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Abstract The use of surrogate models for approximating computationally
expensive simulations has been on the rise for the last two decades. Kriging-
based surrogate models are popular for approximating deterministic computer
models. In this work, the performance of Kriging is investigated when gradient
information is introduced for the approximation of computationally expensive
black-box simulations. This approach, known as Gradient Enhanced Kriging,
is applied to various benchmark functions of varying dimensionality (2D-20D).
As expected, results from the benchmark problems show that additional gra-
dient information can significantly enhance the accuracy of Kriging. Gradient
Enhanced Kriging provides a better approximation even when gradient in-
formation is only partially available. Further comparison between Gradient
Enhanced Kriging and an alternative formulation of Gradient Enhanced Krig-
ing, called indirect Gradient Enhanced Kriging, highlights various advantages
of directly employing gradient information, such as improved surrogate model
accuracy, better conditioning of the correlation matrix, etc. Finally, Gradient
Enhanced Kriging is used to model 6- and 10-variable Fluid-Structure Inter-
action problems from bio-mechanics to identify the arterial wall’s sti↵ness.
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1 Introduction

The computational complexity of simulation codes, such as computational fluid
dynamics (CFD) and finite element (FE) analysis, has grown rapidly in recent
years, despite the continual advancement in computing power. In this respect,
mimicking the behaviour of computationally intensive functions with simple
approximations, known as surrogate models (surrogate modelling), has gained
much attention among researchers over the past two decades. The aim of sur-
rogate modelling is to accurately mimic the behaviour of a computationally
expensive simulator over an input space of interest based on a limited number
of expensive simulations (data points). To that end, it is crucial to take advan-
tage of all additional available information, such as gradients, Hessian data,
multi-fidelity data, prior knowledge, etc. [3,8,21,39,40]. For example, Kennedy
and O’Hagan [14] investigated surrogate modelling techniques based on multi-
fidelity data of variable computational cost. Yamazaki et al. [38] developed
gradient and Hessian enhanced surrogate models with improved accuracy over
models based on function data only. This is also the context of the work pre-
sented here; but, this work is more concerned with investigating the e↵ect of
a complete or partial set of gradient enhancement on the accuracy of the sur-
rogate models.

Simpson et al. [30] and Wang et al. [37] provided an overview of various
surrogate modelling techniques. Among them, Kriging, which was proposed by
Sacks et al. [27] for the design and analysis of computer experiments, is very
popular in computer aided engineering (CAE) applications to approximate
deterministic data [16,26,29]. The modelling e�ciency of Kriging is largely
determined by the ability of its correlation function to capture the actual local
behaviour of the function to be modelled. Hence, properties such as smooth-
ness, di↵erentiability, etc. of correlation functions play a significant role in the
spatial interpolation abilities of Kriging. Morris et al. [23] proposed an exten-
sion of Kriging, called direct CoKriging method, which incorporates gradient
information along with the function values to provide a more accurate approx-
imation. As the term CoKriging is more used to describe multi-fidelity data
modelling, we use the term direct Gradient Enhanced Kriging (GEK) instead
to avoid confusion. Chung et al. [2] compared direct GEK with an alternative
formulation of GEK, called indirect GEK, which uses the same mathemat-
ical formulation of Kriging, but augments the training data with additional
function values estimated from the gradient information. The authors applied
both GEK methodologies to an aerodynamic shape optimization problem and
stated that both formulations are almost identical in performance. The authors
further stated that indirect GEK is prone to numerical errors introduced dur-
ing the estimation of additional function values from gradients whereas direct
GEK exhibits formulation complexity at high dimensionality. Weiyu Liu [20]
further investigated indirect GEK and proposed an alternative approach based
on Neural Networks, trained with both function and gradient data, but its
performance is lower than indirect GEK. Laurenceau and Sagaut [18] studied
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an aerodynamic problem with direct and indirect formulations of GEK and
concluded that indirect GEK outperforms direct GEK irrespective of their
equivalent mathematical formulations.

