valid_data[1:5, 1:5]

## Sample-1159 Sample-508 Sample-399 Sample-1124
## Actinomycetaceae -2.41622177 -2.28793888 -2.015841 -2.613590
## Akkermansia 0.06868488 -0.20849734 1.119654 1.717144
## Alcaligenes faecalis et rel. -1.72307459 0.01464621 -1.610376 -1.920443
## Allistipes et rel. 0.87961510 1.82293498 3.328883 3.305304
## Anaerofustis -2.41622177 -2.28793888 -2.708988 -2.613590
## Sample-220
## Actinomycetaceae -2.638416
## Akkermansia 1.894183
## Alcaligenes faecalis et rel. -1.539804
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## Allistipes et rel. 1.872443
## Anaerofustis -2.638416

As the clr is a monotone transformation (sample-wise), higher values indicate higher original OTU counts.

3.2 Method selection and internal validation
We perform hierarchical clustering of the bacterial groups based on the discovery data. To generate the
dissimilarity matrix required for hierarchical clustering, we first calculate the Pearson correlations between
the bacteria:
cor_mat_discov = stats::cor(t(discov_data), use = "complete.obs", method = "pearson")

To transform the correlation matrix (which represents similarities) into a dissimilarity matrix, we apply the
signed distance

√
0.5(1 − rij) (see e.g. Peschel et al. (2021) for more detailed explanations).

diss_mat_discov = sqrt(0.5 * (1-cor_mat_discov))
diss_mat_discov[1:5,1:5]

## Actinomycetaceae Akkermansia
## Actinomycetaceae 0.0000000 0.7599526
## Akkermansia 0.7599526 0.0000000
## Alcaligenes faecalis et rel. 0.6901934 0.7090702
## Allistipes et rel. 0.8269252 0.6947596
## Anaerofustis 0.6233327 0.7380582
## Alcaligenes faecalis et rel. Allistipes et rel.
## Actinomycetaceae 0.6901934 0.8269252
## Akkermansia 0.7090702 0.6947596
## Alcaligenes faecalis et rel. 0.0000000 0.6853242
## Allistipes et rel. 0.6853242 0.0000000
## Anaerofustis 0.7080303 0.7532644
## Anaerofustis
## Actinomycetaceae 0.6233327
## Akkermansia 0.7380582
## Alcaligenes faecalis et rel. 0.7080303
## Allistipes et rel. 0.7532644
## Anaerofustis 0.0000000

Now we use the resulting dissimilarity matrix for hierarchical clustering. As in our previous example, we use
the ASW internal validation index to determine the “best” number of clusters, with k ranging from 2 to 10.
sw = numeric(9)

h_clust_discov = hclust(as.dist(diss_mat_discov), method = "average")

for (k in 2:10) {
cluster_hierarch = cutree(h_clust_discov, k = k)

sw[k-1] = mean(cluster::silhouette(cluster_hierarch, diss_mat_discov)[,3])

}

best_k = which(sw == max(sw)) + 1
best_k

## [1] 4
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sw_discov = max(sw)
C_1 = cutree(h_clust_discov, k = best_k)
table(C_1)

## C_1
## 1 2 3 4
## 42 15 28 32
print(sw_discov)

## [1] 0.133544

It turns out that k = 4 is the best choice according to the ASW. Note, however, that the value of the ASW is
rather low even for this best case.

For method-based validation, we apply the hierarchical clustering with k = 4 to the validation data.
Beforehand, we calculate the correlations and then the dissimilarity matrix.
cor_mat_valid = stats::cor(t(valid_data), use = "complete.obs", method = "pearson")

diss_mat_valid = sqrt(0.5 * (1-cor_mat_valid))

h_clust_valid = hclust(as.dist(diss_mat_valid), method = "average")
C_2_md = cutree(h_clust_valid, k = best_k)
sw_valid = mean(cluster::silhouette(C_2_md, diss_mat_valid)[,3])

table(C_2_md)

## C_2_md
## 1 2 3 4
## 54 15 16 32
print(sw_valid)

## [1] 0.1430595

We see that the ASW of Cmd
2 is very similar to the ASW for C1.

For result-based validation, the transferring process from C1 to Ctf
2 is easier than for inferential clustering:

because the objects to cluster remain constant between discovery and validation data, we can simply set
C1 = Ctf

2 .
C_2_tf = C_1

sw_valid = mean(cluster::silhouette(C_2_tf, diss_mat_valid)[,3])

table(C_2_tf)

## C_2_tf
## 1 2 3 4
## 42 15 28 32
print(sw_valid)

## [1] 0.1288389

Again, the ASW value is rather similar to the result on the discovery data.

We move on to other validation strategies on the validation data: stability analysis, visual validation and
external validation.
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3.3 Stability
How similar are the partitions of the 117 fixed bacterial groups given by Cmd

2 and Ctf
2 = C1? As before, we

use the Adjusted Rand Index (ARI) with the mclust package.
library(mclust)
adjustedRandIndex(C_2_md, C_2_tf)

## [1] 0.7536271

The ARI value of about 0.754 shows reasonable stability between cluster membership on the discovery and
validation data, but the partitions are definitely not identical. Several bacterial taxa are grouped differently
based on discovery vs. validation data. To further analyse this, we cross-tabulate the cluster memberships.
table(C_1, C_2_md)

## C_2_md
## C_1 1 2 3 4
## 1 42 0 0 0
## 2 0 15 0 0
## 3 12 0 16 0
## 4 0 0 0 32

Clusters 2 and 4 perfectly match across C1 and Cmd
2 . The differences are in clusters 1 and 3. Cluster 1 of

Cmd
2 contains not only elements from cluster 1 of C1, but also some elements from cluster 3 of C1. We can

also see this with visualisation tools.

3.4 Visual validation
Multidimensional scaling (MDS) is a visualisation technique that takes a distance/dissimilarity matrix as
input and display the objects in a lower-dimensional space such that the distances between the objects are
preserved as well as possible. We can thus use this method in combination with our dissimilarity matrices to
visualise the bacterial groups and their clustering. Cluster membership is indicated by different colours and
shapes.
library(ggplot2)

mds_discov = cmdscale(diss_mat_discov, k = 2, eig = TRUE)
discov_data_plot = as.data.frame(mds_discov$points)
discov_data_plot$C_1 = as.factor(C_1)

ggplot(discov_data_plot, aes(V1, V2)) +
geom_point(aes(colour = C_1, shape = C_1)) + xlim(-0.45, 0.45) + ylim(-0.4, 0.4) +
labs(title = "MDS plot for discovery data with C_1")
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MDS plot for discovery data with C_1

The clusters are clearly not well separated (which also explains the rather low value of the ASW).

Showing the taxa labels might help to better interpret the clusters and generate biological hypotheses. Here,
the resulting plot is rather confusing because of the large number of labels. With suitable taxa abbreviations,
however, the plot could be rendered more readable, although we will not pursue this here.
ggplot(discov_data_plot, aes(V1, V2, label = rownames(discov_data_plot))) +

geom_point(aes(colour = C_1, shape = C_1)) +
geom_text(size = 2) + xlim(-0.45, 0.45) + ylim(-0.4, 0.4) +
labs(title = "MDS plot for discovery data with C_1")
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Actinomycetaceae

Akkermansia

Alcaligenes faecalis et rel.

Allistipes et rel.

Anaerofustis

Anaerostipes caccae et rel.

Anaerotruncus colihominis et rel.

Anaerovorax odorimutans et rel.

Aquabacterium

Atopobium

Bacillus

Bacteroides fragilis et rel.Bacteroides intestinalis et rel.Bacteroides ovatus et rel.

Bacteroides plebeius et rel.

Bacteroides splachnicus et rel.
Bacteroides stercoris et rel.

Bacteroides uniformis et rel.
Bacteroides vulgatus et rel.

Bifidobacterium

Bilophila et rel.

Brachyspira

Bryantella formatexigens et rel.

Bulleidia moorei et rel.

Burkholderia

Butyrivibrio crossotus et rel.

Campylobacter

Catenibacterium mitsuokai et rel.Clostridium (sensu stricto)

Clostridium cellulosi et rel.

Clostridium colinum et rel.

Clostridium difficile et rel.

Clostridium leptum et rel.
Clostridium nexile et rel.

Clostridium orbiscindens et rel.

Clostridium ramosum et rel.

Clostridium sphenoides et rel.

Clostridium stercorarium et rel.

Clostridium symbiosum et rel.

Collinsella

Coprobacillus catenaformis et rel.

Coprococcus eutactus et rel.

Corynebacterium

Desulfovibrio et rel.

Dialister

Dorea formicigenerans et rel.

Eggerthella lenta et rel.

Enterobacter aerogenes et rel.

Enterococcus

Escherichia coli et rel.

Eubacterium biforme et rel.

Eubacterium cylindroides et rel.

Eubacterium hallii et rel.

Eubacterium limosum et rel.

Eubacterium rectale et rel.

Eubacterium siraeum et rel.

Eubacterium ventriosum et rel.
Faecalibacterium prausnitzii et rel.

Fusobacteria

Haemophilus

Helicobacter

Klebisiella pneumoniae et rel.

Lachnobacillus bovis et rel.
Lachnospira pectinoschiza et rel.

Lactobacillus catenaformis et rel.

Lactobacillus gasseri et rel.

Lactobacillus plantarum et rel.

Lactobacillus salivarius et rel.
Lactococcus

Leminorella
Megamonas hypermegale et rel.

Megasphaera elsdenii et rel.

Mitsuokella multiacida et rel.

Moraxellaceae

Oceanospirillum

Oscillospira guillermondii et rel.

Outgrouping clostridium cluster XIVa

Oxalobacter formigenes et rel.
Papillibacter cinnamivorans et rel.

Parabacteroides distasonis et rel.

Peptococcus niger et rel.

Peptostreptococcus micros et rel.

Phascolarctobacterium faecium et rel.

Prevotella melaninogenica et rel.Prevotella oralis et rel.
Prevotella ruminicola et rel.

Prevotella tannerae et rel.

Propionibacterium

Proteus et rel.

Pseudomonas

Roseburia intestinalis et rel.
Ruminococcus bromii et rel.

Ruminococcus callidus et rel.

Ruminococcus gnavus et rel.

Ruminococcus lactaris et rel.

Ruminococcus obeum et rel.

Serratia

Sporobacter termitidis et rel.

Staphylococcus

Streptococcus bovis et rel.

Streptococcus intermedius et rel.

Streptococcus mitis et rel.

Subdoligranulum variable at rel.

Sutterella wadsworthia et rel.

Tannerella et rel.

Uncultured Bacteroidetes

Uncultured Chroococcales

Uncultured Clostridiales I
Uncultured Clostridiales II

Uncultured Mollicutes

Uncultured Selenomonadaceae
Veillonella

Vibrio

Weissella et rel.

Wissella et rel.

Xanthomonadaceae

Yersinia et rel.
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MDS plot for discovery data with C_1

Next, we want to compare this plot with MDS visualisations on the validation data. In the example for
inferental clustering above, we embedded the validation data points into the projection space defined by
the PCA on the discovery data. Embedding procedures are also possible for MDS. However, as written in
the paper, this would not be informative in the case of descriptive clustering, as the points (here: bacterial
groups) would be identical. We thus perform MDS anew for the validation data.

We start with method-based validation, where we want to indicate the cluster memberships as given by
Cmd

2 in the MDS plot. As above, we would like to match the clusters of Cmd
2 to those of C1, to ensure that

“corresponding” clusters have the same colours and shapes in both plots. Since the clusters were generated
with hierarchical clustering, the centroid matching that we used in the above example for inferential clustering
is not necessarily appropriate here. Instead, we recall from the stability analysis that cluster 2 and 4 are
perfectly matched, and that clusters 1 and 3 of Cmd

2 roughly “correspond” to clusters 1 and 3 of C1. That is,
we do not have to rename the clusters in Cmd

2 .
mds_valid = cmdscale(diss_mat_valid, k = 2, eig = TRUE)
valid_data_plot = as.data.frame(mds_valid$points)
valid_data_plot$C_2_md = as.factor(C_2_md)
valid_data_plot$C_2_tf = as.factor(C_2_tf)

ggplot(valid_data_plot, aes(V1, V2)) +
geom_point(aes(colour = C_2_md, shape = C_2_md)) + xlim(-0.45, 0.45) + ylim(-0.4, 0.4) +
labs(title = "MDS plot for validation data with C_2^md")
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MDS plot for validation data with C_2^md

Similar patterns can be seen as in the plot for the discovery data. Optionally, taxa labels or numbers could
be displayed to see how the positions of the taxa have shifted on the validation data.

Again, we consider the MDS plot for the validation data, but this time cluster colours and shapes are indicated
according to Ctf

2 = C1.
ggplot(valid_data_plot, aes(V1, V2)) +

geom_point(aes(colour = C_2_tf, shape = C_2_tf)) + xlim(-0.45, 0.45) + ylim(-0.4, 0.4) +
labs(title = "MDS plot for validation data with C_2^tf = C_1")
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As we could already see in the stability analysis, the comparison of the two plots for the validation data
shows that cluster 1 of Cmd

2 contains some taxa that were previously sorted into cluster 3 of C1.

3.5 External validation
Finally, we use external validation to evaluate our results. Our aim was to cluster the bacterial genus-like
groups into higher-level clusters. The taxonomy table of our phyloseq objects contains external information
on such higher-level groups, namely the grouping into taxonomic families and - several levels above - into
taxonomic phyla. We can thus check whether our clustering on the discovery data aligns with the partition
into families and phyla, and whether this can be replicated on the validation data. For the latter, we only
perform method-based validation, i.e., compare Cmd

2 with C1. Result-based validation does not make sense
here, as Ctf

2 = C1.
labels = tax_table(discov_phyloseq)
# the taxonomy table is the same for the validation data

# agreement with the partition into families:
adjustedRandIndex(C_1, as.numeric(as.factor(labels[,2])))

## [1] 0.2264815
adjustedRandIndex(C_2_md, as.numeric(as.factor(labels[,2])))

## [1] 0.2541615
# agreement with the partition into phyla:
adjustedRandIndex(C_1, as.numeric(as.factor(labels[,1])))

## [1] 0.1535982
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adjustedRandIndex(C_2_md, as.numeric(as.factor(labels[,1])))

## [1] 0.1432907

Overall, our clusterings are notably different from the partitions into families and phyla, although the
agreement is better than chance. The ARI values are similar for both discovery and validation data.

3.6 Summary
In this example, the clusterings on discovery and validation data had similarities, but also some differences
with respect to cluster membership. This could also be seen in the MDS plots. Regarding internal and
external validation, the clusterings showed similar quality. External validation indicated that bacterial genera
from different families and phyla were grouped together, and might possibly interact with each other. Of
course, more thorough analyses would be required to further examine such hypotheses.

4 Visual validation plots for the Iris data
Here we focus on visual validation and use the Iris dataset (Anderson 1935) as a simple toy example to
generate principal components plots, cluster heatmaps and silhouette plots.

First, load the necessary packages. To install the ComplexHeatmap package, you have to use the BiocManager
package.
# library(BiocManager)
# BiocManager::install("ComplexHeatmap")

library(ggplot2)
library(ggfortify)
library(gridExtra)
library(ComplexHeatmap)
library(cluster)
library(factoextra)

The Iris dataset is already contained in R. We remove the species labels, then shuffle and scale the data.
There are 150 flower samples, and four variables were measured for each sample: sepal length, sepal width,
petal length and petal width.
set.seed(123)
iris2 = iris[,1:4]
iris2 = iris2[sample(nrow(iris2)),]
iris2 = as.data.frame(scale(iris2))
head(iris2)

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 14 -1.86378030 -0.1315388 -1.5056946 -1.4422448
## 50 -1.01843718 0.5567457 -1.3357516 -1.3110521
## 118 2.24217198 1.7038865 1.6665739 1.3128014
## 43 -1.74301699 0.3273175 -1.3923993 -1.3110521
## 150 0.06843254 -0.1315388 0.7602115 0.7880307
## 148 0.79301235 -0.1315388 0.8168591 1.0504160

We split the dataset into discovery and validation sets, where we split along the samples (because our goal is
inferential clustering of the flower samples). As we have already shuffled the dataset, we can choose the first
75 samples as discovery set and the remaining samples as the validation set.
discov_data = iris2[1:75,]
valid_data = iris2[76:150,]
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Now we apply k-means clustering with k = 3 and 10 random starts to the discovery set. We reorder the label
names of the resulting clustering such that cluster 1 is the first cluster on the left hand side in the PCA plot
below.
cluster_kmeans_discov = kmeans(discov_data, centers = 3, nstart = 10)
C_1 = cluster_kmeans_discov$cluster

C_1_renamed = C_1
C_1_renamed[C_1 == 1] = 2
C_1_renamed[C_1 == 2] = 1
C_1_renamed[C_1 == 3] = 3
C_1 = C_1_renamed

centroids_discov = cluster_kmeans_discov$centers[c(2, 1, 3),]

We also apply k-means clustering to the validation data to yield Cmd
2 . In the present example, we will only

compare C1 to Cmd
2 (method-based validation), and will not consider Ctf

2 (result-based validation).
cluster_kmeans_valid = kmeans(valid_data, centers = 3, nstart = 10)
C_2_md = cluster_kmeans_valid$cluster
centroids_valid = cluster_kmeans_valid$centers

Now we calculate the PCA for the discovery data:
discov.pca = prcomp(discov_data)

We want to compare the PCA plot for the discovery data with the PCA plot for the validation data. As
in the example involving the Wisconsin breast cancer dataset above, we will plot the validation dataset on
the projection space defined by the discovery dataset. Thus we project the validation data onto the PCs of
discov.pca via scaling and rotating.
valid_scale = scale(valid_data, center = discov.pca$center)
valid_projection = valid_scale %*% discov.pca$rotation
valid.pca = discov.pca
valid.pca$x = valid_projection

When we compare C1 to Cmd
2 with the PCA plots, we want the colours of the clusterings to match. We use

the same strategy as for the Wisconsin breast cancer example: to match the clusters of Cmd
2 to the clusters

of C1, we calculate the distances between the cluster centroids with the proxy package.
library(proxy)
rownames(centroids_valid) = c("C_2_md: clust 1", "C_2_md: clust 2", "C_2_md: clust 3")
rownames(centroids_discov) = c("C_1: clust 1", "C_1: clust 2", "C_1: clust 3")

proxy::dist(centroids_valid, centroids_discov)

## C_1: clust 1 C_1: clust 2 C_1: clust 3
## C_2_md: clust 1 2.8315445 0.5149277 2.3656479
## C_2_md: clust 2 3.8153211 1.3702816 0.5359275
## C_2_md: clust 3 0.2905475 3.1705558 4.0137996

We rename the cluster labels of Cmd
2 according to the cluster correspondence with C1.

C_2_md_renamed = C_2_md
C_2_md_renamed[C_2_md == 1] = 2
C_2_md_renamed[C_2_md == 2] = 3
C_2_md_renamed[C_2_md == 3] = 1

Now we can display the PCA plots for C1 vs. Cmd
2 , using the ggfortify package. As before, samples are
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coloured according to their cluster membership, and ellipses are drawn around the centers of the clusters (see
ggplot2::stat_ellipse() for details).
discov_data$clust = as.factor(C_1)

valid_data$clust_md = as.factor(C_2_md_renamed)

p1 = autoplot(discov.pca, data = discov_data, colour = "clust",
group_by = "clust", frame = TRUE, frame.type = "t",
main = "discovery data") + xlim(-0.25, 0.25) + ylim(-0.35, 0.35)

p2 = autoplot(valid.pca, data = valid_data, colour = "clust_md",
group_by = "clust_md", frame = TRUE, frame.type = "t",
main = "validation data") + xlim(-0.25, 0.25) + ylim(-0.35, 0.35) +

labs(x = "PC1", y = "PC2")
p_pca = grid.arrange(p1, p2, ncol=2)
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It can be seen that the first cluster is notably separated from the other two clusters along the first principal
component. Clusters 2 and 3 show some overlap. This is similar for both discovery and validation data.

Using the package ComplexHeatmap, we generate the cluster heatmaps. For discovery and validation sets
separately, the samples are first ordered by cluster membership according to the k-means clustering. Next,
for each individual cluster in turn, hierarchical clustering is applied to the samples in the respective cluster to
generate a dendrogram, resulting in three dendrograms overall. These dendrograms are connected by a parent
dendrogram (left to the dashed line), which is generated based on the centroids of the three clusters. Here,
because cluster 1 is more dissimilar to the other two, it is split from clusters 2 and 3 right at the head of the
parent dendrogram, while clusters 2 and 3 are split one level below. After the samples have been ordered in
this way, the variable values are indicated by colours.
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For more details, see ?ComplexHeatmap::Heatmap and Chapter 2 in the package reference manual: https:
//jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap.html
library(circlize)
col_fun = colorRamp2(c(-2.3, 0, 2.3), c("blue", "white", "red"))

p1 = grid.grabExpr(draw(Heatmap(as.matrix(discov_data[,1:4]),
name = "Iris", col = col_fun, row_split = discov_data$clust,
show_row_names = FALSE, row_dend_width = unit(2.5, "cm"),
cluster_columns = FALSE,
column_title = "discovery data")))

p2 = grid.grabExpr(draw(Heatmap(as.matrix(valid_data[,1:4]),
name = "Iris", col = col_fun, row_split = valid_data$clust_md,
show_row_names = FALSE, row_dend_width = unit(2.5, "cm"),
cluster_columns = FALSE,
column_title = "validation data")))

p_heatmap = grid.arrange(p1, p2, ncol=2)
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Again, this visualizes the difference of the first cluster to the other two clusters: For both discovery and
validation data, cluster 1 is marked by higher values of sepal width and lower values of sepal length, petal
length and petal width.

