8 research outputs found

    Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo

    Get PDF
    While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential

    A Study on Synthesis and Upscaling of 2′-O-AECM-5-methyl Pyrimidine Phosphoramidites for Oligonucleotide Synthesis

    No full text
    2′-O-(N-(Aminoethyl)carbamoyl)methyl-modified 5-methyluridine (AECM-MeU) and 5-methylcytidine (AECM-MeC) phosphoramidites are reported for the first time and prepared in multigram quantities. The syntheses of AECM-MeU and AECM-MeC nucleosides are designed for larger scales (approx. 20 g up until phosphoramidite preparation steps) using low-cost reagents and minimizing chromatographic purifications. Several steps were screened for best conditions, focusing on the most crucial steps such as N3 and/or 2′-OH alkylations, which were improved for larger scale synthesis using phase transfer catalysis (PTC). Moreover, the need of chromatographic purifications was substantially reduced by employing one-pot synthesis and improved work-up strategies

    A Study on Synthesis and Upscaling of 2′-<i>O</i>-AECM-5-methyl Pyrimidine Phosphoramidites for Oligonucleotide Synthesis

    No full text
    2′-O-(N-(Aminoethyl)carbamoyl)methyl-modified 5-methyluridine (AECM-MeU) and 5-methylcytidine (AECM-MeC) phosphoramidites are reported for the first time and prepared in multigram quantities. The syntheses of AECM-MeU and AECM-MeC nucleosides are designed for larger scales (approx. 20 g up until phosphoramidite preparation steps) using low-cost reagents and minimizing chromatographic purifications. Several steps were screened for best conditions, focusing on the most crucial steps such as N3 and/or 2′-OH alkylations, which were improved for larger scale synthesis using phase transfer catalysis (PTC). Moreover, the need of chromatographic purifications was substantially reduced by employing one-pot synthesis and improved work-up strategies

    Synthesis of Biotin Linkers with the Activated Triple Bond Donor [p-(N-propynoylamino)toluic Acid] (PATA) for Efficient Biotinylation of Peptides and Oligonucleotides

    No full text
    Biotin is an important molecule for modern biological studies including, e.g., cellular transport. Its exclusive affinity to fluorescent streptavidin/avidin proteins allows ready and specific detection. As a consequence methods for the attachment of biotin to various biological targets are of high importance, especially when they are very selective and can also proceed in water. One useful method is H&amp;#252;isgen dipolar [3+2]-cycloaddition, commonly referred to as &amp;#8220;click chemistry&amp;#8221;. As we reported recently, the activated triple bond donor p-(N-propynoylamino)toluic acid (PATA) gives excellent results when used for conjugations at submicromolar concentrations. Thus, we have designed and synthesized two biotin linkers, with different lengths equipped with this activated triple bond donor and we proceeded with biotinylation of oligonucleotides and C-myc peptide both in solution and on solid support with excellent yields of conversion

    Synthesis and stability studies of bicyclo[6.1.0]nonyne scaffolds for automated solid-phase oligonucleotide synthesis

    No full text
    Two novel bicyclo[6.1.0]nonyne (BCN) linker derivatives, which can be directly incorporated into oligonucleotide sequences during standard automated solid-phase synthesis, are reported. Stabilities of BCN-carbinol and two BCN-oligonucleotides are evaluated under acidic conditions. In addition, derivatized BCN linkers (non-acidic and acid treated) are evaluated for strain-promoted alkyne-azide cycloaddition (SPAAC).</p
    corecore