GEK has an extra requirement that the correlation function must be twice
di↵erentiable in order to calculate the correlation between gradient observa-
tions. An elaborate discussion on various di↵erentiable correlation functions
is given by various authors [24,25,31,36]. The Gaussian correlation structure
is more commonly used in Kriging. However, Stein argues that the Gaussian
correlation structure does not provide much flexibility in capturing the ac-
tual local behaviour of spatially varying quantities and encourages the use of
the Matérn class of correlation functions due to its flexibility and manageable
number of parameters [31].

In this paper, we are particularly interested in investigating the e↵ect of
gradient enhancement in Kriging with various correlation functions. To that
end, the analytical expressions for the derivatives of various correlation func-
tions with respect to design variables are derived, and the GEK methodology
is also investigated if only a part of the gradient information is available. Based
on the results of this investigation, a rule-of-thumb is proposed for the selec-
tion of GEK over Ordinary Kriging (OK) with respect to surrogate model
accuracy and extra computational cost of estimating derivatives. In addition,
a guideline is developed to improve the conditioning of the correlation matrix
of GEK based on the tentative relationship between the values of the hyper-
parameters and the accuracy of GEK models. Further, a guideline is suggested
to reduce the surrogate model fitting cost of GEK by sorting the most rele-
vant dimensions and only incorporating derivatives which correspond to those
dimensions. Furthermore, the analytical equation of the likelihood gradients
is derived and integrated in the GEK formulation, by evaluating the gradients
of various correlation functions with respect to the hyper-parameters. This
study is carried out by applying GEK to various benchmark functions of vary-
ing dimensionality (2D-20D) and to one real-life problem from bio-mechanics.
This study captures and highlights the e�ciency, applicability and limitations
associated with Gradient Enhanced Kriging.

The remaining part of this paper is structured as follows: in Section 2, the
mathematical formulation of Gradient Enhanced Kriging is presented. Section
3 discusses gradient incorporation in various correlation functions which are
suitable for Gradient Enhanced Kriging. Section 4 lists the employed bench-
mark and the real-life problems. Test results are presented and discussed in
Section 5. Finally, conclusions are drawn in Section 6.
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2 Gradient Enhanced Kriging (GEK)

The mathematical form of a Kriging model has two parts as shown in Equation
1. The first part, µ̂, represents a trend function and the second part, which
captures the local deviations from the trend function, is the realization of a
stationary Gaussian random process.

ŷ(x⇤) = µ̂+ T

 

�1(y � 1µ̂), (1)

where the column vector  contains the correlation between the sample data
and a prediction point x⇤, y corresponds to the column vector of function val-
ues (a.k.a. response throughout this paper) from the sample data and  is the
correlation matrix which contains the correlation between the sampled data
points. Various correlation functions can be employed based on available prior
information about the underlying function to be modelled. This is discussed
in Section 3.

In the case of GEK, the correlation matrix ( ) in Equation 1 becomes a
block matrix,
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where k is the dimensionality, i.e., number of design variables. Hence, Equation
1 for GEK becomes,

ŷ(x⇤) = ˆ̇µ+  ̇
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�1(ẏ � f

ˆ̇µ), (3)

where

 ̇ =

 
 

T ,

✓
@ 

@x1

◆
T

, ...,

✓
@ 

@x
k

◆
T

!
T

, (4)
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where n
s

is the number of sample points and the correlation vector  ̇ contains
the correlation of both function values and gradients between the sample data
and the prediction point x⇤. The vector, ẏ, contains both the function values
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and gradients of the sample data. The constant trend function for GEK, ˆ̇µ, is
calculated via the general least square method as,

ˆ̇µ = (fT  ̇�1
f)�1

f

T

 ̇

�1
ẏ. (7)

The hyper-parameters of the GEK model (✓
m

,m = 1, ..., k. See Section 3)
can be obtained by maximizing the concentrated likelihood function,