Finally, we use the factoextra package to generate the silhouette plots to compare C1 and Cmd
2 . This

is an alternative to using plot(cluster::silhouette()) as we did for the breast cancer example above.
The principle remains the same: The samples are sorted first by their cluster membership, and then by the
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magnitude of their silhouette values. Here, the clusters are marked by the same colours as in the PCA plot.
The overall average silhouette widths are indicated by red dashed lines.
sil_discov = cluster::silhouette(as.numeric(discov_data$clust), dist(discov_data[,1:4]))
sil_valid = cluster::silhouette(as.numeric(valid_data$clust_md), dist(valid_data[,1:4]))

p1 = fviz_silhouette(sil_discov) + labs(title = "discovery data")

## cluster size ave.sil.width
## 1 1 23 0.63
## 2 2 29 0.41
## 3 3 23 0.32
p2 = fviz_silhouette(sil_valid) + labs(title = "validation data")

## cluster size ave.sil.width
## 1 1 26 0.68
## 2 2 24 0.33
## 3 3 25 0.40
p_silh = grid.arrange(p1, p2, ncol = 2)
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Cluster 1 generally has higher silhouette values than clusters 2 and 3, indicating that cluster 1 is more
cohesive and separated than the other two. Again, this is similar for both discovery and validation data. On
the discovery dataset, cluster 2 has a slightly higher average silhouette width than cluster 3; on the validation
dataset, it is the other way around.
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Abstract

In recent years, unsupervised analysis of microbiome data, such as microbial network anal-

ysis and clustering, has increased in popularity. Many new statistical and computational

methods have been proposed for these tasks. This multiplicity of analysis strategies poses a

challenge for researchers, who are often unsure which method(s) to use and might be

tempted to try different methods on their dataset to look for the “best” ones. However, if only

the best results are selectively reported, this may cause over-optimism: the “best” method is

overly fitted to the specific dataset, and the results might be non-replicable on validation

data. Such effects will ultimately hinder research progress. Yet so far, these topics have

been given little attention in the context of unsupervised microbiome analysis. In our illustra-

tive study, we aim to quantify over-optimism effects in this context. We model the approach

of a hypothetical microbiome researcher who undertakes four unsupervised research tasks:

clustering of bacterial genera, hub detection in microbial networks, differential microbial net-

work analysis, and clustering of samples. While these tasks are unsupervised, the

researcher might still have certain expectations as to what constitutes interesting results.

We translate these expectations into concrete evaluation criteria that the hypothetical

researcher might want to optimize. We then randomly split an exemplary dataset from the

American Gut Project into discovery and validation sets multiple times. For each research

task, multiple method combinations (e.g., methods for data normalization, network genera-

tion, and/or clustering) are tried on the discovery data, and the combination that yields the

best result according to the evaluation criterion is chosen. While the hypothetical researcher

might only report this result, we also apply the “best” method combination to the validation

dataset. The results are then compared between discovery and validation data. In all four

research tasks, there are notable over-optimism effects; the results on the validation data

set are worse compared to the discovery data, averaged over multiple random splits into dis-

covery/validation data. Our study thus highlights the importance of validation and replication
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in microbiome analysis to obtain reliable results and demonstrates that the issue of over-

optimism goes beyond the context of statistical testing and fishing for significance.

Author summary

Microbiome research focuses on communities of microbes, for example, those living in

the human gut. To identify the structure of such communities, constructing microbial

networks that represent associations between different microbes has become popular. The

microbial associations are often further analyzed by applying cluster algorithms, i.e.,

researchers try to find groups (clusters) of microbes that are strongly associated with each

other. Likewise, researchers are also interested in finding clusters of samples that are simi-

lar in bacterial compositions, often referred to as enterotypes. To produce broader and

more reliable insights, networks and clustering results that have been constructed based

on one specific dataset should generalize to other datasets as well. However, this may be

compromised by the large number of statistical methods available for network learning

and clustering. Due to uncertainty about which method to use, researchers might try mul-

tiple approaches on their dataset and pick the method which yields the “best” result (e.g.,

the network that has the highest number of strongly connected microbes). When many

such methods are tried, the “best” method may be overly fitted to the specific dataset at

hand, and the result may not generalize to new data. Our study demonstrates such over-

optimism effects and gives recommendations for detecting and/or avoiding over-

optimistic bias. We aim to generate greater awareness around this issue and to increase

reliability of future microbiome studies.

This is a PLOS Computational BiologyMethods paper.

1 Introduction

The popularity of microbiome research has surged in recent decades. Many hypotheses about

the human microbiome, as well as the microbiome of other species or in various environ-

ments, are postulated and tested each year. At the same time, new statistical and computational

methods for analyzing microbiome data are continually introduced. Microbiome analysis has

yielded exciting results, leading to high hopes for new treatment and prevention options in

medicine [1, 2].

In such a fast-moving and promising research field, validation is of vital importance to

ensure the reliability of new results. Yet such practices may sometimes be neglected in favor of

chasing new hypotheses. There is a certain danger of over-optimism in the field: New and excit-

ing results might turn out to be non-replicable, i.e., they cannot be confirmed in studies with

independent data. While a discussion about validation and replication has emerged in micro-

biome research in recent years [3, 4], it is not as advanced as in other fields such as psychology,

where the so-called “replication crisis” has received considerable attention [5]. There is a lack

of studies which illustrate the validation process in microbiome analysis and quantify over-

optimism and (non)replicability. In particular, scant attention has been given to these topics in

relation to unsupervisedmicrobiome data analysis, e.g., network analysis and clustering.
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In the present paper, we take a step toward filling this gap. We illustrate how over-optimism

can arise in unsupervised microbiome analysis using four unsupervised “research tasks” as

examples: clustering bacterial genera, finding hubs in microbial networks, differential network

analysis, and clustering samples. The underlying idea is to model the approach of a “hypotheti-

cal researcher” who has these research tasks in mind and is confronted with a variety of meth-

ods to choose from. Due to uncertainty about the appropriate method to apply in the present

case, the researcher might be tempted to try different analysis strategies and pick the “optimal

result” for each task. We quantify the over-optimistic bias that can arise out of choosing the

“best” method in this way, by validating the optimized results on validation data (which we

will define shortly). Our primary interest does not lie in any of the four specific research tasks,

but rather in demonstrating the importance of validation and the necessity of avoiding ques-

tionable research practices. Through this illustrative study, we aim to raise awareness for these

topics in microbiome analysis.

We now explain our usage of the terms “over-optimism”, “validation”, and “replication”.

Broadly speaking, over-optimism may result from two sources ofmultiplicity: a) multiplicity of

(tested) hypotheses or b) multiplicity of analysis strategies. It is well known thatmultiple testing
(i.e., testing multiple hypotheses on a dataset) can lead to false-positive results due to the accu-

mulation of the type I-error probability. Such problems may appear in microbiome research,

e.g., when testing many associations of microbiome-related variables with health-related vari-

ables and only reporting the significant results [3]. However, even when considering only a

single hypothesis, themultiplicity of analysis strategies [6]—which we focus on in this paper—

may lead to varied results and the potential for selectively reporting only the best ones.

Researchers must make several choices about their analysis strategy (a mechanism known as

“researcher degrees of freedom”, [7]), including data preprocessing (e.g., normalization) and

statistical analysis in a narrower sense. Often, multiple analysis strategies are possible and sen-

sible, which leads tomethod uncertainty [8] because it is not necessarily clear which analysis

choice is the best one. In microbiome analysis, for example, a large number of methods for

estimating and analysing microbial association networks exists [9], from which the researcher

must choose.

In such situations, there is a temptation for the researcher to try different methods and then

pick the one that yields the best result. This approach might be considered sensible: Finding

the “best” method for the data appears to be a natural goal. However, when the number of

tried methods is high, there is a substantial danger of “overfitting” the analysis to the present

dataset. The best-performing method might thus perform well on the data currently used, but

perhaps not as well on a validation dataset due to sampling variability—in other words, the

optimized result cannot be (fully) validated or replicated on the validation data. Here, we

define “replication” as applying the same methods of a study to new data [4]; see [10] for a

more extensive discussion of the concept of replication. “Validation”, as we use it, is a broader

term: A result is reappraised on a validation dataset, which may be either genuinely new data,

or a dataset obtained by splitting the original data into two parts (discovery and validation

data) [11]. We use the latter approach in our study.

The connection between the multiplicity of analysis strategies and over-optimism is occa-

sionally mentioned in the literature, mostly in relation to significance testing [12]. For exam-

ple, it is well known that trying different analysis choices can make it easier to find a

statistically significant result [7, 13]. If the researcher does this in an intentional manner (i.e.,

tweaking the analysis choices sequentially until a “significant” p-value is reached), this is called

p-hacking [14]. However, over-optimistic bias might also appear without conscious “hacking”:

A researcher may try different methods with the best intentions but then proceed to selective
reporting (reporting only the method that yields the best result). Additionally, such effects do
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not only pertain to significance testing, but may appear whenever the result of a statistical anal-

ysis is quantified (e.g., with a performance measure or an index value).

In this paper we focus on over-optimism in the context of unsupervised microbiome analy-

sis, outside of the classical setting of significance testing. We illustrate the over-optimistic

effects caused by the multiplicity of analysis strategies in combination with selective reporting,

as quantified by the subsequent validation of the optimistic results. As exemplary data, we use

OTU count data from the American Gut Project (AGP) obtained with 16S amplicon sequenc-

ing [15]. It is well known that technical variation in amplicon sequencing (e.g., batch effects

with respect to different labs or different machines) or using different methods for clustering

sequences to obtain OTUs may lead to variation in the generation of the OTU count data and

the results of subsequent statistical analysis [4, 16–18]. In the present work, however, we focus

on the multiplicity of the statistical analysis methods (starting from the processed OTU count

table), which has received somewhat less attention than multiplicity stemming from different

technical methods. Recently, some studies have highlighted that different statistical analysis

methods or modeling strategies may yield inconsistent results, namely in the context of micro-

biome-disease association modeling [19], microbiome differential abundance methods [20],

and analyzing microbiome intervention design studies [21]. In contrast to these studies, a) we

focus on the multiplicity of unsupervised statistical methods, i.e., methods for network learning

and clustering, and b) our main goal is not to compare the results of different methods, but

rather to quantify over-optimism effects that stem from picking the “best” result. The range of

the statistical methods we consider includes 1) normalization to make read counts comparable

across samples and to account for compositionality (if required by the subsequent analysis

steps), 2) estimation of microbial networks, sample networks, and (dis)similarity matrices, and

3) methods to further process the network/(dis)similarity information such as clustering.

The key idea of our illustrative study consists of splitting the whole dataset into a discovery

and a validation set, trying out different methods for each of these three analysis steps on the

discovery data, choosing the combination of methods that yields the best result on the discov-

ery data according to an evaluation criterion, and applying this combination to the validation

data to check whether the evaluation criterion takes a similar value. Fig 1 gives an overview of

this approach, which we now describe in more detail.

We use four exemplary “research tasks” to illustrate the effects of the multiplicity of analysis

strategies. Imagine a researcher who wishes to perform an unsupervised analysis of micro-

biome data. Even though the analysis is unsupervised and might be performed for exploratory

purposes, the researcher usually has some hopes for the results. While these expectations could

be vague at first, the researcher might eventually focus on a concrete evaluation criterion that

represents these hopes in order to judge the results. The researcher tries different statistical

methods and chooses the method that yields the best result according to the evaluation crite-

rion. We now detail the four research tasks, the hopes that our hypothetical researcher might

have, and the concrete evaluation criteria they might use (and which we therefore choose for

our illustrative study):

1. Clustering of bacterial genera: Bacterial genera can be clustered based on their associa-

tions such that highly associated genera are likely to belong to the same cluster. Hence, the

assignment of two genera to the same cluster indicates shared variation over the samples,

which in turn might suggest a shared functionality. We assume that the hypothetical

researchers hopes to find a clustering of bacterial genera that yields good agreement with

the taxonomic categorization of the genera into families. As concrete evaluation criterion,

we choose the Adjusted Rand Index (ARI, [22]), a measure for comparing two partitions,

normalized for chance agreement. The ARI ranges in [−1, 1], with higher values indicating
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higher similarity of the partitions. In this research task, one partition is given by the cluster-

ing as calculated by the researcher, the other one by the taxonomic categorization of the

genera into families. The higher the ARI (i.e., the closer to 1), the more similar the calcu-

lated clustering is to the taxonomic categorization, which indicates a “better” clustering.

While it is typically not realistic to find a clustering that is perfectly aligned with the taxo-

nomic categorization (i.e., where the ARI is equal to 1), some agreement with the taxonomy

is often considered as a good property of a bacterial clustering [23]. While we perform the

clustering at the genus level, the same logic would apply at any taxonomic level. This

remark also holds for the other research tasks.

2. Hub detection: A researcher might hope to find a microbial network with interesting key-

stone taxa (also called “microbial hubs”), i.e., highly connected taxa which are assumed to

have a strong impact on the rest of the network. Detecting and analyzing keystone taxa in

order to better understand microbial interactions has become popular in recent years [24–

26]. Taxa that are identified as hubs based on network centrality measures (see Section 4.3.2

Fig 1. Graphical overview of our study. The process of drawing 50 samplings of discovery and validation data is repeated for different sample sizes: n
2 {100, 250, 500, 1000, 4000} for tasks 1 and 2, n 2 {100, 250, 500} for task 3, and n 2 {100, 250, 500, 1000, 3500} for task 4.

https://doi.org/10.1371/journal.pcbi.1010820.g001
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for details) are not automatically biologically important keystone taxa [25]. Still, hub detec-

tion can serve as a starting point to carry out further analyses about the role of the detected

hubs [27]. For example, a recent study [28] analyzed microbiome data from aquatic envi-

ronments where many microbes are “unknown taxa”, i.e., uncharacterized. The authors

generated microbial networks and performed hub detection. Frequently, the detected

hubs were unknown taxa, which in turn serves to prioritize these specific taxa for further

analyses.

In our illustrative example, we assume that our hypothetical researcher is interested in gen-

erating as many interesting hypotheses and directions for further research as possible.

Therefore, we assume that the researcher chooses a method that yields a relatively high

number of hubs, to maximize the “hubbiness” of the network. Thus, the number of hubs is

used as the concrete evaluation criterion. Of course, other criteria to choose an “interesting”

network with hubs are also feasible.

3. Differential network analysis: Microbiome researchers are often interested in the effects of

treatments, such as antibiotics, on the gut microbial community (see, e.g., [29, 30] for back-

ground). When generating microbial association networks for two groups (one for persons

who did not take antibiotics in the last year, and one for persons who took antibiotics in the

last month), a researcher might expect that the networks (as proxies for microbial commu-

nity structure) potentially change. As concrete evaluation criterion we measure the dissimi-

larity between the networks with the Graphlet Correlation Distance (GCD) between the

networks [31]. The method that yields the largest GCD between the two networks is chosen.

The GCD has been used in previous studies to compare microbial networks [32–34].

4. Clustering of samples: The three previous research tasks are all based on associations

between microbes. In contrast, the fourth task focuses on similarities between samples
(individuals). The goal is to find a clustering of samples such that samples within the same

cluster have a similar bacterial composition, while the composition differs between samples

of different clusters. This task is inspired by the popular concept of “enterotypes”. In 2011, a

study [35] argued that individuals can be clustered into three distinct groups which repre-

sent different gut microbiome types (enterotypes). Whether enterotypes truly exist (and if

they do, how many there are) has since become a topic of controversial discussion [36–40].

Some studies have already noted that using different methods for clustering the samples

(e.g., different methods for calculating the similarities between the samples) may lead to dif-

ferent enterotype results [37, 41]. However, to the best of our knowledge, the relation

between the multiplicity of analysis strategies and over-optimism has not yet been explicitly

studied. For this exemplary research task, we assume that the hypothetical researcher is

interested in finding enterotypes in the AGP dataset. As concrete evaluation criterion, we

use the Average Silhouette Width (ASW [42]). The ASW is a cluster validation index that

measures the homogeneity as well as the separation of the clusters. The index ranges in [−1,

1], with higher values indicating a better clustering. The ASW has been previously used in

enterotype studies to evaluate the quality of sample clusterings [35, 37, 41].

For each of the four research tasks, we imitate our “hypothetical researcher” by trying dif-

ferent methods (i.e., methods for estimating microbial networks, calculating similarities

between samples, and/or clustering) and looking for the best result. The hypothetical

researcher might stop at this point, and only report the best result according to the respective

criterion. In contrast, we are interested in whether the best result can be confirmed on valida-
tion data: The result obtained by the “best” method on the discovery data (i.e., the “best” ARI,

number of hubs, GCD, or ASW, respectively) is compared with the result obtained by this
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method on the validation data. The discovery and validation datasets are obtained by ran-

domly sampling two disjoint subsets from the full AGP dataset, a process which is repeated

multiple times.

Note that our analysis serves only illustrative purposes to study over-optimism effects. It is

not our aim to systematically evaluate or compare the chosen method combinations. More-

over, we do not claim that researchers typically apply multiple methods to a dataset as system-

atically as we do this here, nor that they “optimize” for the best method with malicious intent.

Nevertheless, during a longer research process, researchers will often try multiple methods on

a dataset, and even if this happens with the best intentions, it might still cause over-optimism

effects.

So far, we have spoken of imitating the behavior of a single hypothetical researcher or

research team. Our study might also be interpreted as modeling the behavior ofmultiple
research teams. Each team tries a different analysis strategy and only the team with the “best”

result is able to publish their findings (e.g., due to publication bias).

We present the results of our analysis in Section 2. Section 3 contains a discussion. In Sec-

tion 4, we give a detailed overview of the exemplary dataset, our study design, and the different

statistical methods that we applied to the discovery data.

2 Results

2.1 Quantifying over-optimism effects

For each research task, we drew discovery and validation sets (each with sample size n) of vary-

ing sizes: n 2 {100, 250, 500, 1000, 4000} for the first two research tasks, n 2 {100, 250, 500} for

the third research task, and n 2 {100, 250, 500, 1000, 3500} for the fourth research task. For the

third task, the maximal sample size was reduced due to the required information about antibi-

otics usage. For the fourth task, the maximal sample size was 3500 instead of 4000 because

only samples from adults were kept for the analysis. More details are given in Section 4.2.

For each n, the process of drawing discovery and validation sets was repeated 50 times. As

sampling variability decreases with increasing n, the performances of a method on both dis-

covery and validation data should become more and more similar. We thus expected over-

optimistic effects to decrease with increasing n.

For each research task, we applied multiple method combinations to the discovery data. For

the first three research tasks which were based on microbial associations, this involved normal-
ization methods (clr [43], mclr [44], and VST [45]), association estimation (Pearson correla-

tion, Spearman correlation, latentcor [46], SPRING [44], and proportionality [47]),

sparsification (t-test, threshold method, and neighborhood selection), and, for the first research

task, clustering (hierarchical clustering, spectral clustering [48], fast greedy modularity optimi-

zation [49], the Louvain method for community detection [50], and manta [51]). For the

fourth research task where samples were clustered based on their similarities, we applied nor-
malization methods (clr, mclr, and VST), similarity calculation (Aitchison distance [52],

Euclidean distance, compositional Kullback-Leibler divergence (cKLD) [53], and Bray-Curtis

dissimilarity [54]), sparsification (threshold method, K-nearest neighbors), and clustering
(Dirichlet multinomial mixtures (DMM) [55], spectral clustering, partitioning around

medoids (PAM) [56], fast greedy modularity optimization, and the Louvain method for com-

munity detection). Detailed descriptions of the combinations are given in Section 4.3.

Supplementary figures in the Supporting Information S1, S2, S3 and S4 Text show the

results of applying the different method combinations to the discovery data for the varying

sample sizes (task 1: Fig A-J in S1 Text, task 2: Fig A-E in S2 Text, task 3: Fig A-C in S3 Text,

task 4: Fig A-J in S4 Text). Notably, there is some change in the selected “best” method
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combination with respect to sample size. In particular, the performance of the sparsification

methods is dependent on the sample size. These results are discussed in detail in S1, S2, S3 and

S4 Text.

Our main interest lies in choosing the method combination that yields the maximum value

of the evaluation criterion (ARI, number of hubs, GCD, and ASW) on the discovery data,

applying it to the validation data, and checking whether the values of the evaluation criteria

can be validated. Over-optimism is indicated if the value of the evaluation criterion is lower on

the validation data compared to the result on the discovery data. Exemplary results for n = 250

are shown in Fig 2 (research tasks 1 & 2) and Fig 3 (research tasks 3 & 4). The corresponding

figures for all other sample sizes n are given in the Supporting Information (task 1: Fig K-O in

S1 Text, task 2: Fig F-J in S2 Text, task 3: Fig D-F in S3 Text, task 4: Fig K-O in S4 Text).

Fig 2. Research tasks 1 & 2: For n = 250, values of the evaluation criteria resulting from the “best” method combinations

on the discovery data are compared to the corresponding results on the validation data. On the x-axis, the method

combinations that performed best in at least one of the 50 samplings are shown. For each of the 50 samplings, the value of the

evaluation criterion on the discovery data (belonging to the best method combination) and the corresponding value on the

validation data are connected by a line, resulting in 50 lines overall. As the lines are slightly transparent, overlapping lines

appear in a darker shade. a) ARI values for the task of clustering bacterial genera, b) numbers of hubs for the hub detection

task.

https://doi.org/10.1371/journal.pcbi.1010820.g002
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On the x-axis, only the method combinations that performed best in at least one of the 50

samplings are shown (that is, not all tried method combinations; the method combinations

that did not perform best in at least one of the samplings do not appear in the plot because

these were never applied to the validation data). For each sampling, the value of the evaluation

criterion on the discovery data (belonging to the best method combination) and the corre-

sponding value on the validation data are connected by a line. For the first and fourth task, the

dots representing the ARI/ASW values are colored according to the number k of clusters in

the respective clustering result. Details about the procedures for determining k are given in

Sections 4.3.1 and 4.3.4. For the other two research tasks, the results are shown as red squares

for the discovery data and black dots for the validation data.

