23 research outputs found

    Surrogate modeling for computer aided engineering design and optimization

    Get PDF

    Fast design optimization of UWB antenna with WLAN Band-Notch

    Get PDF
    In this paper, a methodology for rapid design optimization of an ultra-wideband ( UWB) monopole antenna with a lower WLAN band-notch is presented. The band-notch is realized using an open loop resonator implemented in the radiation patch of the antenna. Design optimization is a two stage process, with the first stage focused on the design of the antenna itself, and the second stage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. Both optimization stages are realized using surrogate-based optimization involving variable-fidelity electromagnetic ( EM) simulation models as well as an additive response correction ( first stage), and sequential approximate optimization ( second stage). The final antenna design is obtained at the CPU cost corresponding to only 23 high-fidelity EM antenna simulations

    Performance study of multi-fidelity gradient enhanced kriging

    Get PDF
    Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples

    Appliction of nontraditional optimization techniques for airfoil shape optimization

    Get PDF
    The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization (PSO), are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0 deg angle of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA which is considered to be more effective explorer

    Cost-efficient modeling of antenna structures using Gradient Enhanced Kriging

    Get PDF
    Reliable yet fast surrogate models are indispensable in the design of contemporary antenna structures. Data-driven models, e.g., based on Gaussian Processes or support-vector regression, offer sufficient flexibility and speed, however, their setup cost is large and grows very quickly with the dimensionality of the design space. In this paper, we propose cost-efficient modeling of antenna structures using Gradient-Enhanced Kriging. In our approach, the training data set contains, apart from the EM-simulation responses of the structure at hand, also derivative data at the respective training locations obtained at little extra cost using adjoint sensitivity techniques. We demonstrate that introduction of the derivative information into the model allows for considerable reduction of the model setup cost (in terms of the number of training points required) without compromising its predictive power. The Gradient-Enhanced Kriging technique is illustrated using a dielectric resonator antenna structure. Comparison with conventional Kriging interpolation is also provided

    Performance study of gradient-enhanced Kriging

    Get PDF
    The use of surrogate models for approximating computationally expensive simulations has been on the rise for the last two decades. Kriging-based surrogate models are popular for approximating deterministic computer models. In this work, the performance of Kriging is investigated when gradient information is introduced for the approximation of computationally expensive black-box simulations. This approach, known as gradient-enhanced Kriging, is applied to various benchmark functions of varying dimensionality (2D-20D). As expected, results from the benchmark problems show that additional gradient information can significantly enhance the accuracy of Kriging. Gradient-enhanced Kriging provides a better approximation even when gradient information is only partially available. Further comparison between gradient-enhanced Kriging and an alternative formulation of gradient-enhanced Kriging, called indirect gradient-enhanced Kriging, highlights various advantages of directly employing gradient information, such as improved surrogate model accuracy, better conditioning of the correlation matrix, etc. Finally, gradient-enhanced Kriging is used to model 6- and 10-variable fluid-structure interaction problems from bio-mechanics to identify the arterial wall's stiffness
    corecore