� =
�(k + 1)n

s

ln(�̂2)� ln| ̇|
2

, (8)

where �̂2 is the estimated GEK variance which can be expressed as,
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3 Correlation Functions

The choice of correlation functions is important in GEK, as the correlation
functions must be di↵erentiated once to calculate the correlation between re-
sponse and gradient observations. Additionally, the correlation functions must
be di↵erentiated twice to calculate the correlation between gradient observa-
tions. Due to this fact, we limit ourselves to one stationary correlation function
and two instances of the Matérn class of correlation functions.

A popular class of stationary correlation functions is defined as [8],

 (d) = exp

 
�

kX

m=1
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m

dpm
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!
, (10)

where d = |xi

m

� xj

m

| and p is the smoothness parameter which defines the
drop in correlation as d increases. A popular and more widely-used special case
of the class of stationary correlation functions, which corresponds to setting
p = 2, is the Gaussian correlation function [7,15,32]. The Gaussian correlation
function assumes that the spatially varying function is smooth and continuous.

Stein [31] argues that such strong smoothness assumptions are unrealis-
tic for modelling many physical processes, and recommends the Matérn class
of correlation functions for its flexibility and highly recommendable spectral
density. The flexibility is mainly due to its smoothness parameter (⌫ - similar
to p in stationary correlation functions), as various values of ⌫ guarantee good
modelling accuracy for smooth surfaces (for ⌫ ! 1, it becomes the Gaussian
correlation function) as well as rough surfaces (⌫ ! 0). Based on the value of
⌫, various instances of Matérn correlation functions are available. Matérn 3

2
and Matérn 5

2 , which are more widely used in the machine learning context,
can be described as,
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Instances of Matérn class of correlation functions are w times di↵erentiable
if and only if ⌫ > w [25,31]. Hence, the Matérn 5

2 instance is twice di↵erentiable
whereas the Matérn 3

2 instance does not satisfy the di↵erentiability require-
ment of GEK. But, recently Lockwood and Anitescu [21] used the Matérn 3

2
correlation function in GEK and showed that the directional derivatives of
the correlation function agree up to order 2, irrespective of the appearance of
the absolute value in the correlation. Due to this nature and the highly rough
behaviour of instances with ⌫ < 3

2 , the Matérn 3
2 and 5

2 correlation functions
are used in this work to study the modelling performance of GEK for various
test cases.

The gradient and the Hessian for the Gaussian correlation function are
given by Equations 13 and 14, respectively.
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The gradient and (somewhat convoluted form of) the Hessian for the
Matérn 3

2 correlation function are given by Equations 15 and 16, respectively.
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The gradient and the Hessian for the Matérn 5
2 correlation function are

given by Equations 17 and 18, respectively.
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Fig. 1: 1D correlation function (Gaussian)

Figures 1-3 show the influence of ✓
k

on the one dimensional correlation and
cross-correlation functions of the Gaussian, Matérn 3

2 and Matérn 5
2 correlation

functions. Figures 1a-3a show how far the influence of a sample point extends.
Lower values of ✓

k

denote higher correlation among the sample points while
the higher values denote that function values can change rapidly over a small
region. Figures 1b-3b show how much deviation can happen from the surrogate
model constructed with the first set of basis functions (i.e., correlation between
the response values). Lower values of ✓

k

denote that larger areas are being
influenced by the gradient value while the higher values denote smaller areas
of distortion. The same kind of behaviour is depicted in Figures 1c-3c with
twice di↵erentiated correlation functions. For more elaborate information on
how the choice of ✓

k

can influence the overall surrogate model accuracy, the
reader is referred to [8].