Fig 3. Research tasks 3 & 4: Analogously to Fig 2 (see the description there), values of the evaluation criteria are compared

between discovery and validation data for n = 250. a) GCD values for the differential network analysis task, b) ASW values

for the task of clustering samples.

https://doi.org/10.1371/journal.pcbi.1010820.g003
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The lines point downwards in most cases, i.e., the results for the validation data are usually

slightly worse than for the discovery data. This indicates over-optimism effects. To further

quantify these effects, Table 1 (tasks 1 & 2) and Table 2 (tasks 3 & 4) show the mean, median,

and standard deviation of the difference as well as the scaled difference between the value of

the evaluation criterion on the validation data and the value on the discovery data (over the 50

samplings of discovery/validation data). While it might be interesting to test the differences

between discovery and validation data for significance (to assess whether the results on the

Table 1. For research tasks 1 and 2: Mean, median, and standard deviation (over 50 samplings of discovery/validation data) of the difference (both unscaled and

scaled) between the value of the evaluation criterion on the validation data and the corresponding value on the discovery data. Additionally, the effect size (mean

divided by standard deviation) is reported.ARIdiscov denotes the best ARI on the discovery data andARIvalid the ARI resulting from the corresponding method combination

on the validation data. The quantities #hubsdiscov, #hubsvalid (number of hubs) are defined analogously.

Research task 1: clustering of bacterial genera

ARIvalid − ARIdiscov ARIvalid � ARIdiscov
ARIdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.054 -0.046 0.044 -1.22 -30.0% -26.7% 24.1% -1.24

250 -0.039 -0.035 0.046 -0.84 -22.0% -21.8% 26.3% -0.84

500 -0.038 -0.037 0.038 -1.01 -21.4% -20.6% 21.6% -0.99

1000 -0.042 -0.035 0.037 -1.13 -23.7% -20.1% 20.3% -1.16

4000 -0.035 -0.033 0.035 -1.00 -19.0% -18.3% 18.8% -1.01

Research task 2: hub detection

#hubsvalid − #hubsdiscov hubsvalid � hubsdiscov
hubsdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -2.44 -3 2.35 -1.04 -21.6% -24.0% 21.3% -1.02

250 -2.18 -2 1.78 -1.22 -20.5% -20.0% 16.5% -1.24

500 -2.12 -2 1.88 -1.13 -20.8% -20.0% 17.9% -1.16

1000 -1.64 -2 1.52 -1.08 -16.3% -18.2% 15.4% -1.06

4000 -1.12 -1 1.32 -0.85 -11.5% -11.1% 13.8% -0.83

https://doi.org/10.1371/journal.pcbi.1010820.t001

Table 2. For research tasks 3 and 4: Mean, median, and standard deviation (over 50 samplings of discovery/validation data) of the difference (both unscaled and

scaled) between the value of the evaluation criterion on the validation data and the corresponding value on the discovery data. Additionally, the effect size (mean

divided by standard deviation) is reported. GCDdiscov denotes the largest GCD on the discovery data and GCDvalid the GCD resulting from the corresponding method com-

bination on the validation data. The quantities ASWdiscov, ASWvalid (average silhouette width) are defined analogously.

Research task 3: differential network analysis

GCDvalid − GCDdiscov GCDvalid � GCDdiscov
GCDdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.481 -0.463 0.829 -0.58 -25.0% -30.0% 55.5% -0.45

250 -0.555 -0.516 0.856 -0.65 -26.7% -52.8% 72.5% -0.37

500 -0.305 -0.417 0.605 -0.50 -18.6% -45.1% 63.5% -0.29

Research task 4: clustering of samples

ASWvalid − ASWdiscov
ASWvalid � ASWdiscov

ASWdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.055 -0.043 0.088 -0.63 -20.0% -22.6% 35.0% -0.57

250 -0.036 -0.027 0.065 -0.55 -18.3% -16.0% 36.8% -0.50

500 -0.020 -0.017 0.041 -0.48 -10.6% -10.1% 24.7% -0.43

1000 -0.019 -0.002 0.039 -0.48 -11.2% -1.6% 25.5% -0.44

3500 -0.010 -0.010 0.017 -0.58 -7.2% -8.0% 13.3% -0.54

https://doi.org/10.1371/journal.pcbi.1010820.t002
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validation data are “significantly worse”), a suitable procedure for that purpose has not yet

been proposed, to the best of our knowledge, and would need to be explored in further work.

For cluster analysis, challenges related to this issue have been recently discussed [11]. Instead

of calculating p-values, we report the “effect size” (mean divided by standard deviation) in

Tables 1 and 2.

As expected, the means and medians of the differences are negative for all four research

tasks and all sample sizes, demonstrating that the results on the discovery data were somewhat

over-optimistic. The effect sizes (mean divided by standard deviation) are notable for all

research tasks, albeit slightly smaller for the third and fourth research task. We now discuss the

behavior of the average differences over the varying sample sizes n in more detail for each

research task in turn.

Research task 1 (clustering of bacterial genera): The average absolute decline of the ARI on

the validation data is not drastic, but when considering the scaled difference, the ARI is

reduced on the validation data by about 20–30% on average. Note that the absolute value of

the mean/median ARI difference (both unscaled and scaled) is largest for n = 100, and smallest

for n = 4000. This fits with our previously mentioned hypothesis that over-optimism effects

are less pronounced when n is large. However, between 100 and 4000, there is no clear linearly

decreasing tendency in the absolute mean/median ARI differences. Moreover, there is no clear

tendency with respect to the effect sizes.

Research task 2 (hub detection): The absolute values of the means and medians of the differ-

ences tend to decrease with increasing sample size. Again, this fits with our hypothesis that the

over-optimistic bias decreases with increasing n. This tendency also largely holds for the effect

sizes, although the absolute value of the effect size is slightly larger at n = 250 compared to

n = 100, due to the larger standard deviation at n = 100.

Research task 3 (differential network analysis): The absolute values of the means and medi-

ans do not monotonically decrease with increasing n: for n = 250, these are slightly larger than

for n = 100. This is perhaps due to the fact that the sampling variability is still rather large at

n = 250. At n = 500, however, the over-optimism effect appears to decrease, as evidenced by

the drops in the absolute values of the average differences (both unscaled and scaled). For even

higher sample sizes, we would expect to see a continuing decline of the over-optimistic bias,

although we cannot confirm this due to the limited data availability.

Research task 4 (clustering of samples): Similar to the first research task, the average absolute

decline of the evaluation criterion (here, the ASW) on the validation data is not drastic. When

considering the relative decline, the ASW values decrease on the validation data by about 20%

on average for smaller sample sizes. Over-optimistic bias tends to be less pronounced for larger

sample sizes. With respect to the median differences and effect sizes, the bias slightly increases

again at the largest sample size of n = 3500, but the mean and median differences are quite

small.

We not only analyzed the relation of over-optimistic bias with the sample size, but also

expected over-optimistic bias to decrease if fewer method combinations were tried. To investi-

gate this hypothesis, we repeated our analyses with a reduced number of method combina-

tions: five instead of 58 for the first research task, three instead of 14 for the second and third

research tasks, and five instead of 31 for the fourth research task. The chosen subsets of combi-

nations as well as the results are described in detail in the Supporting Information S5 Text.

The means and medians of the differences mostly remain negative for the different research

tasks and sample sizes (indicating that some over-optimistic bias still exists), but as expected,

the absolute values of the mean/median differences as well as the effect sizes tend to be smaller.

This supports our hypothesis that over-optimistic bias is more pronounced the more method
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combinations are tried. Of course, the exact amount of over-optimistic bias still depends on

the chosen (subset of) method combinations.

2.2 Additional stability analyses

While our main focus was to compare the “best” result on the discovery data to the corre-

sponding result on the validation data (with respect to the evaluation criteria), we also report

some additional stability results for the first two research tasks to further demonstrate that the

methods do not necessarily yield stable results on discovery vs. validation data. For the task of

clustering bacterial genera, we compared the clusterings on discovery vs. validation data with

the ARI (while the agreement with the taxonomic categorization was ignored). This measure is

denoted as ARIstab. The results are reported in Table 3. For the hub detection task, we com-

pared the sets of hubs on discovery vs. validation data with the Jaccard index (on the genus

level) and cosine similarity index (on the family level), as reported in Table 4. The indices are

described in more detail in Section 4.3.

For the clustering task, Table 3 shows that for smaller sample sizes, the mean ARIs are

rather far away from 1, which indicates notable differences between the clusterings of the bac-

teria based on discovery vs. validation data. The clusterings tend to become more similar with

increasing sample size, but even for n = 4000, the mean ARI of about 0.8 indicates that the

clusterings are still different to some extent. This shows that the chosen clustering on the dis-

covery data is not necessarily stable regarding cluster memberships when the result is validated

on the validation data.

For the hub detection task, Table 4 demonstrates that the sets of hubs can be quite different

between discovery and validation data, as measured with the Jaccard index (which ranges

between 0 and 1). For smaller sample sizes, the similarity is particularly small. The Jaccard val-

ues increase with increasing sample size, but even at n = 4000, a mean value of about 0.7 shows

that there are still notable dissimilarities between the sets of hubs. For the similarity on family

Table 3. Mean, median, and standard deviation of ARIstab, i.e., the ARI between the clusterings of bacterial genera

on discovery and validation data, over 50 samplings of discovery/validation data.

ARIstab
n mean median sd

100 0.361 0.329 0.111

250 0.509 0.491 0.166

500 0.604 0.574 0.168

1000 0.600 0.568 0.166

4000 0.763 0.792 0.140

https://doi.org/10.1371/journal.pcbi.1010820.t003

Table 4. Mean, median, and standard deviation (over 50 samplings of discovery/validation data) of a) the Jaccard index which compares the set of hubs obtained on

the discovery data with the set of hubs on the validation data, and b) the cosine similarity which compares these sets of hubs, but on the level of families.

Jaccard Cosine similarity

n mean median sd mean median sd

100 0.236 0.250 0.109 0.881 0.911 0.112

250 0.359 0.357 0.119 0.922 0.955 0.078

500 0.443 0.429 0.116 0.948 0.969 0.060

1000 0.546 0.538 0.139 0.946 0.974 0.068

4000 0.709 0.727 0.147 0.975 0.984 0.026

https://doi.org/10.1371/journal.pcbi.1010820.t004
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level, we expected higher values (given that two hubs from the same family which differ on the

genus level are counted as not equal for the Jaccard index and as equal for the cosine similar-

ity). Indeed, the values of the cosine similarity (which ranges between -1 and 1), are generally

quite high. Therefore, if one only interprets the hubs on family level (e.g., with respect to typi-

cal functions of the bacterial families), there is less danger of instability between discovery and

validation data, compared to an interpretation on genus level.

We repeated the stability analyses with reduced numbers of tried methods combinations as

described in the previous section. The results are reported in the Supporting Information S5

Text. Overall, the stability results are rather similar to the ones obtained with the full sets of

method combinations.

3 Discussion

We have quantified over-optimism effects resulting from the multiplicity of analysis strate-

gies coupled with selective reporting, using four exemplary microbiome research questions.

Our results indicate an over-optimistic bias for all four research tasks. That is, when choos-

ing the “best” method on the discovery data according to the maximization of an evaluation

criterion, this criterion then tends to attain lower (“worse”) values on the validation data

when the same method is applied. The exact size of the over-optimistic bias depends on the

research task and sample size. Generally speaking, the over-optimistic bias tends to be more

pronounced at smaller sample sizes, although the relation between sample size and optimis-

tic bias is not always strictly monotonically decreasing in our analyses. Moreover, the over-

optimistic bias also depends on the number of tried method combinations. When we

tried fewer combinations, we still detected some over-optimistic bias, but the bias was less

pronounced.

Additional stability analyses for the first two research tasks have illustrated that clustering

solutions and sets of hubs—which have been yielded by a method on discovery data—do not

necessarily remain stable when the same method is applied to validation data.

In summary, our study has demonstrated that the issue of over-optimism and instability of

results goes beyond the context of statistical testing and fishing for significance, and pertains

to unsupervised analysis strategies as well.

The number of tried method combinations in the analyses with all combinations (58 for the

clustering of bacterial genera, 14 for hub detection and differential network analysis, 31 for the

clustering of samples) may seem quite large for a single researcher to attempt. However, we

would argue that these numbers are not that unrealistic. The method combinations are not

independent of each other. Rather, the combinations are obtained by varying methods along

the analysis pipeline (e.g., the type of sparsification). Modern software packages make it very

easy to quickly switch from one method choice to another. Moreover, as mentioned in the

introduction, our study might also be interpreted as modeling the behavior ofmultiple
research teams. Large public datasets, such as the AGP data, are studied by many researchers.

While a single researcher or research team might only try a few analysis strategies, the strate-

gies tried by multiple teams could sum up to a much larger number.

In order to quantify over-optimism, we deliberately split a single dataset into two parts

instead of using an independent dataset as validation data. With the latter approach, we could

not have determined whether worse performance on the validation data indeed stemmed from

the multiplicity of analysis strategies combined with selective reporting (which is the focus of

our work), or was simply due to substantial differences between discovery and validation data

(e.g., different populations). Of course, beyond the context of our study, using external data is

generally important to check the validity and generalizability of results.
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A constraint of our study is that for each research task in turn, we translated expectations of

the “hypothetical researcher” into a single fixed evaluation criterion. Of course, researchers

might have various expectations and thus multiple criteria in mind. On the one hand, it is

likely more difficult for researchers to find a result that is simultaneously good with respect to

multiple criteria, thus potentially reducing over-optimism effects. On the other hand, consider-

ing multiple criteria might allow researchers to pick one or a few criteria based on obtaining

good results. This constitutes another source of multiplicity (adding to the sources of multi-

plicity considered in the present study), which in turn might increase over-optimistic bias. It

would be interesting to analyze the effects of considering multiple criteria in future work.

Over-optimism can lead to unreliable results and might ultimately hinder research prog-

ress. We now discuss some strategies which may help researchers avoid over-optimistic bias in

their application studies.

As illustrated by our analyses with a reduced number of method combinations, over-opti-

mistic bias tends to decrease if fewer methods are tried. Therefore, the first option is to reduce

the multiplicity of analysis strategies before the start of the analysis. Researchers should care-

fully consider which method is most suitable for their application. Here, guidance from neutral
comparison studies can be relevant. Such studies compare existing methods (instead of intro-

ducing a novel method), and the authors of the study are neutral, i.e., they do not have a vested

interest in a particular method showing better performance than the others and are as a group

approximately equally familiar with all considered methods. We refer to [57, 58] for a more

detailed discussion of this concept. It would be desirable if more neutral comparison studies

were published in the context of methodological research on microbiome analysis. For exam-

ple, two recent studies already provide such a welcome effort in the context of microbial differ-

ential abundance testing [20, 59], and guidelines for benchmarking microbiome analysis

methods have been proposed as well [60].

An additional strategy is preregistration of the researchers’ analysis plan. Preregistering

refers to defining the research hypotheses and analysis plan, and posting this plan to a registry,

before observing the results. This concept has gained plenty of attention in recent years [61].

Once their analysis plan is registered, researchers might shy away from trying many other

analysis strategies and selectively reporting only the best results.

However, preregistration might not always be possible or sensible: for example, in explor-

atory research, researchers typically cannot pin down the exact analysis strategy in advance,

and trying out different methods sequentially is quite natural [4]. Indeed, unsupervised analy-

sis methods, on which we have focused in our study, are often used for exploratory purposes.

In such cases, when the multiplicity of analysis strategies cannot be avoided, researchers

should honestly report that their study is exploratory and that multiple methods were tried.

They should not present their analyses as if a single analysis pipeline was fixed in advance, nor

should they report only the “best” results.

In general, we would advise researchers to use validation data to validate their results when-

ever possible. While we have included validation data in our study to quantify over-optimism

effects, researchers can also use validation data in their applied research, to check whether the

best results on the discovery data still hold on the validation data. This is particularly relevant

when the multiplicity of possible analysis strategies cannot be reduced beforehand, e.g., in the

absence of relevant neutral comparison studies for the methods of interest. For the topic of

cluster analysis(research tasks 1 and 4), different strategies for validating clustering results on

validation data have been previously discussed in detail [11]. More awareness for the impor-

tance of validation data has also emerged in microbiome research (see, e.g., in the context of

supervised analysis [62, 63] and large-scale cohort studies [64]). Using validation data does

not directly prevent over-optimism on the discovery data, but helps to detect over-optimistic

PLOS COMPUTATIONAL BIOLOGY Over-optimism in unsupervised microbiome analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010820 January 6, 2023 14 / 26



results. The evaluation on the validation data can be considered as a more realistic assessment

of the quality of the result, thus correcting for over-optimistic bias.

Sometimes, validation data is not available, e.g., because the dataset is too small to be

split into discovery and validation sets, and a suitable independent validation set does not

exist. For such cases, it would be interesting to find other indicators of potential over-

optimism. Researchers might check, for instance, whether the results from the different

tested methods coincide. Similarity of the results indicates robustness with respect to

method choice. However, lack of robustness does not automatically imply that the results

(or the “best” result) will also be over-optimistic, in the sense that they cannot be vali-

dated on validation data. Vice versa, if the results are robust, it is not entirely clear to

which extent this is an indicator of nonexistent or small over-optimistic bias (although a

reduced extent of over-optimism might be somewhat likely because obtaining very simi-

lar results would not allow researchers to pick a single result that is notably better than

the other ones). It might be interesting to study the relation between robustness and rep-

licability on validation data in further work.

The present study does not aim at systematically evaluating the performance of any chosen

method combination. In particular, we do not give recommendations about which methods to

use. In future research, it might be interesting to explore whether the design used in this study

could be adapted to method evaluation and comparison. More precisely, one might repeatedly

sample discovery and validation datasets as in our study, and evaluate methods based on

whether they a) have a good performance on the discovery data and b) have a similar perfor-

mance on the validation data, i.e., do not tend to overfit to the discovery data.

In summary, we hope that our study helps raise awareness of the important problem of

over-optimism in microbiome research, and that it motivates more widespread implementa-

tion of strategies to avoid over-optimistic bias. If researchers adhere to good research practices,

the results of microbiome analyses will likely become more reliable and replicable in the

future.

4 Materials and methods

4.1 Dataset

We used data from the American Gut Project [15], a large citizen-science initiative. The proj-

ect collected (mainly) fecal samples from participants in the United States, United Kingdom,

and Australia. The researchers also collected metadata on the participants, e.g., health status,

disease history, and lifestyle variables. Bacterial abundances were obtained using high-

throughput amplicon sequencing, targeting the V4 region of the 16S rRNA marker gene with

subsequent variant calling.

We downloaded an OTU count table for unrarefied bacterial fecal samples (dating from

2017) from the project website http://ftp.microbio.me/AmericanGut/ag-2017-12-04/, together

with metadata about the samples. The OTU count table originally contained p = 35511 OTUs

and N = 15148 samples. Following [23], we performed three preprocessing steps: 1) removing

samples with a sequencing depth of less than 10000 counts, 2) removing OTUs which were

present in less than 30% of the remaining samples, 3) removing 10% of the remaining samples,

namely the samples with a sequencing depth under the 10%-percentile. The resulting OTU

count table comprises p = 531 OTUs and N = 9631 samples.

For all four research tasks, the analysis was performed on the taxonomic rank of genera, to

which the data were agglomerated. OTUs with unknown genus were assigned their own indi-

vidual genus, which resulted in p = 323 genera overall.
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4.2 Sampling of discovery and validation datasets

We obtained discovery and validation datasets by randomly sampling two disjoint subsets

from the full AGP dataset. For each research task, the process of sampling discovery and vali-

dation data was performed along the samples of the AGP data (i.e., the subjects), not along the

bacteria. This is because in each task, the bacteria formed a fixed set of entities of specific inter-

est. This set thus remained constant for both discovery and validation data. For clustering, this

is discussed in more detail in [11].

Discovery and validation sets (each with sample size n) were drawn of varying sizes: n 2
{100, 250, 500, 1000, 4000} for the first two research tasks (clustering of bacterial genera and

hub detection), n 2 {100, 250, 500} for the third research task (differential network analysis),

and n 2 {100, 250, 500, 1000, 3500} for the fourth research task (clustering of samples). For dif-

ferential network analysis, the maximal sample size was reduced because we only considered

samples that did not take antibiotics in the last year as well as samples that took antibiotics in

the last month. There were 6901 samples that fulfilled these criteria. Moreover, the sampling

was stratified according to antibiotics use; for discovery and validation data each, we drew n/2

samples that did not take antibiotics in the last year and n/2 samples that took antibiotics in

the last month. Because there are only 544 persons who took antibiotics in the last month, the

maximum n is reduced to 500. For sample clustering, the maximum n is 3500 instead of 4000

because we only kept samples from adults between ages 20–65 (7145 samples overall). We

focused on this age group because previous studies have shown that the composition of the gut

microbiome varies across age [65–67], with potentially more extreme “enterotypes” in children

and the elderly [40, 68].

