22 research outputs found

    A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).

    Get PDF
    BACKGROUND: Management algorithms for adult severe traumatic brain injury (sTBI) were omitted in later editions of the Brain Trauma Foundation's sTBI Management Guidelines, as they were not evidence-based. METHODS: We used a Delphi-method-based consensus approach to address management of sTBI patients undergoing intracranial pressure (ICP) monitoring. Forty-two experienced, clinically active sTBI specialists from six continents comprised the panel. Eight surveys iterated queries and comments. An in-person meeting included whole- and small-group discussions and blinded voting. Consensus required 80% agreement. We developed heatmaps based on a traffic-light model where panelists' decision tendencies were the focus of recommendations. RESULTS: We provide comprehensive algorithms for ICP-monitor-based adult sTBI management. Consensus established 18 interventions as fundamental and ten treatments not to be used. We provide a three-tier algorithm for treating elevated ICP. Treatments within a tier are considered empirically equivalent. Higher tiers involve higher risk therapies. Tiers 1, 2, and 3 include 10, 4, and 3 interventions, respectively. We include inter-tier considerations, and recommendations for critical neuroworsening to assist the recognition and treatment of declining patients. Novel elements include guidance for autoregulation-based ICP treatment based on MAP Challenge results, and two heatmaps to guide (1) ICP-monitor removal and (2) consideration of sedation holidays for neurological examination. CONCLUSIONS: Our modern and comprehensive sTBI-management protocol is designed to assist clinicians managing sTBI patients monitored with ICP-monitors alone. Consensus-based (class III evidence), it provides management recommendations based on combined expert opinion. It reflects neither a standard-of-care nor a substitute for thoughtful individualized management

    A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).

    Get PDF
    BACKGROUND: Current guidelines for the treatment of adult severe traumatic brain injury (sTBI) consist of high-quality evidence reports, but they are no longer accompanied by management protocols, as these require expert opinion to bridge the gap between published evidence and patient care. We aimed to establish a modern sTBI protocol for adult patients with both intracranial pressure (ICP) and brain oxygen monitors in place. METHODS: Our consensus working group consisted of 42 experienced and actively practicing sTBI opinion leaders from six continents. Having previously established a protocol for the treatment of patients with ICP monitoring alone, we addressed patients who have a brain oxygen monitor in addition to an ICP monitor. The management protocols were developed through a Delphi-method-based consensus approach and were finalized at an in-person meeting. RESULTS: We established three distinct treatment protocols, each with three tiers whereby higher tiers involve therapies with higher risk. One protocol addresses the management of ICP elevation when brain oxygenation is normal. A second addresses management of brain hypoxia with normal ICP. The third protocol addresses the situation when both intracranial hypertension and brain hypoxia are present. The panel considered issues pertaining to blood transfusion and ventilator management when designing the different algorithms. CONCLUSIONS: These protocols are intended to assist clinicians in the management of patients with both ICP and brain oxygen monitors but they do not reflect either a standard-of-care or a substitute for thoughtful individualized management. These protocols should be used in conjunction with recommendations for basic care, management of critical neuroworsening and weaning treatment recently published in conjunction with the Seattle International Brain Injury Consensus Conference

    Simulating property exchange in estuarine ecosystem models at ecologically appropriate scales

    No full text
    A computational scheme has been developed and tested to simulate property exchange by advection and dispersion in estuaries at time and space scales that are well suited to ecological and management simulations, but are coarse relative to the demands of physical hydrodynamic models. An implementation of the Regional Ocean Model System (ROMS) for the Providence River and Narragansett Bay (RI, USA) was used to determine property exchanges between the spatial elements of an ecological box model. The basis for the method is the statistical tabulation of numerical dye experiments done with the full ROMS physical model. The ROMS model domain was subdivided into fifteen coarse boxes, each with two vertical layers, defining 30 elements that were used for the box model simulations. Dye concentrations were set to arbitrary initial concentrations for all ROMS grids in the large elements, and the ROMS model was run for 24 h. The final distribution of the dye among the elements was used as a tracer for property exchange over that day and was used to develop an exchange matrix. Box model predictions of salinity over 77 days in each element compared favorably with ROMS simulated salinity averaged over the same spatial elements, although the disparity was greater in areas where large river inflows caused strong gradients in ROMS within elements assumed to be homogeneous in the box model. The 77-day simulation included periods of high and low river flow. Despite the large size of the spatial elements, dispersion artifacts were small, much less than the modeled daily exchanges. While others have taken a similar approach, we found a number of theoretical and practical considerations deserved careful attention for this approach to perform satisfactorily. Whereas the full ROMS model takes 9 days on a powerful computing cluster to compute the physics simulation for 77 days, the box model simulates physics and biology for the same interval in 5 s on a personal computer, and a full year in under 1 min. The exchange matrix mixing model is a fast, cost effective, and convenient way to simulate daily variation of complex estuarine physics in ecological modeling at appropriate scales of space and time. © 2010 Elsevier B.V

    Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations

    No full text
    When the fourth edition of the Brain Trauma Foundation’s Guidelines for the Managementof Severe Traumatic Brain Injury were finalized in late 2016, it was known that the resultsof the RESCUEicp (Trial of Decompressive Craniectomy for Traumatic Intracranial Hyper-tension) randomized controlled trial of decompressive craniectomy would be public afterthe guidelines were released. The guideline authors decided to proceed with publi-cation but to update the decompressive craniectomy recommendations later in the spiritof “living guidelines,” whereby topics are updated more frequently, and between neweditions, when important new evidence is published. The update to the decompressivecraniectomy chapter presented here integrates the findings of the RESCUEicp study aswell as the recently published 12-mo outcome data from the DECRA (DecompressiveCraniectomy in Patients With Severe Traumatic Brain Injury) trial. Incorporation of thesepublications into the body of evidence led to the generation of 3 new level-IIA recommen-dations; a fourth previously presented level-IIA recommendation remains valid and hasbeen restated. To increase the utility of the recommendations, we added a new sectionentitledIncorporating the Evidence into Practice.This summary of expert opinion providesimportant context and addresses key issues for practitioners, which are intended to helpthe clinician utilize the available evidence and these recommendations
    corecore