The k dimensional non-linear optimization, which is performed to calcu-
late suitable values of hyper-parameters, is the most time consuming part of
Kriging. The optimization becomes even more computationally expensive in
GEK as the correlation matrix has an additional n

s

⇥ k rows/columns. If the
Cholesky decomposition is used to factorize  ̇, then the optimization requires
a computational cost of O(((k+1)n

s

)3) and a memory cost of O(((k+1)n
s

)2).
The Cholesky decomposition is the most expensive part of the optimization
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and, thus, the gradients of the likelihood with respect to the hyper-parameters
✓
k

are utilized to reduce the number of likelihood evaluations. Though the gra-
dient estimation imposes an additional computational and memory cost, this
may not be a significant issue for low-dimensional problems (k  20). The
likelihood gradients can either be calculated analytically or using reverse al-
gorithmic di↵erentiation of the likelihood. The latter is much faster and less
dependent on the number of inputs [33]. In this work, the likelihood gradients
for the GEK are calculated analytically by estimating the derivative of the
concentrated likelihood function with respect to the hyper-parameters as [33],
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Equation 19 can be solved once the derivatives of every element of  ̇ with
respect to ✓

k

are calculated. As those derivatives are somewhat cumbersome
to calculate, their analytical expressions are given in Appendix A. The deriva-
tive of the correlation and the cross-correlation functions with respect to ✓

k

for the Gaussian, Matérn 3
2 and Matérn 5

2 correlation functions are given by
Equations 22 - 25, 26 - 30 and 31 - 36, respectively.

In this work, the k dimensional non-linear optimization is performed with
Sequential Quadratic Programming (SQP) utilizing gradient information which
is available in MATLAB1 as the fmincon function. During the likelihood op-
timization, Equation 19 is solved for each hyper-parameter. As the analytical
gradients of the likelihood function with respect to each hyper-parameter are
passed to the optimizer along with the value of the likelihood function, the
optimizer can quickly converge to the optimal values of the hyper-parameters
with few evaluations of the likelihood function. This reduces the number of
likelihood function evaluations, which in turn reduces the overall surrogate
modelling time.

4 Problem Formulation

Four widely used benchmark functions2 are employed as test functions, see
Table 1. The gradient values of the benchmark functions with respect to the
design variables are analytically calculated. A numerical simulator [5] that
determines the di↵erence between a given wall displacement and a calculated
wall displacement for a given sti↵ness distribution along the length of an artery
is used as a simulation example. Further details of this problem are given in
Appendix B. The accuracy of resulting surrogate models is estimated with two
di↵erent error measures: A validation data set and ‘K-fold’ Cross Validation
(CV) [22], both using the Normalized Root Mean Square Error (NRMSE).

1 MATLAB, The MathWorks, Inc., Natick, Massachusetts, USA
2 www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar files/TestGO files/Page364.htm
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Fig. 2: 1D correlation function (Matérn 3
2 )

The validation data set contains 500 Monte Carlo points (n
p

). The NRMSE
for the response prediction can be defined as,

Table 1: Benchmark Test Problems

Benchmark Test Number of Properties
Functions Dimensions
Fourhump camel back 2 Multi modal
Ackley 3 Multi modal
Hartmann 6 Multi modal
Rosenbrock 8 Unimodal and non-convex
Rosenbrock 20 Unimodal and non-convex

NRMSE =

rP
n

p

i=1(yi

t

�ŷ

i)2

n

p

max(y
t

)�min(y
t

)
, (20)

where y
t

is the true response and ŷ is the predicted response.
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Fig. 3: 1D correlation function (Matérn 5
2 )

Kriging surrogate models often require space-filling designs [16]. In this
work, the class of Audze-Eglais Latin hypercube designs is considered to gen-
erate sample points [13]. The Audze-Eglais Latin hypercube designs provided
by [13] supports up to a maximum of 300 sample points. Hence, the class
of maximin Latin hypercube designs available in MATLAB is used to gener-
ate samples ranging from 100 to 1000. Moreover, the uniformly distributed
pseudorandom designs available in MATLAB are also used to investigate the
evolution of NRMSE, which is averaged over 50 independent runs for each
sample size, with respect to the number of sample points (n

s

).