4.3 Methods for unsupervised microbiome analysis

In this section, we discuss which method combinations were applied to the discovery data, and

how the results were evaluated on the validation data.

4.3.1 Research task 1: Clustering bacterial genera. We varied different steps of the clus-

ter analysis process, resulting in 58 method combinations that were tried on the discovery

data. In this section we explain how the 58 combinations were obtained.

We used cluster algorithms from two categories. Algorithms from the first category are

based on (dis)similarity matrices: hierarchical clustering and spectral clustering [48]. Algo-

rithms from the second category are based on networks with weighted edges: fast greedy mod-

ularity optimization [49], the Louvain method for community detection [50], and the manta

algorithm [51].

To generate either (dis)similarity matrices or weighted networks, associations (rij)i,j
between the microbes must be calculated. Beforehand, often zero handling and normalization

of the data are required. Table 5 gives an overview of the method combinations used for calcu-

lating the associations rij for later use in (dis)similarity based clustering, i.e., for generating

(dis)similarity matrices which will later be used as input for hierarchical and spectral cluster-

ing. We used four different association measures. The first ones are the Pearson and Spearman

correlations, which require normalization to account for compositionality. Here we used

either the centered log-ratio transformation (clr, [43]), the modified clr transformation (mclr,

[44]), or the variance-stabilizing transformation (VST, [45]). As the clr and VST methods can-

not handle zeros in the count data, a pseudo count of 1 was added to the count data before nor-

malizing with these methods (mclr, on the other hand, can deal with zeros). Apart from the

Pearson and Spearman correlations, we used the semi-parametric rank-based correlation,

which is based on estimating the latent correlation matrix of a truncated Gaussian copula

model (latentcor, [46, 69]). Since the latentcor method requires normalized counts that are
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strictly non-negative, it was only combined with the mclr transformation. The final association

measure is proportionality [47, 70]. Proportionality is a compositionally aware method that

measures associations between log-ratio transformed variables [47]. We thus used the clr

transformation as proposed in [47] and replaced zero counts by a pseudo count.

Table 6 shows the method combinations used for calculating the associations rij for later

use in network-based clustering. That is, these methods were used for generating weighted net-

works. The method combinations are very similar to the methods in Table 5 for generating

(dis)similarity matrices. Indeed, weighted networks are also based on (dis)similarity matrices,

but the generation contains an additional sparsification step, as explained below. Again, the

Pearson and Spearman correlations were used with the respective normalization and/or zero

handling methods. We also used the SPRING method [44], which combines the latentcor cor-

relation estimation with sparse graphical modeling techniques, namely by using the neighbor-

hood selection technique [71] for sparse estimation of partial correlations. Finally, we used the

proportionality measure.

To generate a weighted network, the associations rij (which are usually different from zero)

were not directly used as an adjacency matrix—otherwise, the network would be dense. There-

fore, the associations rij were transformed into sparsified values r�ij by setting some r�ij to zero to

indicate that i and j are not connected, r�ij ¼ rij otherwise. For sparsification of the Pearson and

Table 6. Method combinations for generating weighted microbial association networks. The networks were used as input for fast greedy modularity optimization, Lou-

vain community detection, and manta.

Zero handling Normalization Association estimation Sparsification

pseudo clr Pearson t-test

pseudo clr Pearson threshold

pseudo VST Pearson t-test

pseudo VST Pearson threshold

none mclr Pearson t-test

none mclr Pearson threshold

pseudo clr Spearman t-test

pseudo clr Spearman threshold

pseudo VST Spearman t-test

pseudo VST Spearman threshold

none mclr Spearman t-test

none mclr Spearman threshold

none mclr SPRING neighborhood selection

pseudo clr proportionality threshold

https://doi.org/10.1371/journal.pcbi.1010820.t006

Table 5. Method combinations for generating microbial associations, which are then transformed into (dis)simi-

larity matrices. The (dis)similarity matrices were used as input for hierarchical and spectral clustering.

Zero handling Normalization Association estimation

pseudo clr Pearson

pseudo VST Pearson

none mclr Pearson

pseudo clr Spearman

pseudo VST Spearman

none mclr Spearman

none mclr latentcor

pseudo clr proportionality

https://doi.org/10.1371/journal.pcbi.1010820.t005
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Spearman correlations rij, we used either Student’s t-test or the threshold method. The former

sets r�ij ¼ 0 if the association rij is not significantly different from 0 according to the t-test. The

p-values were adjusted for multiple testing via the local false discovery rate [72]. For the thresh-

old method, we set r�ij ¼ 0 if rij< c for some fixed threshold value c (we use c = 0.15 which gave

reasonable results in preliminary analyses, not shown). For the proportionality measure, we

used threshold sparsification. SPRING already comes with inbuilt sparsification given by the

neighborhood selection method.

After calculating the associations as in Tables 5 and 6, they were then transformed as fol-

lows (the pipeline and notations are taken from [9]):

a. For (dis)similarity based clustering (Table 5): A dissimilarity matrix D = (dij) for hierarchi-

cal clustering is calculated via dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ð1 � rijÞ

q
. A similarity matrix S = (sij) for spectral

clustering is obtained by setting sij = 1 − dij.

b. For network-based clustering (Table 6): A weighted network is constructed as follows. For

the edges ij with r�ij 6¼ 0 (i.e., the edges that remain after sparsification), the distances dij and

similarities sij are calculated as in a). Finally, the weighted network is represented as an adja-

cency matrix A = (aij) with aij = sij for ij with r�ij 6¼ 0, and aij = 0 otherwise.

The (dis)similarity matrices and networks were then used as input for clustering. For hier-

archical and spectral clustering, we fixed the number of clusters at k = 10, which was inspired

by the ten different taxonomic classes in the data. Also, k = 10 tends to yield better ARI results

than ks lower than ten (preliminary analysis, not shown). ks higher than ten were not tried

because we aimed to emulate a researcher who wants to find an interpretable, handy clustering

(there are 34 different taxonomic families, but 34 clusters are not easily interpretable). The

other clustering algorithms all have inbuilt mechanisms for determining k. Forcing k to be 10

for these methods generally did not improve the results (not shown). However, k can be indi-

rectly influenced via the sparsification: The sparser the network, the more clusters tend to be

found. This is one of the reasons we set the threshold for threshold sparsification at c = 0.15

because this value generally yielded sufficiently high ks to find good results, but only rarely ks

that are so high that the clusters are difficult to interpret.

Overall, the method combinations yielded 58 different clustering results on the discovery

data: 16 based on (dis)similarity clustering (eight rows in Table 5 times two cluster algo-

rithms), and 42 based on network clustering (fourteen rows in Table 6 times three cluster algo-

rithms). The best one out of the 58 clustering results was chosen, i.e., the clustering with the

highest ARI regarding the taxonomic categorization into families. The corresponding method

combination was applied to the validation data. The ARI between the clustering on the valida-

tion data and the taxonomic categorization was computed and compared with the best ARI on

the discovery data. If the ARI on the validation data was lower, this was an indication that the

best ARI on the discovery data was over-optimistic.

As an additional stability analysis, we compared the chosen clustering on the discovery data

with the clustering on the validation data, again using the ARI.

4.3.2 Research task 2: Hub detection. Here, we wanted to generate sparse weighted

microbial association networks. For this purpose, we used the same methods as in Table 6.

Thus, 14 method combinations were tried on the discovery data.

For hub detection in the resulting networks, hubs were defined as nodes that have the high-

est degree, betweenness, and closeness centrality [25]. More precisely, we determined the hubs

as the nodes with centrality values above the 95% empirical quantile, for each of the three

centrality measures simultaneously. The centralities are defined as follows [73]: The degree
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centrality denotes the number of adjacent nodes. The betweenness centrality measures the frac-

tion of times a node lies on the shortest path between all other nodes. The closeness centrality

of a node is the reciprocal of the sum of shortest paths between this node and all other nodes.

All centrality measures were normalized to be comparable between networks of different sizes

(see [9] for details). The centralities were only calculated for the largest connected component

of each network (i.e., the largest subgraph of the network in which all nodes are connected);

centrality values of nodes in the disconnected component were set to zero. We assumed that

“hubs” in small parts of the network that are disconnected from the majority of the nodes are

of less interest to researchers. Moreover, the betweenness and closeness centrality depend on

shortest paths, which are not well-defined for nodes in different unconnected sub-graphs.

After applying the 14 method combinations and calculating the hubs for each resulting net-

work, the method combination that yielded the highest number of hubs was chosen. If there

were multiple method combinations that attained the maximal number of hubs, we chose the

combination that yielded higher mean centrality values of the hubs. More specifically, for each

set of hubs that corresponds to a method combination, the mean values of the three centrality

measures were calculated over the hubs. Then for each centrality measure separately, the sets

of hubs were ranked according to these mean values. Finally, the set of hubs (and thus the cor-

responding method combination) that yielded the highest mean rank over all three centrality

measures was chosen.

The “best” method combination was then applied to the validation data. The number of

hubs in the microbial network on the validation data was calculated and compared with the

highest number of hubs on the discovery data. Over-optimism was indicated if the number of

hubs was lower on the validation data.

Additionally, we reported the similarity of the sets of hubs determined on the discovery vs.

validation data with the Jaccard index [74]: letHdiscov,Hvalid be the sets of hubs for the discov-

ery resp. validation data, then

JaccðHdiscov;HvalidÞ ¼
jHdiscov \ Hvalidj

jHdiscov [ Hvalidj
:

The Jaccard index takes values in [0, 1], and is closer to 1 the more similar the sets are. The

similarity between the sets of hubs was also assessed on the higher taxonomic level of families

with the cosine similarity index. More precisely, assume that the hubs (genera) in the union

Hdiscov[Hvalid belong to l distinct families overall. Let f ðdÞ ¼ ðf ðdÞ1 ; . . . ; f ðdÞl Þ be the family fre-

quency vector forHdiscov, that is, each entry f ðdÞj counts how many hubs inHdiscov belong to

family j. Analogously, let f(v) be the family frequency vector forHvalid. The vectors f(d) and f(v)

are then compared with the cosine similarity index:

cos simðfðdÞ; f ðvÞÞ ¼
Pl

j¼1
f ðdÞj f ðvÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
j¼1
ðf ðdÞj Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl

j¼1
ðf ðvÞj Þ

2
q

The cosine similarity index ranges in [0, 1], with higher values indicating higher similarity.

4.3.3 Research task 3: Differential network analysis. As described in Section 4.2, the dis-

covery and validation datasets each consisted of two halves: persons who did not take antibiot-

ics in the last year (“non-antibiotics samples”), and persons who took antibiotics in the last

month (“antibiotics samples”). The methods for generating weighted microbial association

networks as in Table 6 were applied separately to the antibiotics and non-antibiotics samples

of the discovery data.

The resulting networks were compared with the Graphlet Correlation Distance (GCD,

[31]). This distance measures the similarity of the networks based on small induced subgraphs,

PLOS COMPUTATIONAL BIOLOGY Over-optimism in unsupervised microbiome analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010820 January 6, 2023 19 / 26



so-called graphlets. All graphlets composed of up to four nodes are considered, and the auto-

morphism orbits of these graphlets are enumerated (orbits represent the “roles” that nodes can

play in the graphlets). For each node in a given network, one can count how often the node

participates in each graphlet at the respective orbits. Only 11 non-redundant orbits are consid-

ered here. Based on these orbit counts across all nodes, the 11 × 11 Spearman correlation

matrix among the 11 orbits is calculated, which represents a robust and size independent net-

work summary statistics. For comparing two networks, the Spearman correlation matrix is cal-

culated for each network in turn. Then the Euclidean distance between the upper triangular

parts of these matrices is calculated, resulting in the GCD.

In our study, the network generation method that yielded the largest GCD between the

antibiotics network and the non-antibiotics network was chosen as the “best” one and applied

to the antibiotics and non-antibiotics samples in the validation data. Again, the resulting net-

works were compared with the GCD. If the GCD on the validation data was smaller (i.e., the

antibiotics vs. non-antibiotics networks were more similar than on the discovery data), this

indicated over-optimism.

4.3.4 Research task 4: Clustering of samples. Similar to the first research task, both

(dis)similarity-based and network-based cluster algorithms were applied to the discovery

data (resulting in 31 clusterings overall). In contrast to the first task, dissimilarities between

samples instead of microbes were calculated, and sample networks instead of microbial asso-

ciation networks were estimated (i.e., networks in which nodes correspond to samples, not

taxa).

We considered partitioning around medoids (PAM) [56] as well as spectral clustering as

instances of (dis)similarity-based clustering algorithms. We chose PAM since it has been fre-

quently used in enterotype studies [35, 37, 41, 68]. For this research task, we excluded hierar-

chical clustering because this algorithm frequently resulted in clusters with nearly all samples

contained in one cluster and only a few samples in other clusters (this phenomenon did not

occur to the same extent in the clustering of bacterial genera). Presumably, researchers would

be less interested in such clustering results.

From the category of network-based cluster algorithms, we chose fast greedy modularity

optimization and the Louvain method for community detection. The manta algorithm was not

chosen because it was explicitly developed for clustering taxa, not samples.

We also included clustering based on Dirichlet multinomial mixtures (DMM) [55]. In con-

trast to the cluster algorithms listed above, DMM does not require calculation of dissimilarities

between samples and can be applied directly to the microbial count matrix. The DMM method

has been used in several studies to detect enterotypes [55, 68, 75].

Table 7 presents the different methods for calculating dissimilarities (dij)i,j between the sam-

ples, which are then used as input for PAM and spectral clustering. We used the Aitchison dis-

tance [52] which is defined as the Euclidean distance between clr-transformed compositions.

We also combined the Euclidean distance with the VST and mclr normalization. Moreover,

Table 7. Method combinations for dissimilarity calculation. The dissimilarity matrices were used as input for PAM

and spectral clustering.

Zero handling Normalization Association estimation

pseudo clr Aitchison

pseudo VST Euclidean

none mclr Euclidean

pseudo fractions cKLD

none mclr Bray-Curtis

https://doi.org/10.1371/journal.pcbi.1010820.t007
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we applied the compositional Kullback-Leibler divergence (cKLD) [53]. The cKLD measure is

suitable for application on compositional data; thus, the counts are merely transformed into

fractions (relative abundances) before the measure is applied. Finally, we applied the Bray-

Curtis dissimilarity measure [54], which requires non-negative values as input and is therefore

combined with the mclr normalization.

The dissimilarities dij were scaled to [0, 1], resulting in values dscaleij (see [9] for details). The

scaled dissimilarities were used as input for PAM. Similarities sij for spectral clustering were

obtained by setting sij ¼ 1 � dscaleij .

For network-based clustering, the same methods for calculating dissimilarities as in Table 7

were used, but with an additional sparsification step. This is displayed in Table 8. The scaled

dissimilarities dscaleij were transformed into sparsified values d�ij, either with the threshold

method (by setting d�ij to 1, i.e., the maximum dissimilarity, if dscaleij > 0:85), or with the K-near-

est neighbor method (each node is connected to the K = 3 nodes with minimum dissimilarity;

if nodes i and j are not connected after this procedure, d�ij is set to 1). The weighted sample net-

work is then represented as an adjacency matrix A = (aij) with aij ¼ sij ¼ 1 � d�ij, with aij = 0

for sparsified edges.

DMM clustering, fast greedy modularity optimization, and Louvain commmunity detec-

tion all have inbuilt mechanisms for determining the number of clusters k. For PAM and spec-

tral clustering, we tried different values k 2 {2, 3, . . ., 10} and chose the k that maximized the

ASW of the clustering.

For calculating the ASW of a clustering, a corresponding dissimilarity matrix is required.

For most clustering results, we used the dissimilarity matrix that was calculated one step

before applying the cluster algorithm. The only exception are clustering results obtained by

DMM which does not require prior calculation of dissimilarities. We calculated the ASW

values for DMM clustering results based on the Bray-Curtis dissimilarity matrix since the

authors of the DMM method used this dissimilarity measure to visualize their clustering

results [55].

Overall, the considered method combinations led to 31 different clustering results on the

discovery data: one based on DMM clustering, ten based on (dis)similarity clustering (five

rows in Table 7 times two cluster algorithms), and 20 based on network clustering (ten rows in

Table 8 times two cluster algorithms). The method combination that yielded the clustering

with the highest ASW value was chosen and applied to the validation data, with over-optimis-

tic bias indicated by lower ASW values on the validation data.

Table 8. Method combinations for generating weighted sample networks. The networks were used as input for fast greedy modularity optimization and Louvain com-

munity detection.

Zero handling Normalization Association estimation Sparsification

pseudo clr Aitchison threshold

pseudo clr Aitchison K-NN

pseudo VST Euclidean threshold

pseudo VST Euclidean K-NN

none mclr Euclidean threshold

none mclr Euclidean K-NN

pseudo fractions cKLD threshold

pseudo fractions cKLD K-NN

none mclr Bray-Curtis threshold

none mclr Bray-Curtis K-NN

https://doi.org/10.1371/journal.pcbi.1010820.t008
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4.4 Technical implementation

All analyses were performed with R, version 4.0.4 and Python, version 3.6.13. Our fully repro-

ducible code is available at https://github.com/thullmann/overoptimism-microbiome. (Dis)

similarity matrices and weighted networks were generated with the R package NetCoMi [9].

Spectral clustering was performed with a previously published R implementation [23]. For fast

greedy modularity optimization and the Louvain method for community detection, we used

the R package igraph [76]. For clustering with manta, we accessed the Python implementation

[51] with the reticulate interface for R [77]. We used the R package cluster [78] for PAM clus-

tering, and the R package DirichletMultinomial [79] for DMM clustering. Orbit counts for the

calculation of the GCD were generated with the R package orca [80].
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S1: Full results and plots for research task 1 (cluster-

ing of bacterial genera)
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Fig A-E show the results of applying different clustering methods to the discovery data

for sample sizes n ∈ {100, 250, 500, 1000, 4000}. For each method combination on the

x-axis, the resulting ARIs, which measure agreement with the taxonomic categorization

into families, are summarized over the 50 samplings by boxplots. Outliers are indicated by

black crosses. Additionally, all results are shown as colored dots, with the color indicating

the number k of clusters in the respective clustering result. Results that were picked as

the “best result” in one of the 50 samplings are marked by red square edges. For the

network-based clustering methods with the networks generated by either the Pearson

or Spearman correlation, the results for t-test and threshold sparsification are displayed

together, i.e., 50*2 = 100 results are shown for these method combinations.