5 Results and Analysis

5.1 Benchmark Test Problems

Figures 4-7 show the evolution of NRMSE as a function of the number of
training samples (n

s

) for the benchmark test functions. As expected, the per-
formance deviation of GEK over Ordinary Kriging (OK) is more pronounced
with increasing sample size and dimensionality (k). This is essentially due to
the fact that at a given n

s

, GEK incorporates more information in the form
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of derivatives as the dimensionality of the problem increases. Although one
can expect that both GEK and OK will converge to a similar accuracy level
once a su�cient number of sample points is reached to model the underlying
function, it is often di�cult to know the appropriate size of the training data a
priori. Though no general rule can be extracted about the required sample size
for GEK to reach the accuracy level of OK as it is based on the complexity
of the underlying function, a considerable sample reduction (50% - 90%) is
achieved by GEK. The reduction in sample size achieved with GEK, in terms
of % of reduction in sample size, to reach the same accuracy level of OK with
n
s

= 100 is given in Table 2.

In order to understand the robustness of GEK with various correlation
functions, benchmark test functions are modelled using random designs in-
stead of optimal Audze-Eglais Latin hypercube designs (Figures 8-10). For
each number of training samples, ranging from 10 to 100 samples in steps
of 10 samples, 50 random designs are constructed. Thus, the fitting of the
OK and the GEK models is repeated 50 times for each training sample size.
Almost an equal degree of improvement in performance over the OK mod-
els is achieved by the GEK models with di↵erent correlation functions. No
single correlation function is observed to completely outperform its counter-
parts. However, the Gaussian and the Matérn 5

2 correlation functions are the
most consistent. Moreover, it is important to note that the Matérn 3

2 cor-
relation function doesn’t deviate much from its near (Matérn 5

2 correlation
function) and extreme (the Gaussian correlation function when ⌫ ! 1) coun-
terparts irrespective of the conservative second-order di↵erentiability nature
as explained in Section 3. For more information on the suitability of various
correlation functions in Kriging-based surrogate modelling, the reader is re-
ferred to [9–11]. Tables 3, 4, 14 (Appendix C) and 15 (Appendix C) give the
CVE measure for the benchmark functions and the improvement in surrogate
model accuracy reached by the GEK models against the Gaussian correlation
function based OK models.

Table 2: Reduction in n
s

with GEK (NRMSE on validation data set)

Benchmark % of reduction in n

s

by GEK to reach the
Function same accuracy level of OK with n

s

= 100
Response Derivative
Prediction Prediction

Ackley-3D > 50%± 5.34% > 50%± 5.23%
Hartmann-6D > 50%± 5.57% > 50%± 5.25%
Rosenbrock-8D > 70%± 7.75% > 70%± 7.93%
Rosenbrock-20D > 60%± 6.88% > 85%± 6.07%
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Fig. 4: Evolution of the NRMSE (Ackley-3D)
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Fig. 5: Evolution of the NRMSE (Hartmann-6D)
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Fig. 7: Evolution of the NRMSE (Rosenbrock-20D)
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Fig. 8: Evolution of the NRMSE (averaged over 50 independent runs) (Ackley-
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Fig. 10: Evolution of the NRMSE (averaged over 50 independent runs)
(Rosenbrock-8D)

Table 3: Prediction of Response

Benchmark CV Error [10 - fold] [n
s

= 100/ 140(20D)]
Function

Gaussian Matérn 3
2 Matérn 5

2

OK GEK OK GEK OK GEK
Ackley-3D 2.36e-01 1.24e-01 2.03e-01 1.28e-01 2.31e-01 1.16e-01
Hartmann-6D 3.02e-01 1.18e-01 2.82e-01 1.52e-01 2.89e-01 1.27e-01
Rosenbrock-8D 3.04e-01 2.62e-02 1.71e-01 8.47e-02 1.67e-01 7.09e-02
Rosenbrock-20D 3.23e-01 2.01e-01 3.23e-01 1.84e-01 3.23e-01 1.75e-01

Table 4: E�ciency of GEK and the Matérn class of correlation functions (Pre-
diction of Response)

Benchmark % of [10 - fold] [n
s

= 100/ 140(20D)]
Function Improvement

Gaussian Matérn 3
2 Matérn 5

2

OK GEK OK GEK OK GEK
Ackley-3D - 47%± 2% 14%± 2% 45%± 2% 2%± 2% 51%± 2%
Hartmann-6D - 61%± 2% 7%± 2% 50%± 2% 4%± 2% 58%± 2%
Rosenbrock-8D - 91%± 2% 44%± 2% 72%± 2% 45%± 2% 77%± 2%
Rosenbrock-20D - 38%± 2% 0%± 1% 43%± 2% 0%± 1% 46%± 2%

5.2 E↵ect of using partial set of Gradients

The accuracy of GEK models is assessed by leaving out gradient information
in some of the dimensions of the training sample points during modelling.
This can give an insight on how the GEK methodology will perform when the
gradient information is only partially available. In addition, this also reduces
the size of ˙

 to (n
s

+ (n
s

⇥ k0))⇥ (n
s

+ (n
s

⇥ k0)) with k0 being the number
of dimensions in which the partial set of gradients is incorporated. The GEK
methodology is observed to result in more accurate surrogate models than OK
even when the gradient information for some of the dimensions of the func-
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tion to be modelled is completely left out (Figures 11-16). The dynamics of
the left out gradients influence the surrogate model accuracy. For a given n

s

,
a minimum number of gradients in single dimension is required to produce
GEK models which are more accurate than OK models for the Hartmann 6D
function. Although it is based on the complexity of the function being mod-
elled, this feature o↵ers the possibility of improving the conditioning of ˙

 

by leaving the least influencing gradients. Tables 5-8 give the improvement in
surrogate model accuracy achieved by the GEK models, which are built with
only the partial set of gradients in the specified dimension, over the Gaus-
sian correlation function based OK models. Further, the cumulative accuracy
improvement achieved by the GEK models when gradients in more than one
dimension are successively incorporated is given by the last column in Tables
5-8. It should be noted that the sum of improvements of the GEK models of in-
dividual derivatives does not correspond to the improvement found in the GEK
model incorporating all those derivatives. This can be explained by the dif-
ferent optimal hyper-parameter values found in the GEK model incorporating
all those derivatives. The order of dimensions in Tables 5-8 corresponds to the
order of values of the hyper-parameters. The values of the hyper-parameters
in Tables 5-8 are obtained with the Gaussian correlation function based GEK
models with n

s

= 100. It can be observed that only incorporating gradients in
the highest ✓ valued dimension shows significant improvement in the accuracy
of GEK models. This means that accurate GEK models can be constructed
by only incorporating partial set of gradients which corresponds to the largest
value of ✓ 3. In addition, the GEK model fitting cost can be considerably re-
duced by sorting the most relevant dimensions and only incorporating partial
set of gradients which corresponds to those dimensions, as a GEK model with
gradients in all the dimensions might become infeasible for high dimensional
problems due to enormous size of ˙

 . From the benchmark results, only includ-
ing partial set of gradients in k

2 dimensions is observed to be a good trade-o↵
between the GEK model fitting cost and model accuracy. Moreover, the accu-
racy of GEK models with k

2 partial set of gradients is not too far from that of
GEK models with a complete k set of gradients (Tables 5-8).