hierarchical spectral fast greedy modularity Louvain manta

−0.1

0.0

0.1

0.2

hi
er

ar
ch

, p
ea

rs
on

, c
lr

hi
er

ar
ch

, p
ea

rs
on

, V
S

T

hi
er

ar
ch

, p
ea

rs
on

, m
cl

r

hi
er

ar
ch

, s
pe

ar
m

an
, c

lr

hi
er

ar
ch

, s
pe

ar
m

an
, V

S
T

hi
er

ar
ch

, s
pe

ar
m

an
, m

cl
r

hi
er

ar
ch

, l
at

en
tc

or
, m

cl
r

hi
er

ar
ch

, p
ro

pr
, c

lr

sp
ec

tra
l, 

pe
ar

so
n,

 c
lr

sp
ec

tra
l, 

pe
ar

so
n,

 V
S

T

sp
ec

tra
l, 

pe
ar

so
n,

 m
cl

r

sp
ec

tra
l, 

sp
ea

rm
an

, c
lr

sp
ec

tra
l, 

sp
ea

rm
an

, V
S

T

sp
ec

tra
l, 

sp
ea

rm
an

, m
cl

r

sp
ec

tra
l, 

la
te

nt
co

r, 
m

cl
r

sp
ec

tra
l, 

pr
op

r, 
cl

r

fg
.m

od
ul

ar
, p

ea
rs

on
, c

lr

fg
.m

od
ul

ar
, p

ea
rs

on
, V

S
T

fg
.m

od
ul

ar
, p

ea
rs

on
, m

cl
r

fg
.m

od
ul

ar
, s

pe
ar

m
an

, c
lr

fg
.m

od
ul

ar
, s

pe
ar

m
an

, V
S

T

fg
.m

od
ul

ar
, s

pe
ar

m
an

, m
cl

r

fg
.m

od
ul

ar
, s

pr
in

g,
 m

cl
r

fg
.m

od
ul

ar
, p

ro
pr

, c
lr

lo
uv

ai
n,

 p
ea

rs
on

, c
lr

lo
uv

ai
n,

 p
ea

rs
on

, V
S

T

lo
uv

ai
n,

 p
ea

rs
on

, m
cl

r

lo
uv

ai
n,

 s
pe

ar
m

an
, c

lr

lo
uv

ai
n,

 s
pe

ar
m

an
, V

S
T

lo
uv

ai
n,

 s
pe

ar
m

an
, m

cl
r

lo
uv

ai
n,

 s
pr

in
g,

 m
cl

r
lo

uv
ai

n,
 p

ro
pr

, c
lr

m
an

ta
, p

ea
rs

on
, c

lr

m
an

ta
, p

ea
rs

on
, V

S
T

m
an

ta
, p

ea
rs

on
, m

cl
r

m
an

ta
, s

pe
ar

m
an

, c
lr

m
an

ta
, s

pe
ar

m
an

, V
S

T

m
an

ta
, s

pe
ar

m
an

, m
cl

r

m
an

ta
, s

pr
in

g,
 m

cl
r

m
an

ta
, p

ro
pr

, c
lr

A
R

I

number of 
clusters

2

3

4

5

6

7

8

9

10

>10

n = 100

Fig A. Results for clustering bacterial genera on the discovery data, n = 100

2



hierarchical spectral fast greedy modularity Louvain manta

−0.1

0.0

0.1

0.2

hi
er

ar
ch

, p
ea

rs
on

, c
lr

hi
er

ar
ch

, p
ea

rs
on

, V
S

T

hi
er

ar
ch

, p
ea

rs
on

, m
cl

r

hi
er

ar
ch

, s
pe

ar
m

an
, c

lr

hi
er

ar
ch

, s
pe

ar
m

an
, V

S
T

hi
er

ar
ch

, s
pe

ar
m

an
, m

cl
r

hi
er

ar
ch

, l
at

en
tc

or
, m

cl
r

hi
er

ar
ch

, p
ro

pr
, c

lr

sp
ec

tra
l, 

pe
ar

so
n,

 c
lr

sp
ec

tra
l, 

pe
ar

so
n,

 V
S

T

sp
ec

tra
l, 

pe
ar

so
n,

 m
cl

r

sp
ec

tra
l, 

sp
ea

rm
an

, c
lr

sp
ec

tra
l, 

sp
ea

rm
an

, V
S

T

sp
ec

tra
l, 

sp
ea

rm
an

, m
cl

r

sp
ec

tra
l, 

la
te

nt
co

r, 
m

cl
r

sp
ec

tra
l, 

pr
op

r, 
cl

r

fg
.m

od
ul

ar
, p

ea
rs

on
, c

lr

fg
.m

od
ul

ar
, p

ea
rs

on
, V

S
T

fg
.m

od
ul

ar
, p

ea
rs

on
, m

cl
r

fg
.m

od
ul

ar
, s

pe
ar

m
an

, c
lr

fg
.m

od
ul

ar
, s

pe
ar

m
an

, V
S

T

fg
.m

od
ul

ar
, s

pe
ar

m
an

, m
cl

r

fg
.m

od
ul

ar
, s

pr
in

g,
 m

cl
r

fg
.m

od
ul

ar
, p

ro
pr

, c
lr

lo
uv

ai
n,

 p
ea

rs
on

, c
lr

lo
uv

ai
n,

 p
ea

rs
on

, V
S

T

lo
uv

ai
n,

 p
ea

rs
on

, m
cl

r

lo
uv

ai
n,

 s
pe

ar
m

an
, c

lr

lo
uv

ai
n,

 s
pe

ar
m

an
, V

S
T

lo
uv

ai
n,

 s
pe

ar
m

an
, m

cl
r

lo
uv

ai
n,

 s
pr

in
g,

 m
cl

r
lo

uv
ai

n,
 p

ro
pr

, c
lr

m
an

ta
, p

ea
rs

on
, c

lr

m
an

ta
, p

ea
rs

on
, V

S
T

m
an

ta
, p

ea
rs

on
, m

cl
r

m
an

ta
, s

pe
ar

m
an

, c
lr

m
an

ta
, s

pe
ar

m
an

, V
S

T

m
an

ta
, s

pe
ar

m
an

, m
cl

r

m
an

ta
, s

pr
in

g,
 m

cl
r

m
an

ta
, p

ro
pr

, c
lr

A
R

I

number of 
clusters

2

3

4

5

6

7

8

9

10

n = 250

Fig B. Results for clustering bacterial genera on the discovery data, n = 250
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Fig C. Results for clustering bacterial genera on the discovery data, n = 500
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Fig D. Results for clustering bacterial genera on the discovery data, n = 1000
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Fig E. Results for clustering bacterial genera on the discovery data, n = 4000
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As can be seen in Fig A-E, the best ARI results stem either from hierarchical clustering,

the Louvain method or fast greedy modularity optimization. Spectral clustering and

manta are never selected. There is some change in the selected “best” methods with

respect to sample size. For example, for n = 100, fast greedy modularity clustering

performs well in several of the 50 samplings, but this cluster method does not yield very

good ARI results for n = 4000. At n = 4000, hierarchical clustering is chosen as the best

method in 45 of the 50 samplings.

In Fig F-J, results for the network-based clustering are shown separately for both sparsi-

fication methods (t-test and threshold). Results that were picked as the “best result” in

one of the 50 samplings are marked by red square edges.

fast greedy modularity Louvain manta
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Fig F. Results for network-based clustering of bacterial genera on the discovery data,
separated by sparsification methods, n = 100
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Fig G. Results for network-based clustering of bacterial genera on the discovery data,
separated by sparsification methods, n = 250
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Fig H. Results for network-based clustering of bacterial genera on the discovery data,
separated by sparsification methods, n = 500
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Fig I. Results for network-based clustering of bacterial genera on the discovery data,
separated by sparsification methods, n = 1000
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Fig J. Results for network-based clustering of bacterial genera on the discovery data,
separated by sparsification methods, n = 4000
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Our main interest lies in applying the “best” method to the validation data and checking

whether the ARI result can be validated. The results are shown in Fig K-O. On the

x-axis, the method combinations that were best in at least one of the 50 samplings are

shown. The ARI values are shown as colored dots, with the color indicating the number

k of clusters in the respective clustering result.

For each of the 50 samplings, the respective best method combination is applied to the

validation data. The ARI value on the discovery data (belonging to the best method

combination) and the corresponding ARI on the validation data are connected by lines.

The lines point downwards in most cases, i.e., the results for the validation data are

usually slightly worse than for the discovery data.
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Fig K. Best ARIs for the clustering of bacterial genera on the discovery data, compared
with the results on validation data, n = 100
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Fig L. Best ARIs for the clustering of bacterial genera on the discovery data, compared
with the results on validation data, n = 250
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Fig M. Best ARIs for the clustering of bacterial genera on the discovery data,
compared with the results on validation data, n = 500
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Fig N. Best ARIs for the clustering of bacterial genera on the discovery data, compared
with the results on validation data, n = 1000
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Fig O. Best ARIs for the clustering of bacterial genera on the discovery data, compared
with the results on validation data, n = 4000
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S2: Full results and plots for research task 2 (hub

detection)
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Fig A-E display the results of the hub detection applied to the discovery data. For each

method combination on the x-axis, the 50 results obtained from 50 different discovery

datasets are summarized as boxplots, indicating the number of detected hubs. Outliers

are marked by black crosses. Results that were picked as the “best result” in one of the

50 samplings are marked by red squares.
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Fig A. Results for hub detection on the discovery data, n = 100
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Fig B. Results for hub detection on the discovery data, n = 250
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Fig C. Results for hub detection on the discovery data, n = 500
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Fig D. Results for hub detection on the discovery data, n = 1000
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Fig E. Results for hub detection on the discovery data, n = 4000

There is not one single method combination that always yields the highest number of

hubs. At n = 100, the best results are often found by Pearson correlation with mclr

normalization, and Spearman correlation with VST or mclr normalization. With increas-

ing sample size, Pearson correlation with clr or VST normalization frequently yields high

number of hubs. As Fig D and Fig E show, for n = 1000 and n = 4000, sparsification

of the network with the t-test generally leads to lower number of hubs compared to spar-

sification with the threshold method. At these sample sizes, the threshold method has

a stronger sparsification effect than the t-test (given the chosen threshold of 0.15) and

sparser networks tend to have more hubs for the chosen hub definition.

We consider the results of applying the chosen method combinations to the validation

data. For each method combination that was chosen at least once as the “best” one,

Fig F-J display the number of hubs obtained by the method on the discovery data vs.

the number obtained by the same method on the validation data, where each square-

dot combination corresponds to one of the 50 samplings. The results on discovery and

validation data are connected by lines.
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Fig F. Highest numbers of hubs for the hub detection on the discovery data, compared
with the results on validation data, n = 100
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Fig G. Highest numbers of hubs for the hub detection on the discovery data, compared
with the results on validation data, n = 250
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Fig H. Highest numbers of hubs for the hub detection on the discovery data, compared
with the results on validation data, n = 500
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Fig I. Highest numbers of hubs for the hub detection on the discovery data, compared
with the results on validation data, n = 1000
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Fig J. Highest numbers of hubs for the hub detection on the discovery data, compared
with the results on validation data, n = 4000

The lines point downwards in the majority of the 50 samplings, indicating worse results

regarding the network’s hubbiness on the validation data.
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S3: Full results and plots for research task 3 (differ-

ential network analysis)
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Fig A-C show the results of the differential network analysis on the discovery data over

50 samplings. Boxplots summarize the GCDs between the microbial network based on

the non-antibiotics samples vs. the network based on the antibiotics samples. GCDs that

were picked as the “best” results are marked by red squares.
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Fig A. Results for differential network analysis on the discovery data, n = 100
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Fig B. Results for differential network analysis on the discovery data, n = 250

3



0

1

2

3

pe
ar

so
n,

 c
lr,

 t−
te

st
pe

ar
so

n,
 c

lr,
 th

re
sh

ol
d

pe
ar

so
n,

 V
S

T,
 t−

te
st

pe
ar

so
n,

 V
S

T,
 th

re
sh

ol
d

pe
ar

so
n,

 m
cl

r, 
t−

te
st

pe
ar

so
n,

 m
cl

r, 
th

re
sh

ol
d

sp
ea

rm
an

, c
lr,

 t−
te

st
sp

ea
rm

an
, c

lr,
 th

re
sh

ol
d

sp
ea

rm
an

, V
S

T,
 t−

te
st

sp
ea

rm
an

, V
S

T,
 th

re
sh

ol
d

sp
ea

rm
an

, m
cl

r, 
t−

te
st

sp
ea

rm
an

, m
cl

r, 
th

re
sh

ol
d

sp
rin

g,
 m

cl
r, 

N
B

 s
el

ec
tio

n
pr

op
r, 

cl
r, 

th
re

sh
ol

d

G
C

D
n = 500

Fig C. Results for differential network analysis on the discovery data, n = 500

Similar to hub detection, there is no superior method combination that always leads to

best results, i.e., highest GCD values. Notably, sparsification via t-test never leads to best

results for n = 100 and n = 250, but only for n = 500. However, a general trend cannot

be confirmed due to the limited sample size in this research task.

Fig D-F show the results of applying the best method combinations to the validation data

and compare these to the results on the discovery data. Over-optimism is indicated by

downward lines, which is the case in about 75% of the 50 samplings.
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Fig D. Largest GCDs for the differential network analysis on the discovery data,
compared with the results on validation data, n = 100
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Fig E. Largest GCDs for the differential network analysis on the discovery data,
compared with the results on validation data, n = 250
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Fig F. Largest GCDs for the differential network analysis on the discovery data,
compared with the results on validation data, n = 500

6



S4: Full results and plots for research task 4 (cluster-

ing of samples)
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L Best ASWs for the clustering of samples on the discovery data, compared

with the results on validation data, n = 250 . . . . . . . . . . . . . . . . . 9

M Best ASWs for the clustering of samples on the discovery data, compared

with the results on validation data, n = 500 . . . . . . . . . . . . . . . . . 10

N Best ASWs for the clustering of samples on the discovery data, compared

with the results on validation data, n = 1000 . . . . . . . . . . . . . . . . . 10

O Best ASWs for the clustering of samples on the discovery data, compared

with the results on validation data, n = 3500 . . . . . . . . . . . . . . . . . 11
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Fig A-E display the results of the sample clustering on the discovery data over 50 sam-

plings. The ASW results are summarized by boxplots and are additionally shown as

colored dots, with the color indicating the number k of clusters in the respective clus-

tering result. Results picked as the “best result” in one of the 50 samplings are marked

by red square edges. For the network-based clustering methods (fast greedy modularity

optimization and the Louvain method), the results for threshold and K-nearest neighbor

sparsification are displayed together, i.e., 50*2 = 100 results are shown for these method

combinations.
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Fig A. Results for clustering samples on the discovery data, n = 100
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Fig B. Results for clustering samples on the discovery data, n = 250
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Fig C. Results for clustering samples on the discovery data, n = 500
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Fig D. Results for clustering samples on the discovery data, n = 1000
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Fig E. Results for clustering samples on the discovery data, n = 3500
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Overall, the ASW values are not particularly large, indicating at best a moderate quality

of the clustering. Such results are not uncommon in enterotype research; for example, the

original study about enterotypes [1] reported ASW values that were less than or equal to

0.25. From a sample size of n = 250 upwards, the number of clusters is mostly chosen as

two or three, which fits with previous results from studies about enterotypes [1, 2, 3, 4].

Similar to the other three research tasks, there is not a single method combination that

always yields the best results. PAM, fast greedy modularity optimization and the Louvain

method are frequently chosen as the best clustering methods, often in combination with

the Bray-Curtis dissimilarity and mclr normalization. DMM clustering performs reason-

ably well for n = 100, but does not yield good ASW values for the other sample sizes.

Spectral clustering yields ASW values around zero for all sample sizes.

Fig F-J depict the results for the network-based clustering (fast greedy modularity opti-

mization and the Louvain method) separately for both sparsification methods (threshold

and K-nearest neighbors). Results that were picked as the “best result” in one of the 50

samplings are marked by red square edges. As the figures show, sparsification with the

threshold method leads to smaller numbers of clusters and to larger ASW values. The

threshold method has a weaker sparsification effect than the K-nearest neighbor method

(given the chosen threshold of 0.85 and the number of nearest neighbors set to K = 3),

and the cluster algorithms tend to find fewer clusters in denser (less sparse) networks.

Similar to the previous research tasks, this demonstrates that network sparsification can

have a notable effect on the final results.
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Fig F. Results for network-based clustering of samples on the discovery data, separated
by sparsification methods, n = 100
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Fig G. Results for network-based clustering of samples on the discovery data, separated
by sparsification methods, n = 250
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Fig H. Results for network-based clustering of samples on the discovery data, separated
by sparsification methods, n = 500
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Fig I. Results for network-based clustering of samples on the discovery data, separated
by sparsification methods, n = 1000
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Fig J. Results for network-based clustering of samples on the discovery data, separated
by sparsification methods, n = 3500

Fig K-O compare the ASW values resulting from the best method combinations on the

discovery data to the corresponding ASW values on the validation data. Lines that point

downwards indicate over-optimistic bias. For n = 100 and n = 250, this is the case in

about 75% of the 50 samplings, for n = 500 and n = 3500, in about 67% of the samplings,

and for n = 1000, in 54% of the samplings.
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S5: Analyses with a reduced number of method com-

binations

We expected over-optimistic bias to decrease if fewer method combinations were tried. To

investigate this hypothesis, we repeated our analyses with a reduced number of method

combinations: 5 instead of 58 for the clustering of bacterial genera, 3 instead of 14 for

hub detection and differential network analysis, and 5 instead of 31 for the clustering of

samples.

The subsets of method combinations were chosen as follows:

Research task 1 (clustering of bacterial genera): The method of association estimation was

fixed and only the type of cluster algorithm was varied (hierarchical clustering, spectral

clustering [1], fast greedy modularity optimization [2], Louvain community detection [3],

and manta [4]), leading to five method combinations overall. For (dis)similarity based

clustering, association estimation was performed with the semi-parametric rank-based

correlation (latentcor) [5, 6] combined with the mclr normalization. For network-based

clustering, we used the SPRING method [7], which combines the latentcor correlation

estimation with the neighborhood selection technique [8] for sparse estimation of partial

correlations. The latentcor and SPRING methods were chosen because they are the most

recently proposed methods and can be tentatively considered as “state of the art” among

compositionally aware association estimation methods.

Research task 2 (hub detection): We chose three method combinations for network gener-

ation that represent three different classes of association estimation: Pearson correlation

with clr normalization and sparsification via t-test (as an example of a simple method

based on classical correlation estimation), the SPRING method (as a more advanced

method that can estimate partial correlations), and the proportionality measure [9, 10]

with clr normalization and sparsification via threshold (as an alternative approach that

is not based on correlations).

Research task 3 (differential network analysis): The same three method combinations

that were used in hub detection were selected.

Research task 4 (clustering of samples): Analogously to the first research task, the method

for calculating dissimilarities between the samples was fixed and only the choice of cluster

algorithm was varied, resulting in five method combinations. For DMM clustering [11],

dissimilarities are not required. For the other cluster algorithms, dissimilarities were

calculated with the Aitchison distance [12] which is a very well-known and popular method

for this purpose. The dissimilarities were then used as input for PAM [13] and spectral

clustering. Moreover, clustering with fast greedy modularity optimization and Louvain

community detection was applied to the sparsified dissimilarities, where sparsification was

performed with the K-nearest neighbor method.
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The results are displayed in Tables A and B which have the same structure as Tables 1

and 2 in the main manuscript. They show the mean, median, and standard deviation

of the difference as well as the scaled difference between the value of the evaluation

criterion on the validation data and the value on the discovery data (over the 50 samplings

of discovery/validation data). Additionally, the effect sizes (mean divided by standard

deviation) are reported.

Research task 1: clustering of bacterial genera

ARIvalid −ARIdiscov
ARIvalid−ARIdiscov

ARIdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.024 -0.021 0.045 -0.53 -13.0% -15.7% 28.4% -0.46
250 -0.029 -0.012 0.051 -0.57 -15.9% -8.1% 29.7% -0.53
500 -0.019 -0.013 0.039 -0.49 -9.9% -8.6% 23.1% -0.43
1000 -0.030 -0.026 0.035 -0.86 -17.1% -16.3% 19.4% -0.88
4000 -0.014 -0.007 0.029 -0.48 -8.2% -4.3% 17.6% -0.47

Research task 2: hub detection

#hubsvalid −#hubsdiscov
#hubsvalid−#hubsdiscov

#hubsdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -1.72 -1 2.47 -0.70 -18.2% -14.3% 27.4% -0.66
250 -0.70 -0.5 2.22 -0.32 -4.8% -4.5% 25.9% -0.19
500 -0.62 -1 1.94 -0.32 -4.8% -9.5% 20.6% -0.23
1000 -0.78 -1 1.97 -0.40 -7.3% -11.1% 23.0% -0.32
4000 -0.90 -1 1.61 -0.56 -9.4% -11.1% 18.7% -0.50

Table A. For research tasks 1 and 2: Mean, median, and standard deviation (over 50
samplings of discovery/validation data) of the difference (both unscaled and scaled)
between the value of the evaluation criterion on the validation data and the
corresponding value on the discovery data. Additionally, the effect size (mean divided
by standard deviation) is reported. ARIdiscov denotes the best ARI on the discovery
data and ARIvalid the ARI resulting from the corresponding method combination on the
validation data. The quantities #hubsdiscov,#hubsvalid (number of hubs) are defined
analogously.

As Tables A and B show, the means and medians of the differences are negative for most

research tasks and sample sizes. The only exception can be seen for the scaled GCD

differences for the third research task; here, the means are all positive, indicating better

results on the validation data on average. However, the corresponding standard deviations

are large and the effect sizes are very small, indicating that the “improved” results on

the validation data should probably not be over-interpreted. More detailed analyses show

that the positive means are largely driven by a few outliers. Indeed, the median scaled

differences are still negative, as are the mean and median unscaled differences.

Overall, the results indicate that some over-optimistic bias still exists even if fewer method

combinations are tried. However, as expected, the absolute values of the mean/median

2



Research task 3: differential network analysis

GCDvalid −GCDdiscov
GCDvalid−GCDdiscov

GCDdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.063 -0.130 0.649 -0.10 11.6% -24.9% 101.2% 0.11
250 -0.213 -0.154 0.628 -0.34 3.3% -21.2% 101.4% 0.03
500 -0.066 -0.025 0.289 -0.23 0.7% -9.1% 71.6% 0.01

Research task 4: clustering of samples

ASWvalid −ASWdiscov
ASWvalid−ASWdiscov

ASWdiscov

n mean median sd mean/sd mean median sd mean/sd

100 -0.023 -0.017 0.068 -0.34 -9.8% -12.4% 41.0% -0.24
250 -0.011 -0.014 0.025 -0.45 -12.2% -20.0% 37.8% -0.32
500 -0.006 -0.005 0.017 -0.33 -6.3% -9.6% 33.2% -0.19
1000 -0.007 -0.005 0.013 -0.58 -12.3% -10.0% 25.0% -0.49
3500 -0.001 -0.002 0.010 -0.07 0.0% -5.9% 25.4% 0.00

Table B. For research tasks 3 and 4: Mean, median, and standard deviation (over 50
samplings of discovery/validation data) of the difference (both unscaled and scaled)
between the value of the evaluation criterion on the validation data and the
corresponding value on the discovery data. Additionally, the effect size (mean divided
by standard deviation) is reported. GCDdiscov denotes the largest GCD on the discovery
data and GCDvalid the GCD resulting from the corresponding method combination on
the validation data. The quantities ASWdiscov, ASWvalid (average silhouette width) are
defined analogously.

differences as well as the effect sizes tend to be smaller compared to Tables 1 and 2. Put

differently, over-optimistic bias is less pronounced if fewer method combinations are tried.

Of course, the exact amount of over-optimistic bias depends on the chosen (subsets of)

method combinations, i.e., the results might be slightly different when choosing different

subsets of methods.

Tables C and D show additional stability analyses for the first and second research task

based on the reduced number of tried method combinations, analogously to Tables 3 and

4 in the main manuscript. Overall, the index values are similar compared to Tables 3

and 4, i.e., the extent of stability remains roughly the same when reducing the number

of tried methods. For the second research task (hub detection), the Jaccard values are

somewhat smaller for the reduced number of tried methods at sample sizes of n = 100

and n = 4000. This might be explained by the following observation: at these sample

sizes, the SPRING method is more frequently selected in the setting with the reduced

number of methods combinations compared to the setting with the full set of method

combinations; at the same time, SPRING tends to yield lower stability values. However,

based on this limited analysis, we cannot determine whether SPRING generally tends to

produce more unstable results with respect to hub detection.
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ARIstab

n mean median sd

100 0.408 0.403 0.138

250 0.491 0.415 0.175

500 0.599 0.558 0.180

1000 0.620 0.587 0.177

4000 0.807 0.886 0.164

Table C. Mean, median, and standard deviation of ARIstab, i.e., the ARI between the
clusterings on discovery and validation data, over 50 samplings of discovery/validation
data.