5.3 Choosing GEK over OK

When the computational cost of acquiring derivative data becomes significant,
it is important to select an appropriate technique among OK and GEK. For
example, consider the Ackley 3D function for which the computational cost of
estimating one function value and one set of k dimensional derivatives are t

y

3 This fact may not be completely true in high dimensional problems where partial set
of gradients for a set of high-valued hyper-parameters is required to provide accurate GEK
models (Table 8). Again, the size of the set of high-valued hyper-parameters, which is greater
than 5 in this case, depends on the complexity of the function to be modelled.
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Fig. 11: Evolution of the NRMSE when 1st dimension gradients are left out
completely (Hartmann-6D)
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Fig. 12: Evolution of the NRMSE when 1st-3rd dimension gradients are left
out completely (Hartmann-6D)

 0.01

 0.1

 1

 10  20  30  40  50  60  70  80  90  100

N
R

M
S

E
  

 (
n

p
 =

 5
0

0
 M

C
 P

o
in

ts
)

Number of Training Sample Points (ns)

Gaussian−OK

Matérn32−OK

Matérn52−OK

Gaussian−GEK−Less Grad

Matérn32−GEK−Less Grad

Matérn52−GEK−Less Grad

(a) Prediction of Response

 0.1

 1

 10  20  30  40  50  60  70  80  90  100

N
R

M
S

E
  

 (
n

p
 =

 5
0

0
 M

C
 P

o
in

ts
)

Number of Training Sample Points (ns)

Gaussian−OK

Matérn32−OK

Matérn52−OK

Gaussian−GEK−Less Grad

Matérn32−GEK−Less Grad

Matérn52−GEK−Less Grad

(b) Prediction of Derivatives

Fig. 13: Evolution of the NRMSE when 1st-5th dimension gradients are left
out completely (Hartmann-6D)
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Fig. 14: Evolution of the NRMSE (averaged over 50 independent runs) when
1st dimension gradients are left out completely (Hartmann-6D)
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Fig. 15: Evolution of the NRMSE (averaged over 50 independent runs) when
1st-3rd dimension gradients are left out completely (Hartmann-6D)
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Fig. 16: Evolution of the NRMSE (averaged over 50 independent runs) when
1st-5th dimension gradients are left out completely (Hartmann-6D)



18 Selvakumar Ulaganathan et al.

Table 5: E�ciency of the Gaussian correlation function based GEK models
with partial set of gradients (Ackley-3D: Prediction of Response - CVE with
n
s

= 100 and n
fold

= 10)

Dimension value of ✓ % of % of cumulative
(Gaussian) Improvement Improvement

(over OK) (over OK)

1 2.38 31% 31%
2 2.36 28% 40%
3 2.26 28% 47%

Table 6: E�ciency of the Gaussian correlation function based GEK models
with partial set of gradients (Hartmann-6D: Prediction of Response - CVE
with n

s

= 100 and n
fold

= 10)

Dimension value of ✓ % of % of cumulative
(Gaussian) Improvement Improvement

(over OK) (over OK)

1 7.56 24% 24%
6 7.06 20% 27%
5 5.78 35% 42%
4 5.21 10% 49%
2 2.89 16% 60%
3 1.79 10% 61%

Table 7: E�ciency of the Gaussian correlation function based GEK models
with partial set of gradients (Rosenbrock-8D: Prediction of Response - CVE
with n

s

= 100 and n
fold

= 10)

Dimension value of ✓ % of % of cumulative
(Gaussian) Improvement Improvement

(over OK) (over OK)

1 0.0351 51% 51%
4 0.0351 58% 60%
6 0.0348 55% 72%
5 0.0344 61% 76%
2 0.0344 57% 80%
3 0.0343 48% 81%
7 0.0341 46% 88%
8 0.0100 43% 91%

and t
dy

, respectively. If t
dy=50 > 2⇥t

y=50(⇡ t
y=100), it is appropriate to choose

OK over GEK, as it provides surrogate models with comparable accuracy
to GEK without extra computational cost (Figure 4). On the contrary, if
t
dy=50 < 2 ⇥ t

y=50(⇡ t
y=100), then GEK would be an appropriate choice as

it provides more accurate surrogate models than OK with negligible extra
computational cost (Figure 4). Considering situations of this nature, a rule-of-
thumb is proposed based on the results of the benchmark functions in order
to tentatively guide one to select appropriately among OK and GEK.
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Table 8: E�ciency of the Matérn 5
2 correlation function based GEK models

with partial set of gradients (Rosenbrock-20D: Prediction of Response - CVE
with n

s

= 140 and n
fold

= 10)