Jaccard Cosine similarity

n mean median sd mean median sd

100 0.127 0.083 0.106 0.834 0.878 0.130

250 0.339 0.333 0.135 0.906 0.955 0.109

500 0.465 0.458 0.144 0.950 0.964 0.047

1000 0.539 0.545 0.134 0.945 0.967 0.062

4000 0.548 0.569 0.186 0.944 0.965 0.054

Table D. Mean, median, and standard deviation (over 50 samplings of
discovery/validation data) of a) the Jaccard index which compares the set of hubs
obtained on the discovery data with the set of hubs on the validation data, and b) the
cosine similarity which compares these sets of hubs, but on the level of families.
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Abstract
When researchers publish new cluster algorithms, they usually demonstrate the
strengths of their novel approaches by comparing the algorithms’ performance with
existing competitors. However, such studies are likely to be optimistically biased
towards the new algorithms, as the authors have a vested interest in presenting their
method as favorably as possible in order to increase their chances of getting published.
Therefore, the superior performance of newly introduced cluster algorithms is over-
optimistic and might not be confirmed in independent benchmark studies performed
by neutral and unbiased authors. This problem is known among many researchers,
but so far, the different mechanisms leading to over-optimism in cluster algorithm
evaluation have never been systematically studied and discussed. Researchers are thus
often not aware of the full extent of the problem. We present an illustrative study to
illuminate the mechanisms by which authors—consciously or unconsciously—paint
their cluster algorithm’s performance in an over-optimistic light. Using the recently
published cluster algorithm Rock as an example, we demonstrate how optimization
of the used datasets or data characteristics, of the algorithm’s parameters and of the
choice of the competing cluster algorithms leads to Rock’s performance appearing
better than it actually is. Our study is thus a cautionary tale that illustrates how easy
it can be for researchers to claim apparent “superiority” of a new cluster algorithm.
This illuminates the vital importance of strategies for avoiding the problems of over-
optimism (such as, e.g., neutral benchmark studies), which we also discuss in the
article.
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1 Introduction

Cluster analysis refers to grouping similar objects in data, while separating dissimilar
ones. While there already are a huge number of cluster algorithms (see e.g., Xu and
Wunsch (2010) for an overview), researchers continue to propose novel algorithms
every year. Researchers who introduce a new cluster algorithm typically publish it
together with a demonstration of the strengths of their approach and its superiority
over alternative methods.

However, the results of such studies should be regarded with caution. Publica-
tion bias (Boulesteix et al. 2015) constitutes a considerable external incentive for
researchers to demonstrate the superiority of their new approach: journals and confer-
ences aremuchmore likely to accept a paper about a novel computationalmethod if this
method shows good performance and is “better” than pre-existing approaches. This
may tempt researchers to present their method’s performance in an over-optimistic
fashion, a mechanism that is also called the “self-assessment trap” (Norel et al. 2011).
Such scenarios can not only appear in the research field of clustering but can also be
found in all types of methodological research, i.e., the development and evaluation of
data analytic techniques and algorithms (Boulesteix et al. 2020).

Over-optimization is not necessarily performed in a malicious or even intentional
manner, but it is problematic because the new method may turn out to have a worse
performance than initially claimed when it is later investigated in a neutral comparison
study, i.e., a study whose authors do not have a vested interest in one of the competing
methods, see Boulesteix et al. (2013). In other words, the good performance result is
not replicable (Boulesteix et al. 2020). Anecdotal evidence for this lack of replicability
is presented by Buchka et al. (2021) for a specific data analysis problem related to
the pre-processing of a special type of high-throughput molecular data. The over-
optimistic presentation of computational methods may lead to the usage of flawed
methods in applications, which could ultimately hinder research progress or even lead
to questionable results in applied research.

But how exactly may researchers present their new methods in an over-optimistic
fashion? For supervised classification, an illustrative case has already been presented
in the field of bioinformatics by Jelizarow et al. (2010). They considered a “promising”
novel classification method, which in reality was not superior to other classifiers. Yet
the authors were able to demonstrate that different mechanisms allow over-optimistic
presentation of this new method’s performance, namely choosing specific datasets,
optimizing the method’s settings and characteristics to these datasets while burying
the other in the file drawer, and choosing suboptimal competing classifiers.

However, to the best of our knowledge, such a study has not yet been conducted
for cluster analysis, i.e., the unsupervised scenario. While over-optimistic (selective)
reporting iswell understood in the context of statistical testing and supervised learning,
where its impact canbe easilymeasured, it ismuch less so in thefield of cluster analysis,
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which is characterized by the difficulty to properly evaluate methods. We thus aim at
filling this gap by demonstrating how a novel cluster algorithm’s performance can be
presented in an (overly) favorable light.

The problem of over-optimism is in fact as important in unsupervised clustering
as it is in supervised classification, and is probably even exacerbated because the per-
formance evaluation of cluster algorithms has not been studied as systematically as
the evaluation of supervised classifiers in the methodological literature. Guidance for
proper benchmarking of cluster algorithms has only recently emerged (Van Mechelen
et al. 2018). Even though the “true” cluster labels are unknown in clustering appli-
cations, researchers typically use datasets with known labels to evaluate their novel
cluster algorithms. To some extent, the performance evaluation of cluster algorithms
thus appears similar to the evaluation of classifiers. Yet for cluster analysis, the role
of test data is not as clear-cut as in supervised classification (Ullmann et al. 2021),
which entails that researchers are less aware that “overfitting” can not only happen in
supervised classification, but also in cluster analysis. Moreover, optimizing hyperpa-
rameters such as the number of clusters based on the “ground truth”, as is frequently
done in cluster algorithm evaluation, does not take into account that other researchers
who eventually want to use the algorithm in applications do not know the “true”
cluster labels of their datasets, and will thus likely obtain worse results than the per-
formances reported in the original evaluation of the novel algorithm. To evaluate their
new method, researchers might also use performance evaluation measures which do
not require a fixed “ground truth”, such as internal validation indices which measure
internal properties of the data (e.g., homogeneity and/or separateness of the clusters).
However, over-optimism can still be an issue when using these indices.

In the present study, we use the “Rock” algorithm (Beer et al. 2019) as an illustrative
example. Beer et al. (2019) agreed to the usage of their algorithm in our paper. Rock
was originally introduced as a “promising” new algorithm and was presented as being
able to outperform competitors. In subsequent studies, it turned out that Rock does not
generally perform better than its competitors. In the present paper, we show that Rock
outperforms competing algorithms in very specific scenarios and that these scenarios
can be obtained by three different mechanisms: (1.) optimization of datasets and data
characteristics, (2.) optimization of parameters of the Rock algorithm and (3.) the
choice of the competing clustering approaches. We demonstrate that if the optimized
scenarios are selectively reported and the settings in which Rock performs worse are
omitted, the algorithm then appears to outperform its competitors—as a result of an
over-optimistic presentation.

Rock is used only as an example—demonstrating the specific characteristics of the
Rock algorithm is not the main interest of our work. Rather, we use Rock to illustrate
more general mechanisms of over-optimization. We suspect that many studies which
introduce new cluster algorithms are affected by these mechanisms. However, given
that over-optimization can happen quite subtly and/or unintentionally, we do not cite
any published papers here which probably presented their results in an over-optimistic
fashion. Neither do we try to quantify the actual optimistic bias that currently exists in
the literature on cluster algorithms. Rather, our study is intended as a cautionary tale
to raise awareness of the over-optimism problem, and to illuminate the importance
of using strategies to avoid over-optimism (e.g., avoiding selective reporting, using
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independent test data and conducting neutral benchmark studies, as discussed in detail
in Sect. 6).

We first give an overview of related work in Sect. 2. Section 3 explains how we
performed optimization of Rock’s performance. The corresponding results are pre-
sented in Sect. 4 and further discussed in Sect. 5. Possible solutions for the problem
of over-optimism are outlined in Sect. 6. We conclude the paper in Sect. 7.

2 Related work

In this section we discuss studies that are related to our work. After presenting stud-
ies which directly look at the over-optimistic bias of new computational methods,
we address aspects in the field of data mining that are connected to over-optimistic
presentation of cluster algorithms.

2.1 Previous work about over-optimistic bias of new computational methods

There appears to be a lack of literature about over-optimism in the introduction of new
cluster algorithms. For computational methods other than clustering, there exist some
studies, to our knowledge mostly in the field of bioinformatics.

As mentioned above, a study similar to ours was previously reported by Jelizarow
et al. (2010), but for supervised classification. Moreover, while this study illustrated
over-optimism with a classification method for gene expression data and used real
cancer gene expression datasets for this purpose, our example is not application spe-
cific. For performance evaluation we choose simulated and real datasets which are
frequently used for the evaluation of cluster algorithms in computational research
(e.g., the synthetic “Two Moons” dataset, the Iris dataset etc., see Sect. 3).

Broadly speaking, the three categories of optimization mechanisms that we analyze
are similar to the categories previously considered in Jelizarow et al. (2010), i.e., opti-
mization of the data, optimization of the algorithm’s characteristics, and the choice of
competing approaches. However, the use of simulated data allows us to systematically
consider data characteristics such as noise or dimensionality, which was not done for
the real datasets used in Jelizarow et al. (2010).

In a similar application context, Yousefi et al. (2010) also addressed over-optimism
when reporting the performance of newly proposed classifiers. They focused on clas-
sification on high-dimensional data with low sample size, such as gene expression
data. The authors specifically considered the optimization of the datasets, i.e., they
analyzed the optimistic bias that results from reporting only the datasets with the
best (or second best) performance of the new classifier. They estimated this bias in
a simulation study, by repeatedly sampling sets of datasets, and recording the best
(or second best) performing dataset of each set. The aim of their study thus was to
quantify the optimistic bias with specific focus on the choice of datasets, whereas we
model different over-optimization mechanisms of a (hypothetical) researcher in an
illustrative way. The results of Yousefi et al. (2010) show that in the high-dimensional
data setting, there is indeed a large optimistic bias when reporting only the best or
second best performing dataset.
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Finally, again in the context of bioinformatics, a recent study aimed to estimate the
optimistic bias in the reported performance of new computational methods to prepro-
cess a special type of raw high-throughput molecular data (Buchka et al. 2021). The
approach was to perform a literature search and compare the reported performance
of newly introduced methods against their performance in later neutral comparison
studies. As expected, novel methods were ranked better than competitors in most of
the papers introducing them, but outperformed competitors at a lesser rate in neutral
studies. Yet the new methods still outperformed more than 50% of their paired com-
petitors in neutral studies, showing that while there is optimistic bias, there is also
some level of genuine scientific progress.

Outside of bioinformatics, Ferrari Dacrema et al. (2021) assessed optimistic bias
in research about recommender systems. Recommender algorithms can be used, for
example, to propose new movies to a media streaming user based on previously
watched movies. Many new recommendation algorithms based on deep learning were
published in recent years, which usually claimed superiority over previous approaches.
Ferrari Dacrema et al. (2021) repeated the evaluations of the original authors, but with
additional baseline algorithms. Their analysis showed that most of the new methods
did not actually outperform simple and long-known baseline algorithms, provided
strong-performing baselines were chosen and their hyperparameters were tuned as
carefully as those of the new algorithms. This highlights that not including strong
competitors or not treating the competing methods fairly might lead to optimistic bias.

2.2 Information visualization

Over-optimistic presentation of results can also be obtained by visualization methods,
i.e., not only by a biased selection of which data to show, but also by how the selected
data is shown. Studies on information visualization address the latter aspect. For
example, visualization methods with a high lie factor (the ratio between “size of effect
shown in graphic” and “size of effect in data”, see Tufte (1983)), ormisleading labeling
and scaling of axes, could be used by a researcher to let their algorithm appear in a
more favorable light.

We do not focus on such mechanisms in our study, and instead illustrate that
over-optimistic reporting of results is also possible if all rules regarding “correct”
information visualization are observed.

2.3 Robustness

Robust clustering algorithms yield a similar quality of results for similar input. Thus,
it is unlikely that there are experimental setups which yield notably better results
than similar experiments and could thus be selectively presented in an over-optimistic
fashion. We do not systematically evaluate the robustness of any of the tested cluster
algorithms in Sect. 4, but rather show how the lack of robustness can be exploited
in order to over-optimistically present the results of the exemplary algorithm. Out of
the diverse types of robustness, we focus on the lack of robustness regarding different
properties of the data as well as hyperparameter settings. For example, we consider
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robustness w.r.t. noise. “Noise” can mean either background noise, i.e., uniformly
distributed points across the data spacewhich do not belong to the original distribution,
or jitter, i.e., small deviations or perturbations in the original distribution. We regard
only the latter in our experiments.

That robustness is crucial for clustering algorithms was already stated by Davé
and Krishnapuram (1997). In recent literature on cluster algorithms, the robustness
regarding different properties of the data is often presented, e.g., the size of the dataset,
number of clusters, dimensionality, and structure of the data. Usually there is a base
case for which one property at a time is changed to regard the effects on the clustering
result. However, it is often left unclear how and why this base case was obtained, and
how the settings which are not regarded in the respective experiment are chosen.

Even though the robustness regarding the choice of hyperparameters seems simi-
larly important, authors often refer to “expert knowledge” for finding the “best” setting,
and omit a robustness analysis. This can lead to enormous disagreements in the eval-
uation of an algorithm, see, e.g., the controversy about DBSCAN (Ester et al. 1996;
Gan and Tao 2015; Schubert et al. 2017). Even easily interpretable hyperparameters,
such as the number of clusters k (e.g., for k-Means, Lloyd 1982), which at first sight
do not seem to require a robustness analysis, might show better performance w.r.t. the
evaluation measure when set at a value different from the “ground truth”.

To summarize, robustness regarding different aspects is not only important to guar-
antee a predictable quality of clustering for users, but also reduces the potential for
over-optimism.

2.4 Adversarial attacks

An adversarial attacker may corrupt the results of an algorithm by only performing
small changes or additions in a dataset, leading to a wrong but more favorable outcome
for the attacker (Goodfellow et al. 2018). Even though adversarial attacks are most
often regarded in context of supervised machine learning, they can also influence
results of unsupervised machine learning: recently, Chhabra et al. (2020) showed that
adversarial attacks are also possible for clustering, even without knowing important
details of the cluster algorithm. Algorithms which tend to return results of highly
varying quality, also for only small perturbations in the data, are easy victims not
only for adversarial attacks, but also for over-optimism. However, where adversarial
attackers aim at changing only certain results, over-optimistic researchers would try to
change the impression of an algorithm’s overall quality. By knowing the details of their
novel algorithm as well as deciding on all hyperparameters and competitive methods,
the influence over-optimistic researchers can have on the presentation of their results
is massive, especially compared to an adversarial attacker.

3 Over-optimizationmethods

In this section we outline the concept and the experimental design of our study. We
first explain the three different categories of over-optimization mechanisms that we
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illustrate in our study. We then detail our concrete implementation, e.g., the clustering
algorithms, datasets, evaluation measure and optimization method.

3.1 Three categories of over-optimization

Imagine a researcher who wishes to present his/her cluster algorithm in a favorable
light. We model the work process of this researcher as an “optimization task”: the
characteristics of the study in which the new algorithm is compared to existing ones
are optimized such that the researcher’s algorithm scores well, in particular better
than the best performing competing algorithm. This optimization can refer to (1.)
finding datasets or data characteristics for which the new algorithm works particularly
well, (2.) finding optimal parameters of the algorithm (and vice versa, neglecting the
search for optimal parameters for the competitors) or (3.) choosing specific competing
algorithms.

Optimizing datasets or data characteristics.Anew cluster algorithmmight perform
well for specific types of datasets, but not for other types. Researchers might decide to
report only the best-performing types of datasets. Additionally, for synthetic datasets,
there is potential for over-optimism when varying specific characteristics (e.g., the
amount of noise, the sample size, or the number of dimensions), and reporting only
the optimal settings. Moreover, simulated datasets depend on the random seed, such
that in turn, the performance of the cluster algorithm might also vary over different
random seeds. Researchers might actively look for a “good” random seed or simply
stumble across a particular “good” random seed by chance, neglecting to try other
random seeds to check for robustness.

Optimizing the algorithm’s parameters or characteristics. Hyperparameters of the
cluster algorithm, or characteristics of the algorithm designed during the development
phase, could be varied by researchers to look for the best result. Hyperparameter opti-
mization (HPO) is per se a legitimate procedure in performance evaluation. However,
there is less awareness for proper evaluation of cluster algorithms combined with
HPO, compared to the more extensive methodological literature on correct evaluation
of supervised classifiers with HPO (Boulesteix et al. 2008; Bischl et al. 2021). In
cluster analysis, over-optimism in relation to HPO may result from (1.) optimizing
hyperparameters based on the “true” cluster labels known to the researchers, and (2.)
not splitting the data into training and test sets. Both aspects will be discussed in more
detail in Sects. 4 and 5. Moreover, over-optimism might also result when researchers
neglect to set optimal parameters for the competing algorithms, e.g., when choosing
suboptimal hyperparameter defaults for the competitors while finetuning their own
algorithm.

Optimizing the choice of competing algorithms. Finally, researchers might pick
specific competing clustering methods that let their own algorithm appear in a better
light. They could neglect to look for the best state-of-the-art competitor, instead opting
for less optimal comparison algorithms. Even if the researchers are aware of state-
of-the-art competitors, they might not include them because the codes are not openly
available, or implemented in a programming languagewhich they are not familiarwith.
Researchers could also think of different groups of competing cluster algorithms, and
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then pick the group that is most favorable for comparison with their own algorithm.
A new density-based cluster algorithm could for example be compared either with a
group of other density-based algorithms, or with a group of some well-known, not
necessarily density-based cluster algorithms. While both choices could in principle
be sensible, it is over-optimistic if researchers either deliberately exclude a class of
competitors a priori because they expect their novel algorithm to perform worse than
this class, or if they choose the competitor group a posteriori after having seen the
results (Jelizarow et al. 2010).

Apart from these three categories of optimization, there are some further optimiza-
tion possibilities (e.g., optimizing the evaluation measure) that we do not analyze here
in detail, but briefly discuss in Sect. 5.

We assume that usually, researchers do not consciously perform the three classes of
optimization tasks in a malicious and systematic manner. Nevertheless, in the course
of a longer research process during which researchers try different datasets, algorithm
parameters/configurations and competing algorithms, researchers might optimize the
settings in an unsystematic and (probably) unintentional manner. Even if researchers
start their analysis with the best intentions, they might post-hoc rationalize their
(over-optimistic) choices as perfectly reasonable decisions, given that “[h]umans are
remarkably good at self-deception” and scientists often “fool themselves” (Nuzzo
2015).

One might argue that the optimizations outlined above are not actually over-
optimizations and that it is perfectly fine to look for scenarios in which a novel
algorithm performs well. We would agree that it is not a priori wrong to search for
and report such scenarios, as a new cluster algorithm can never be expected to out-
perform every other cluster algorithm in every situation. However, it should also be
transparently reported how the presented “successful” scenarios were obtained, and
how the algorithm performs in other settings. Over-optimism ultimately appears when
performance results are selectively reported. We will illustrate this with our results in
Section 4.

3.2 Experimental setup

We now present the exemplary cluster algorithm and its settings, the competing algo-
rithms, the datasets and the evaluationmeasure.Our fully reproducible code is available
at https://github.com/thullmann/overoptimism-clust-algo.

In accordance with the authors, we used the already published algorithm Rock
(Beer et al. 2019) as a novel and promising algorithm. Rock is an iterative approach
similar to Mean Shift (Fukunaga and Hostetler 1975), but based on the k nearest
neighbors (kNN) instead of the bandwidth. In each step, points “roam” to the mean of
their respective k nearest neighbors. Points with a similar final position are assigned
to a common cluster. The algorithm involves the hyperparameter tmax , which gives
the maximum number of iterations. As the maximum meaningful value for k is fixed
(k > n

2 would lead to an assignment of all points to the same cluster), and the increase
of k in every step is linear, tmax also determines the number k of nearest neighbors
regarded in each iteration. The larger tmax is chosen, the closer values for k are in
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consecutive steps. Lower values for tmax thus lead to larger gaps between consecutive
values for k, which may cause volatile merges of different clusters. On the other hand,
higher values for tmax lead to more iterations, which increases runtime.

As typical for short papers, only a limited number of experiments is presented in
Beer et al. (2019), illustrating that the underlying idea is promising. The results for
Rock looked good compared to k-Means (Lloyd 1982), DBSCAN (Ester et al. 1996)
and Mean Shift, which are typical competitors in the field and representatives for
algorithms finding different types of clusters. As examples for competing algorithms,
we thus chose k-means, DBSCAN, Mean Shift and additionally Spectral Clustering
(Ng et al. 2001).

As the clustering performance measure we use the Adjusted Mutual Information
Score (AMI,Vinh et al. 2010), a version of theMutual Information (MI) Score adjusted
for chance agreement of random partitions. For each dataset and cluster algorithm,
the known “true” clustering (as given either by the simulation design for the synthetic
datasets or by additional label information for the real datasets) was compared via
the AMI with the clustering found by the algorithm. The higher the AMI, the more
similar the two clusterings are. The AMI attains its maximum value of 1 if the two
clusterings are identical, and equals 0 if the MI between the two clusterings is equal to
the MI value expected for two random partitions. We give the detailed mathematical
definition of the AMI in the appendix A.

While we only use the AMI in our illustration for the sake of conciseness, a similar
analysis could be performed for alternative indiceswhichmeasure the agreement of the
calculated clusterings with the “ground truth”, or even for internal validation indices
which evaluate clusterings based on internal properties of the data alone and do not
require the “ground truth” (see also the discussion in Sect. 5.2).

The choice of exemplary datasets is linked to the three different optimization tasks
outlined in Sect. 3.1. We thus give the datasets for each task in turn and explain how
the optimization was performed. Note that we performed the three optimization tasks
sequentially, building on the results of each previous task. Of course, in reality, a
researcher will likely not perform the optimizations in such a perfectly sequential
matter, and might jump between different tasks of optimization or try to optimize
different aspects simultaneously. Again, our sequential procedure merely serves illus-
trative purposes.

For some specific details of the implementation, we refer to the appendix A.

Optimizing datasets and data characteristics. For this part of the analysis, we chose
three commonly used different synthetic datasets from scikit-learn (Pedregosa et al.
2011), see Fig. 2: Two Moons1, Blobs2 (for details on this dataset, see the appendix
A), and Rings3.

1 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html, visited: 05/31/
2021.
2 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html, visited: 05/31/
2021.
3 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html, visited: 05/31/
2021.
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First, we performed optimization by varying the following data characteristics:
a) for Two Moons, the sample size and the jitter values (where “jitter” denotes small
randomperturbations to the original data points in the clusters), b) forBlobs, the sample
size, the number of dimensions and the number of generated clusters (“blobs”), and c)
for Rings, the sample size and the jitter values. The goal of the optimization was to find
the parameter configuration (e.g., for Two Moons, the configuration (n, j) of sample
size and jitter value) that yields the largest performance difference between Rock and
the best of the competitors – which is not necessarily the parameter configuration that
yields the best absolute performance of Rock.

That is, for each of the three types of synthetic datasets in turn, we performed the
following formal optimization task:

argmaxD∈D

{
1

10

10∑
i=1

(
AMI

(
Rock(Di ), yDi

)
− maxC∈C AMI

(
C(Di ), yDi

) )}
(1)

where D ∈ D denotes the different variants of the dataset. For example, for the Two
Moons data, each dataset D is a version of Two Moons with a specific jitter value
and sample size. Each D has a cluster label ground truth yD . For each D ∈ D,
ten different versions of D, namely Di , i = 1, . . . , 10 resulting from ten different
random seeds were generated. Put differently, we performed ten simulation iterations
per setting, i.e., we sampled ten datasets from each data distribution with a specific
data parameter setting. The AMI difference is then averaged over these ten versions.
This is supposed to reduce the influence of the random seed. Only at a later point in
the analysis did we look at the effect of picking specific random seeds (see below).
Rock(Di ) denotes the application of Rock to the data Di , returning a partition of the
objects. Analogously, the competing algorithms C ∈ C return a partition of Di , with
C = {k-means, DBSCAN, Mean Shift, Spectral Clustering}.

For each of the three types of datasets in turn, we performed the optimization task
(1) by using the Tree-structured Parzen Estimator (TPE, Bergstra et al. 2011), as imple-
mented in the Optuna framework (Akiba et al. 2019) in Python4. TPE is a Bayesian
optimization (BO) method. BO approaches sequentially propose new parameter con-
figurations based on a library of previous evaluations of the objective function (for
more details on BOmethods and the TPE, see the appendix A). The TPE is often used
for hyperparameter optimization of machine learning models, but in our case, we use
it to optimize the data parameters. The TPE optimization can be considered as a very
simplified model of the researcher’s optimization procedure. Of course, a researcher’s
behavior does not exactly correspond to the mathematical procedure of the TPE. How-
ever, if researchers perform intentional (over-)optimization, then they might indeed
use an optimizationmethod such as the TPE to find the best data settings. TheBayesian
optimization mimics the researcher’s (unintentional) over-optimization in the follow-
ing sense: as mentioned above, a researcher developing a new cluster algorithm might
sequentially look for data settings in which the new algorithm performs well, taking

4 https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.TPESampler.html, visited:
05/31/2021.
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into account performance information from previously tried data parameters. This is
the reason why we chose the TPE over a simple grid search or random search, because
the latter do not use previously obtained performance information. To make the TPE
processmore “realistic”, we supplied a grid of limited discrete values to the TPE, given
that a researcher presumably would not try arbitrary real numbers. We performed this
experiment with only 100 optimization steps for each of the three types of datasets, in
order to fairly represent a researcher trying different data parameters by hand.

After determining the optimal values for the data parameters (which we will later
report in Table 1 in Sect. 4.1), we analyzed the performance of Rock for non-optimal
parameter values. That is, for each dataset and single data parameter in turn, the
parameter was varied over a list of values, while the other data parameters were kept
fixed at their optimal values. For example, for the TwoMoons dataset we tried different
jitter values and plotted the corresponding performance as measured by the mean AMI
over ten random seeds against the jitter, keeping the sample size at the optimal value
determined by the TPE. These analyses show the effects of selectively reporting only
the best data parameters versus the performance of the algorithm over a broader range
of each data parameter.

In the experiments given so far, we always considered the AMI averaged over ten
random seeds. In the final step of the analysis for this section, we specifically study the
influence of individual random seeds. We take the Two Moons dataset as an example,
with a data parameter setting which is not optimal for Rock, but for which DBSCAN
performs very well. We generate 100 datasets with these characteristics by setting 100
different random seeds, to check whether there exist particular seeds for which Rock
does perform well, leading to over-optimization potential.

For all experiments described so far, we applied reasonable parameter choices
(defaults or heuristics) for the cluster algorithms. For Rock we chose tmax = 15, as
done for all experiments in the original paper (Beer et al. 2019), and for the competing
algorithms see the appendix A.

Optimizing the algorithm’s parameters or characteristics. For this example we varied
Rock’s hyperparameter tmax (maximum number of iterations). As tmax is discrete with
a reasonable range of {1, . . . , 30}, a researcher could easily try every value by hand.
Thus we did not perform optimization with the TPE, but with a full grid search, i.e.,
we calculated the AMI performance of Rock for each value of tmax and for each
dataset. For this illustration, we considered the absolute performance of Rock, given
researchers would also strive to maximize the absolute performance of their novel
algorithm.

As exemplary datasets, we again considered Two Moons, Blobs and Rings, and
additionally four real datasets frequently used for performance evaluation: Digits,
Wine, Iris and Breast Cancer as provided by scikit-learn5 (see also the UCI Machine
Learning Repository, Dua and Graff 2017). The data parameter settings for the three
synthetic datasets (sample size, amount of jitter etc.) corresponded to the optimal
settings from the TPE optimization of (1). We used a single random seed to generate
the illustrative synthetic datasets.

5 https://scikit-learn.org/stable/datasets/toy_dataset.html, visited: 05/31/2021.
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In a next step, using the Two Moons dataset as an example, we compared the AMI
performances of Rock and DBSCAN over ten random seeds, first without, then with
hyperparameter optimization for Rock and DBSCAN. We used the TPE for HPO of
DBSCAN. Here, the TPE was not intended to model a researcher’s behavior, but was
used as a classical HPO method. The comparison illustrates the effect of neglecting
parameter optimization for competing algorithms.

Optimizing the choice of competing algorithms.We did not perform new experiments
here. Rather, we looked at the results from the two previous optimization tasks to
derive the potential for optimization of the choice of competing cluster algorithms.

4 Results

We present our results for the three optimization tasks outlined above, starting with
the optimization of datasets and data characteristics.

4.1 Optimizing datasets and data characteristics

In this subsection we examine how strongly the choice of the “best” properties of a
dataset, along with the type of dataset, can influence the performance estimation of
Rock.

4.1.1 Optimization of the data parameters with TPE

Table 1 reports the optimal data parameters for the three synthetic datasets as deter-
mined by the TPE optimization. The search space for each parameter is given in
parentheses and consists of discrete values. The column “AMI diff.” shows the dif-
ference of the AMI obtained by Rock to the AMI obtained by the best competitor
(averaged over ten random seeds). Recall that the AMI difference was used as the
optimization criterion by the TPE to find the “optimal” parameter configuration. The
column “Abs. AMI” denotes the absolute performance of Rock as measured by the
AMI averaged over ten random seeds. The standard deviation over the seeds is also
displayed.

Table 1 Optimal data parameters as determined by the TPE optimization

Dataset Sample size Jitter # of dim. # of clusters AMI diff. Abs. AMI

Two Moons 1000 0.15 2 2 +0.3581 0.7881

([1, 16] · 100) ([1, 20] · 0.01) (default) (default) ±0.1583

Blobs 300 – 3 2 +0.0475 0.8881

([1, 16] · 100) ([2,20]) ([2,10]) ±0.1573

Rings 1600 0.02 2 2 +0.1789 0.1789

([1, 16] · 100) ([1, 20] · 0.01) (default) (default) ±0.0026
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Fig. 1 Optimization progression for the Two Moons dataset, with the AMI difference averaged over ten
random seeds

Fig. 2 Example datasets (Two Moons, Blobs, Rings) with the optimal data parameters. For the Blobs
example we only show the first and second dimensions

For the example of the TwoMoons dataset, Fig. 1 shows a graphical representation
of the TPE process over 100 optimization steps. The final “optimal” result is given by
the best trial out of the 100 trials. The datasets with the optimal settings are pictured
in Fig. 2, using a single illustrative seed of 0.

Judging from the results in Table 1, Rock appears to show better performance
than its competitors. A researcher could use the results to claim Rock’s “superiority”.
However, the absolute performance of Rock for the Rings dataset is not very good
with a mean AMI of only 0.1789. Rock is only the best algorithm here because the
competing methods completely fail to detect the clustering. A researcher who tries to
optimize the data types might thus decide to let the Rings dataset disappear in the “file
drawer”, particularly if he/she must omit some results due to page limits, and only
present the Two Moons and Blobs datasets, for which Rock performs well, both in
absolute and in relative (compared to competitors) terms. But would this presentation
for Two Moons and Blobs be over-optimistic? To obtain a more realistic picture of
Rock’s abilities, we analyze the results when the data parameters are not set at the
optimal values, but varied over a grid.

4.1.2 Varying the data parameters

Weconsider the influence of the sample size, the number of dimensions and the amount
of jitter. For each data parameter, we pick one data type for illustrative purposes (either
Two Moons or Blobs). The data parameters that are not currently considered are set
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a

b

c

Fig. 3 a Varying the sample size for the Two Moons dataset (jitter = 0.15), b varying the number of
dimensions for the Blobs dataset (sample size = 300, number of blobs = 2), c varying the jitter amount for
the Two Moons dataset (sample size = 1000)

to their optimal values from Table 1. Figure 3a–c show the performance of Rock and
its competitors measured by the AMI over ten random seeds, depending on the varied
data parameters. The border around each line shows the standard deviation over the
seeds. Red squares indicate the optimal setting from Table 1.

Sample size.Herewe consider the TwoMoons dataset in Fig. 3a.We tried the following
sample sizes: 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600. The jitter value
is set at its optimal value 0.15 from Table 1. Rock indeed appears to perform better
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here than its competitors over a broader range of numbers of samples, not just for the
optimal setting. However, at smaller sample sizes, the difference to k-means, spectral
clustering andMeanShift is less impressive than atRock’s optimal setting ofn = 1000.

Dimensionality. The Blobs dataset is analyzed in Fig. 3b, varying the number of
dimensions over {2, 3, 4, 5, 10, 15, 20}. The sample size is set at 300 and the number
of generated blobs is 2, according to Table 1. Rock performs better than competitors
mainly for small dimensions. Once the number of dimensions exceeds 5, Rock cannot
outperform k-means and Spectral Clustering.

Jitter. The amount of jitter is varied for the Two Moons dataset, see Fig. 3c. We tried
the following jitter amounts: 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. The sample size
is set to the optimal value of 1000 according to Table 1. Rock performs better than
its competitors for the jitter set at 0.15 and above. However, for lower jitter values,
Rock cannot outperform DBSCAN. Moreover, for jitter values of 0.25 and 0.30, the
difference from Rock to k-means, spectral clustering and Mean Shift is quite low and
not as impressive as at the optimal setting of 0.15.

To summarize, the performance of Rock is not robust with respect to variation of
the data parameters, which leads to potential for over-optimization. While Rock is
indeed better than its competitors for certain ranges of the data parameters, there are
also settings for which Rock either does not perform better than the competitors, or the
performance advantage is small. Thus the apparent “superiority” of Rock is generally
less impressive than indicated by the results found from the TPE optimization in
Table 1.

4.1.3 Influence of the random seed

For the analyses mentioned so far, the mean AMI over ten random seeds was consid-
ered. However, it is also possible that a researcher chooses a particular random seed
for which Rock performs well. As seen in Fig. 3c, Rock is outperformed by DBSCAN
on the Two Moons dataset for a jitter value of 0.05 and 1000 samples. This statement
is based on the AMI averaged over 10 random seeds. But could there also be particular

Fig. 4 Performance of the cluster algorithms on the Two Moons dataset (sample size = 1000, jitter = 0.05)
over 100 random seeds
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random seeds for which Rock does perform well? In Fig. 4, we display the behavior
of Rock and its competitors over 100 different random seeds. Since Rock performs as
well as DBSCAN for some particular seeds, there is potential for an over-optimizing
researcher to pick such a seed.While deliberately trying multiple seeds and presenting
only the best one can be considered as malicious behavior, it is also possible that the
seed set by the researcher is by chance a “good one”, and that the researcher does
not consider a dependence of the performance on the random seed. To avoid such
unintentional over-optimism, it is advisable to account for sampling variability and
average over multiple random seeds, even when the cluster algorithm itself is deter-
ministic. While the practice of sampling multiple datasets from a data distribution
is well-known in statistics, this is sometimes neglected when evaluating data mining
tasks like clustering.

4.2 Optimizing the algorithm’s parameters

We analyze how the hyperparameter tmax of Rock can be optimized. In contrast to the
previous sections, we now consider the absolute performance of Rock, given that a
researcher would presumably not only try to outperform competitors, but also strive
to obtain AMI values for Rock which are close to 1.

Additionally to Two Moons, Blobs and Rings, we consider the four real datasets
mentioned inSect. 3.2:Digits,Wine, Iris,BreastCancer. For theTwoMoons,Rings and
Blobs datasets, we used the optimal data parameters from Table 1 and only generated
a single illustrative dataset for each type by using 42 as a random seed. In accordance
with typical evaluation of cluster algorithms, we do not split the datasets into training
and test sets (see, however, the discussion in Sect. 6.2).

Figure 5 shows the performance of Rock asmeasured by theAMI, over tmax ranging
from 1 to 30.

It can be seen that for different datasets, different tmax values are optimal. An
optimistic researcher could report (only) the best tmax and the corresponding perfor-
mance for each dataset. Optimizing hyperparameters of a cluster algorithm based on
the “ground truth” of datasets (here via the AMI) is frequently seen in the literature.

Fig. 5 Varying the hyperparameter tmax of Rock for different datasets
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But as mentioned above, this could be over-optimistic with regards to the future per-
formance of the algorithm: the evaluation of a novel algorithm is ultimately supposed
to give hints about how well the algorithm will perform in future applications. But
applied researchers usually do not know the “true” cluster labels of their datasets, as
otherwise there would be no need for clustering. Thus the applied researchers cannot
use a “ground truth” to determine a good tmax value for their specific datasets, and
will thus obtain worse results for their datasets than the performances reported in the
original paper which introduced the cluster algorithm. We will further discuss this
issue in Sect. 5.1.

An alternative to reporting the best tmax for each dataset individually is to look
for a tmax value that leads to good performance for multiple datasets. For example,
tmax = 12 yields reasonable performance values for Blobs, TwoMoons and Iris. Thus,
optimistic researchers might only report these three datasets with tmax = 12 and claim
that this choice of tmax will performwell for future datasets. However, such a statement
would likely be over-optimistic as tmax = 12 was chosen on only a few datasets, and
considering the varied behavior of the different datasets for different tmax in Fig. 5.

Over-optimismcannot only result fromoptimizing the hyperparameters of the novel
algorithm, but also from simultaneously neglecting to optimize the hyperparameters
of the competing algorithms. As an example, we compare Rock with DBSCAN on the
TwoMoons dataset, with the data parameters optimized for Rock from Table 1. Recall
that in Sect. 4.1, we did not perform hyperparameter optimization, and instead used
hyperparameter defaults or heuristics for the algorithms which could be reasonably
justified (see also the appendix A): for Rock, tmax = 15 as in the original paper of Beer
et al. (2019), and for DBSCAN,minPts = 2·#of dimensions, leading tominPts = 4
for Two Moons, and eps = 0.2. The AMI for Rock for this case is 0.7881 ± 0.1583
(mean and standard deviation over ten random seeds), see also Table 1. This mean
value is different from the AMI value in Fig. 5 at tmax = 15, because a single seed was
used for the latter. The AMI performance of DBSCAN was only 0.0007 ± 0.0024.

We then performed hyperparameter optimization for both cluster algorithms (with
regards to the absolute AMI performance over ten random seeds). For Rock, we per-
formed a simple grid search over tmax ∈ {1, 2, . . . , 30}. The optimal performance
is at the previously used default tmax = 15, thus again yielding a mean AMI of
0.7881 ± 0.1583. This is not surprising, given that tmax = 15 was used in Sect. 4.1
to optimize the data parameters of Two Moons such that Rock obtains superior per-
formance (although the performance difference was used as the optimization criterion
in that section). For DBSCAN, we performed hyperparameter optimization with the
TPE, and obtained optimal parameters of minPts = 41 and eps = 0.4, leading to
a performance of 0.8300 ± 0.0244, which is a major improvement over the previous
performance of DBSCAN. Thus DBSCAN outperforms Rock after hyperparameter
optimization. This demonstrates that if researchers decide to perform hyperparameter
optimization for the cluster algorithms to be compared, they should conduct the opti-
mization not only for their own algorithm, but also equally carefully for all competing
methods.

Returning to the topic of data type optimization (Sect. 4.1), Fig. 5 also shows the
potential for picking specific datasets for which Rock performs reasonably well (e.g.
Blobs, Iris, Two Moons) and discarding the ones with worse performance (Digits,

123



T. Ullmann et al.

Rings). Again, over-optimization is marked by selective reporting: while no cluster
algorithm can be expected to perform well on all types of data, it is still important to
report data types for which a novel algorithm fails to detect clusters, to illuminate the
limitations of the new method.

4.3 Optimizing the choice of competing algorithms

Here we revisit the results from Sect. 4.1 to analyze whether there is potential for pick-
ing specific competing cluster algorithms such that Rock appears better. For example,
Fig. 3a–c show that Rock often performs better than DBSCAN, which was also due
to neglecting hyperparameter optimization for DBSCAN, cf. Sect. 4.2. By picking
suitable data parameter ranges, an over-optimistic researcher could praise the drastic
performance improvement from Rock over DBSCAN. The same figures show that
Rock is often better than Mean Shift. Thus, there is the potential for the following
narrative: “Rock is an improvement of Mean Shift”. As the figures show, this claim
would sweep some caveats under the carpet. For example, the other competitors, k-
means and spectral clustering, are (almost) as good as Rock for the Blobs dataset in
Fig. 3b.

5 Discussion

We have illustrated that selective presentation of performance results can lead to over-
optimistic assessment of a novel cluster algorithm. Neglecting to show limitations of a
new algorithm can lead to users applying it in inappropriate settings for the algorithm,
which leads to unusable results. In this section, we discuss potential further aspects
of over-optimism that we did not focus on, but would be interesting to study in future
work.

5.1 Hyperparameter tuning and development of the algorithm

As explained in Sect. 4.2, the current standard of reporting the performance of a
novel algorithmwith hyperparameters optimized to the clustering “ground truth” (e.g.,
with a grid search) is likely over-optimistic. Using the ground truth of datasets for
performance evaluation of a novel algorithm has a further drawback: as the number of
datasets labeled by experts is limited, researchers using these datasets optimize their
algorithm’s characteristics on these few labeled real world datasets, or alternatively use
(unrealistic) synthetic datasets. Datasets such as TwoMoons and Blobs are frequently
used, but providevery limited information about how the cluster algorithmwill perform
in much more complex applied settings.

The optimization to a few datasets might not only concern the hyperparameters
of the algorithm, but also the characteristics of the algorithm which are explored in
the development phase. For example, Rock contains some “hidden hyperparameters”
such as the growth rate of the number of neighbors considered in each iteration, or the
weighting of the different nearest neighbours (Beer et al. 2019). These characteristics
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are not intended to be changed by the user, but were decided on by the researchers dur-
ing the development of the algorithm. However, if such characteristics are optimized
according to the performance on just a few selected datasets, then this might result in
an over-optimistic “overfitting” effect.

5.2 Evaluationmeasure

For all our experiments in this paper we used the Adjusted Mutual Information (AMI)
as measure for the quality of clustering. Other partition similarity indices such as
the Normalized Mutual Information (NMI, Strehl and Ghosh 2002), Adjusted Rand
Index (ARI, Hubert and Arabie (1985)), Accuracy and F1-measure are often used in
the field (see also Albatineh et al. (2006), for an overview). They all range in [−1, 1]
resp. [0, 1] and describe how well the clustering results correspond to a ground truth,
but have slightly different behaviors (Pfitzner et al. 2009). These indices are also called
external validation indices, because they require an externally known partition (the
ground truth) for evaluation. Yet evaluating a clustering based on the given “ground
truth”might not always be the best choice. There could be interesting cluster structures
in the data which differ from the given “true” labels, particularly because there is no
unique definition of what a “good” clustering is (Hennig 2015). Moreover, as pointed
out above, many real world datasets do not come with given labels. Thus researchers
might also use internal validation indices (Halkidi et al. 2015) which do not require
knowledge of the “true” labels, but evaluate a clustering based on internal properties
of the data alone. Popular internal indices which measure within-cluster homogeneity
and between-cluster heterogeneity/separateness include the Average Silhouette Width
index (Kaufman and Rousseeuw 2009), the Caliński-Harabasz index (Caliński and
Harabasz 1974), and the Davies-Bouldin index (Davies and Bouldin 1979). Such
indices can also be used for performance evaluation of novel clustering algorithms,
yet they might be susceptible to the over-optimism mechanisms outlined above. For
example, researchers could optimize datasets and data characteristics with respect to
an internal index, such that this index indicates a good performance for the new cluster
algorithm, analogous to the optimization with the AMI discussed in Sect. 4.1.

The multitude of possible evaluation criteria—external or internal – gives rise to
another potential source of over-optimism: Researchers could try different measures
and pick the one that is most favorable to their novel algorithm. While researchers
might be understandably uncertain about which evaluation measure to choose, they
should not try different measures and then pick only the most favorable one after
having seen the results. Researchers should carefully consider before starting the
experimental evaluation which performance criterion is of particular interest in the
considered context. If multiple measures are tried, then these should all be reported.

5.3 Preprocessing

Preprocessing the data can significantly influence the results of clustering. In our study,
we scaled all the datasets. There are different normalizations that may be applied to the
data, as well as methods to remove outliers or noise to improve the clustering results.
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To avoid over-optimism, researchers should refrain from trying different preprocessing
methods and reporting only the one most favorable to their new algorithm. Moreover,
the same preprocessing steps should be applied to all datasets and for all compared
cluster algorithms. Otherwise, if only the new algorithm is combined with suitable
preprocessing, it might have an unfair advantage. A clear distinction should be made
between preprocessing steps and steps belonging to the new cluster algorithm.

5.4 Theoretical evaluation

While we focus on the experimental evaluation of cluster algorithms with simulated or
real-world datasets, it would also be interesting to study over-optimism in the context
of theoretical analyses of algorithms. For example, researchers often make claims
about their novel algorithms which they prove mathematically. But they could use
very specific assumptions to yield the desired results. It might not always be easy
for readers to judge how unrealistic these assumptions are, i.e., to which extent the
assumptions restrict the use of the algorithm in real-world applications.Authors should
thus alwaysmake their theoretical assumptions very clear, and thoroughly discuss how
restrictive they are.

While theoretical analyses can, in principle, be affected by over-optimism, they are
often a vital part of the evaluation of novel cluster algorithms. Theoretical results, if
carefully deduced, can give a more complete picture of the algorithm’s capabilities.
Authors who thoroughly analyze their novel algorithm from a theoretical perspective
might also use this background knowledge to choose a suitable and clearly defined
experimental study design, such that unintentional over-optimization in the experi-
mental part of the analysis could sometimes be partially avoided.

6 Possible solutions

Aswe have illustrated, there might be a strong over-optimistic bias when introducing a
new cluster algorithm. How can such a bias be avoided or corrected? We discuss three
options that all researchers can consider using in their research: (1.) avoiding selective
reporting and analyzing robustness, (2.) evaluating the new method on independent
data, and (3.) performing neutral benchmark studies. Moreover, we discuss (4.) how
changing incentives in research culture and the publication system (that are beyond
the control of individual researchers) might help to reduce over-optimism.

6.1 Avoiding selective reporting and analyzing the robustness of the algorithm

Our results have shown that over-optimistic presentation ultimately requires a certain
amount of selective reporting, i.e., reporting only specific scenarios in which the new
algorithm performs well. This might happen if many different scenarios are tried
and only the “best” ones are reported, while the others are buried in the file drawer.
Researchers might also omit the analysis of certain scenarios a priori, for example,
when only considering data simulated according to a specific model. Such constraints
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should be clearly explained, and the performance of the algorithm should not be
oversold.

In the context ofmodel-based cluster algorithms (seeMcLachlan et al. (2019) for an
overview), selective reportingmight be easier to detect. For example, ifmainly datasets
generated by the model of the newly developed algorithm are chosen, and/or the novel
algorithm is compared with competing methods that were developed for the detection
of clusters generated by other models, then the novel algorithm immediately has an
advantage, which can be easily spotted. Nevertheless, there is still potential for an
over-optimistic selection of datasets and comparative methods among all “reasonable”
possibilities. Moreover, other potential sources of over-optimism discussed above,
such as (hyper)parameter optimization, are also existent for model-based clustering.
Readers and reviewers of articles about novel model-based cluster algorithms should
keep this in mind, and the authors themselves must be careful to avoid over-optimistic
choices.

Ideally, researchers should report scenarios in which their algorithm performed
worse, to give a more realistic picture of the limitations of the novel approach. This
may also require researchers to check the robustness of their algorithm (cf. Sect. 2.3):
if the cluster algorithm is not robust with respect to certain data parameters, this should
be honestly reported. Discussing the evaluation results for various parameter choices
could also be beneficial as there is often not a single “best” choice and different
parameters could be useful in different applications (Cerioli et al. 2018).

6.2 Validation on independent data

It is advisable to evaluate a new algorithm’s performance on fresh data that was not
used for developing the algorithmand assessing its performance (Jelizarowet al. 2010).
As we have demonstrated in Sects. 4.1 and 4.2, looking for specific data parameters or
tweaking the algorithm’s hyperparameters might cause unintentional overfitting to the
datasets used during the research process. As discussed in Sect. 5.1, overfitting to the
used datasets could also concern the algorithm’s characteristics that were engineered
in the development phase. The algorithmmight not perform quite as well on new data,
which would constitute a more realistic assessment of its performance.

More realistic performance values might also be obtained by taking inspiration
from supervised classification and splitting the used datasets into “training” and “test”
sets (Ullmann et al. 2021). Then hyperparameters such as tmax are optimized on the
training set, and the chosen tmax is evaluated on the test set to assess performance.
This could partially avoid “overfitting” of the hyperparameters to the data. However,
a) this splitting procedure does not say anything about the performance on genuinely
new data/data from different distributions, and b) when using the ground truth for
optimization on the training set, this does not solve the problem that applied researchers
who wish to use the new cluster algorithm in practice usually do not know the ground
truth of their datasets, and thus cannot use the hyperparameter optimization procedure
of the original authors. Therefore, it is advisable for authors who introduce a new
algorithm to discuss and evaluate criteria for hyperparameter choice that do not require
the ground truth, for example internal validation indices. Such indices could be used to
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choose hyperparameters on the training set, and to evaluate the chosenhyperparameters
on the test set to ensure that potential overfitting effects are detected.

6.3 Neutral benchmark studies

Awareness about the dangers of selective reporting and the importance of evalua-
tion on fresh data might help to alleviate the problem of over-optimism. Academic
teaching/training and illustrative studies such as ours can contribute to creating such
awareness.Moreover, followingguidelines formethodological computational research
can help researchers avoid over-optimism (Boulesteix 2015). Ultimately, this will
probably not solve the problem completely. Researchers are incentivized by the pub-
lication system to present their new algorithm favorably, which is unlikely to change
in the short term (see 6.4). They are also more competent with respect to their own
methods—and thus more likely to use them optimally than competing methods when
conducting the evaluation. Thus, neutral benchmark studies are additionally required.

A neutral benchmark study is characterized by the comparison of existing algo-
rithms (instead of the introduction of a new method), and neutrality of the authors,
i.e., the authors do not have a vested interest in a particular method showing better
performance than the others and are as a group approximately equally familiar with
all considered methods, see Boulesteix et al. (2013, 2017) for an extensive discussion
of these concepts. As mentioned in the introduction, neutral benchmark studies are
less likely to suffer from over-optimism and usually offer a more realistic performance
evaluation than studies presenting new methods.

In the field of clustering methodology, neutral benchmark studies are rarer than for
supervised classification. Lately, however, there have been some advances: guidelines
for performing benchmark studies for cluster algorithmswere published inVanMeche-
len et al. (2018). Following these guidelines, Hennig (2021) compared nine popular
cluster algorithms, mainly with respect to various internal validation indices, but also
regarding the recovery of the “true” clusterings. For an overview of previous cluster
benchmark studies, see Van Mechelen et al. (2018) and Hennig (2021). In principle,
the guidelines of Van Mechelen et al. (2018) could and should also be followed by
non-neutral researchers who evaluate their new algorithm.

6.4 Changing incentives in the culture of research and the publication system

The three possible solutions presented so far are in principle accessible to individual
researchers or teams of researchers. Ultimately, however, each researcher is subject
to the constraints of the research and publication system. For example, researchers
might hesitate to report limitations of their novel algorithm, because this could reduce
their chances of getting published. Moreover, it can still be difficult to publish a neu-
tral comparison study as many journals and conferences—stressing the importance of
“novelty”—prefer studies introducing new methods (Boulesteix et al. 2018). In our
view, changes in this attitude are necessary to further reduce over-optimism.Accepting
neutral benchmark studies for publication should become more widespread. Further-
more, reporting limitations of novel algorithms should not be considered a “failure”
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and instead an integral part of a healthy research culture. Journals and conferences
should actively encourage authors to report scenarios in which their new algorithm
does not perform optimally, or at least should not consider such reporting to be a
cause for rejection. At the same time, editors and reviewers play an important role
in filtering manuscripts in which authors do not carefully justify their experimental
choices and only present very specific settings, which may be a hint that the results
could potentially be over-optimistic. It should be taken into account, however, that
even when a persuasive justification is given, the authors might still have arrived at
these choices by (intentional or unintentional) over-optimization.

7 Conclusion

We have shown that studies which introduce new cluster algorithms might be affected
by over-optimistic presentation of the results. For illustrative purposes, we have
demonstrated different over-optimismmechanisms using the recently developed Rock
algorithm as an example. While this is a specific example, we believe that these mech-
anisms might similarly apply to other novel clustering algorithms. We have also given
some recommendations for avoiding over-optimism. It is our hope that going forwards,
these guidelines will be taken into account. After all, overselling of novel methods
does not contribute to genuine scientific progress.

Acknowledgements We thankOliverLangselius andAnna Jacob formaking valuable language corrections.

Author Contributions Conceptualization: TU (Lead), AB (Supporting), MH (Supporting), A-LB (Support-
ing)
Methodology: TU (Lead), AB (Supporting), MH (Supporting)
Software: MH (Lead), TU (Supporting), AB (Supporting) Validation: TU (Lead)
Writing—original draft preparation: TU (Lead), AB (Supporting), MH (Supporting), A-LB (Supporting),
TS (Supporting)
Writing—review and editing: TU (Lead), AB (Supporting), MH (Supporting), A-LB (Supporting), TS
(Supporting)
Funding acquisition: TS (Lead), A-LB (Supporting) Supervision: A-LB (Lead), TS (Supporting).

Funding Open Access funding enabled and organized by Projekt DEAL. This work has been funded by the
German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A. The authors
of this work take full responsibilities for its content.

Availability of data and material All used datasets are publicly available in scikit-learn for Python
(Pedregosa et al. 2011).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Code availability Our fully reproducible code is available at: https://github.com/thullmann/overoptimism-
clust-algo.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

123



T. Ullmann et al.

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

In this appendix we give some details about the implementation outlined in Sect. 3.2.
More information can be found in our fully reproducible code which is available
at https://github.com/anonresearcher461/over-optimism. All experiment were per-
formed with Python6, version 3.9.5.

A.1 Adjustedmutual information (AMI)

Here we give the mathematical definition of the Adjusted Mutual Information Score
(AMI, Vinh et al. 2010) which we use to compare the calculated clusterings with the
“true” cluster labels. To define the AMI, we first discuss the entropy H of a single
clustering and the Mutual Information (MI) of two clusterings. See Vinh et al. (2010)
and Meila (2015) for more detailed explanations.

Let C and C ′ be two clusterings with k respectively l clusters. Let ni j , i =
1, . . . , k, j = 1, . . . , l the number of data points which are in cluster i of C and
cluster j of C ′. Let ni• and n• j be the respective marginal sums, and n the overall
number of data points.

The entropy H of clustering C is defined as

H(C) = −
k∑

i=1

ni•
n
log

(ni•
n

)
.

The entropy can be interpreted as the level of uncertainty associatedwith the clustering
C . The Mutual Information (MI) of the clusterings C,C ′ is defined as

MI (C,C ′) =
k∑

i=1

l∑
j=1

ni j
n

log

(
ni j/n

ni•n• j/n2

)
.

The MI measures to which extent knowledge of the clustering C reduces uncertainty
about the clustering C ′. The MI is a symmetric measure, and it holds that

0 ≤ MI (C,C ′) = MI (C ′,C) ≤ min(H(C), H(C ′)).

6 https://www.python.org, visited: 05/31/21.
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The MI can be normalized to ensure the measure ranges in [0, 1], yielding the
Normalized Mutual Information (NMI):

NMI (C,C ′) = MI (C,C ′)
avg(H(C), H(C ′))

.

Different choices for the “average” avg are possible, e.g., the arithmetic mean, the
geometric mean, the minimum or maximum. We use the arithmetic mean (Kvalseth
1987), which is the scikit-learn default.7

Both theMI andNMI tend to increase with an increasing number of clusters, even if
the information sharedmutually between the clusterings does not actually increase. To
account for this effect, the MI can be adjusted for chance: the MI ofC,C ′ is compared
with the expected MI for two random clusterings drawn from a permutation model
(see Vinh et al. (2010) for details). The Adjusted Mutual Information Score (AMI) is
thus calculated as follows:

AMI (C,C ′) = MI (C,C ′) − E[MI (C,C ′)]
avg(H(C), H(C ′)) − E[MI (C,C ′)] . (2)

The AMI attains its maximum value of 1 if the two clusterings are identical, and
equals 0 if the MI between the two clusterings is equal to the MI value expected for
two random partitions. Negative values occur if the agreement between C and C ′ is
“worse” than chance.

A.2 Scaling of the datasets

All datasets used in our study were scaled with the scikit-learn standard scaler8, by
subtracting the mean and dividing by the standard deviation of each variable. That is,
for each dataset D = (xi j )i=1,...,n, j=1,...,d , with n samples and d dimensions, each
entry xi j is scaled according to

xi j − 1
n

∑n
i=1 xi j√

1
n

∑n
i=1

(
xi j − 1

n

∑n
i=1 xi j

)2
A.3 Details about the blobs dataset

The Blobs dataset9 consists of isotropic Gaussian clusters, i.e., each cluster k ∈
{1, . . . , K } (with K the number of generated clusters) corresponds to a Gaussian
distribution with covariance matrix σ 2

k Id , where σ 2
k ≥ 0 and Id is the d-dimensional

7 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html,
visited: 05/31/2021.
8 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html, visited:
05/31/2021.
9 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html, visited: 05/31/
2021.
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identity matrix. We chose a standard deviation of σk = 3 k
K for each cluster k. This

generates different variances for the clusters, making some clusters more compact and
thus easier to detect, and others more scattered and harder to find.

A.4 Bayesian optimization (BO) and the tree-structured parzen estimator (TPE)

BO approaches (see Shahriari et al. (2016) for an introduction) are popular for
optimization problems of the type argmaxx∈X f (x), where f : X �→ R is
expensive to evaluate. In each step of a BO procedure, f is modelled with a
surrogate model, based on a library of evaluations of f from previous steps:
((x (1), f (x (1)), . . . , (x (k−1), f (x (k−1))). The surrogate model is used to construct
an acquisition function, which is cheaper to evaluate and easier to optimize than
f , yielding the optimal argument x (k). Then (x (k), f (xk)) is added to the library,
and the process is repeated by updating the surrogate model. The concrete surrogate
model and the acquisition function of the TPE were chosen by Bergstra et al. (2011)
such that optimization of the acquisition function ultimately leads to optimization of
x �→ l(x)/g(x), where l(x), g(x) are two Gaussian Mixture Models. l(x) is fitted to
the observations (x (i))i that performed well so far, i.e., for which f (x (i)) > y∗ for
some threshold value y∗. g(x) is fitted to the remaining observations. The threshold y∗
is chosen as a quantile of the observed y(i) = f (x (i)) values, such that p(y > y∗) = γ

for a suitable γ ∈ (0, 1). Formore details on the TPE, see the original paper of Bergstra
et al. (2011), the Optuna documentation10, and our reproducible code.

A.5 Default settings for the hyperparameters of the cluster algorithms

For the analysis in Sect. 4.1 (optimizing datasets and data characteristics), we used
defaults or heuristics for the hyperparameters of the cluster algorithms which a
researcher could justify as “reasonable choices”. For Rock, we chose tmax = 15,
as in the original paper of Beer et al. (2019). For k-Means and Spectral Clustering
we used the number of ground truth clusters for the parameter k and the default
settings from scikit-learn. For DBSCAN, we followed Schubert et al. (2017) to set
minPts = 2d with d being the number of dimensions. Moreover, we set eps = 0.2,
which can be seen as a sensible value, given that the samples were scaled to unit vari-
ance. For estimation of the bandwidth for Mean Shift we use the scikit-learn function
estimate_bandwidth11.
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Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27
Cerioli A, García-Escudero LA, Mayo-Iscar A, Riani M (2018) Finding the number of normal groups in

model-based clustering via constrained likelihoods. J Comput Graph Stat 27(2):404–416
Chhabra A, Roy A, Mohapatra P (2020) Suspicion-free adversarial attacks on clustering algorithms. Proc

AAAI Conf Artif Intell 34:3625–3632
Davé RN, Krishnapuram R (1997) Robust clustering methods: a unified view. IEEE Trans Fuzzy Syst

5(2):270–293
Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. PAMI-

1(2):224–227
Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml
Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large

spatial databases with noise. In: KDD’96: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, pp 226–231

Ferrari Dacrema M, Boglio S, Cremonesi P, Jannach D (2021) A troubling analysis of reproducibility and
progress in recommender systems research. ACM Trans Inf Syst 39(2):1–49

Fukunaga K, Hostetler L (1975) The estimation of the gradient of a density function, with applications in
pattern recognition. IEEE Trans Inf Theory 21(1):32–40

Gan J, Tao Y (2015) DBSCAN revisited: mis-claim, un-fixability, and approximation. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, pp 519–530

Goodfellow I, McDaniel P, Papernot N (2018) Making machine learning robust against adversarial inputs.
Commun ACM 61(7):56–66

Halkidi M, Vazirgiannis M, Hennig C (2015) Method-independent indices for cluster validation and esti-
mating the number of clusters. In: Hennig C, Meila M, Murtagh F, Rocci R (eds) Handbook of cluster
analysis. Chapman and Hall/CRC, Boca Raton, pp 616–639

Hennig C (2015) What are the true clusters? Pattern Recogn Lett 64:53–62
Hennig C (2021) An empirical comparison and characterisation of nine popular clustering methods. Adv

Data Anal Classif. https://doi.org/10.1007/s11634-021-00478-z
Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
Jelizarow M, Guillemot V, Tenenhaus A, Strimmer K, Boulesteix AL (2010) Over-optimism in bioinfor-

matics: an illustration. Bioinformatics 26(16):1990–1998

123



T. Ullmann et al.

Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis. John Wiley
& Sons, Hoboken, NJ

Kvalseth TO (1987) Entropy and correlation: some comments. IEEETrans SystManCybern 17(3):517–519
Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137
McLachlan GJ, Lee SX, Rathnayake SI (2019) Finite mixture models. Ann Rev Stat Appl 6:355–378
Meila M (2015) Criteria for comparing clusterings. In: Hennig C, Meila M, Murtagh F, Rocci R (eds)

Handbook of cluster analysis. Chapman and Hall/CRC, London, pp 640–657
Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: Analysis and an algorithm. In: Proceedings of

the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic,
pp 849–856

Norel R, Rice JJ, Stolovitzky G (2011) The self-assessment trap: can we all be better than average? Mol
Syst Biol 7(1):537

Nuzzo R (2015) How scientists fool themselves-and how they can stop. Nat News 526:182–185
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss

R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Pfitzner D, Leibbrandt R, Powers D (2009) Characterization and evaluation of similarity measures for pairs
of clusterings. Knowl Inf Syst 19(3):361–394

Schubert E, Sander J, Ester M, Kriegel HP, Xu X (2017) DBSCAN revisited, revisited: why and how you
should (still) use DBSCAN. ACM Trans Database Syst 42(3):1–21

Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2016) Taking the human out of the loop: a
review of Bayesian optimization. Proc IEEE 104(1):148–175

Strehl A, Ghosh J (2002) Cluster ensembles–a knowledge reuse framework for combining multiple parti-
tions. J Mach Learn Res 3:583–617

Tufte E (1983) The visual display of quantitative information. Graphics Press, Cheshire, CT
Ullmann T, Hennig C, Boulesteix AL (2021) Validation of cluster analysis results on validation data:

a systematic framework. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
e1444

Van Mechelen I, Boulesteix AL, Dangl R, Dean N, Guyon I, Hennig C, Leisch F, Steinley D (2018)
Benchmarking in cluster analysis: a white paper. arXiv preprint arXiv:1809.10496

Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants,
properties, normalization and correction for chance. J Mach Learn Res 11:2837–2854

Xu R, Wunsch DC (2010) Clustering algorithms in biomedical research: a review. IEEE Rev Biomed Eng
3:120–154

Yousefi MR, Hua J, Sima C, Dougherty ER (2010) Reporting bias when using real data sets to analyze
classification performance. Bioinformatics 26(1):68–76

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123



Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. 5)
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