Dimension value of ✓ % of cumulative
(Gaussian) Improvement

(over OK)

5-12-6-18-1 0.076-0.062-0.039-0.037-0.035 < 1%
2-19-9-8-7 0.035-0.032-0.028-0.027-0.026 39%
4-13-14-10-11 0.026-0.025-0.024-0.024-0.023 39%
3-15-16-17-20 0.022-0.022-0.020-0.019-0.010 46%

Model =

(
OK if t

dy

> ⇢t
y

GEK if t
dy

< ⇢t
y

⇢! 2 to 5,
(21)

where ⇢ is a constant relating to the dimensionality of the function to be
modelled. In general, ⇢ is either 2 or 3 for functions with k  10 and varies
between 4 and 5 for functions with 10 < k  20. If the gradients are estimated
by using an adjoint formulation based approach, the computational cost of
evaluating the gradients is independent of the dimension of the problem and
is directly proportional to the computational cost of a function evaluation. The
value of ⇢, in this case, depends on the details of the adjoint implementation
and the worst-case estimate for ⇢ is 5, with typical values varying between 2
and 3 [12].

5.4 Direct and Indirect GEK

Gradient information can also be used in an indirect way, as shown by Chung
et al. [2], where gradient information is used to estimate the nearby function
values and correspondingly a standard OK model is built (Indirect GEK). Fig-
ure 17 depicts the 2D Fourhump camel back function which is approximated
by the Direct GEK with 20 function and 40 gradient values whereas the In-
direct GEK utilizes 20 function and 40 additional function values calculated
from the available 40 gradient values. The additional function values are cal-
culated based on a first-order Taylor approximation.

As expected, the indirect formulation struggles to capture the overall pat-
tern of the underlying function while the direct formulation is able to model
the quickly varying features more accurately as the gradient information is
directly available. This is mainly caused by the complexities involved in esti-
mating the right values for the interval in the first-order Taylor formula while
calculating the additional function values for the indirect formulation. Moving
too close or too far from the location of the original sample points results in no
improvement or even a degradation in the accuracy of the indirect GEK mod-
els. As the direct formulation directly uses the gradient information, it tends
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(c) Direct GEK

Fig. 17: Direct GEK vs Indirect GEK based on 20 samples and gradients
(Fourhump-2D)

to be more accurate at higher n
s

irrespective of the problems associated with
dimensionality. Moreover, gradients estimated using finite-di↵erence methods
can also be incorporated in direct GEK. However, the computational cost of
estimating gradients using finite-di↵erence methods is very high as it takes k
function evaluations to estimate gradient values at one sample point. Hence,
the direct GEK with gradients estimated from finite-di↵erence methods is not
computationally advantageous than the indirect GEK with augmented func-
tion values. However, adjoint based-methods can be used to estimate gradients
at very low computational cost [1,2,6,12,17,28].

5.5 Fluid Structure Interaction Problem

Figures 18-21 show the evolution of the NRMSE (and the averaged NRMSE
over 50 independent runs) as a function of the number of training samples
(n

s

) for the FSI problems. A significant 80% - 90% reduction in sample size is
achieved with GEK (Table 9). The feasibility of the sample reduction can be
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assessed by explaining the rule-of-thumb proposed in Section 5.3 and the extra
computational cost associated with estimating derivatives. Table 10 gives the
computational cost of estimating the function and derivative data for the 6D
FSI function using a contemporary Ubuntu Linux desktop with 4⇥ 2.10GHz.
As per Equation 21, t

dy

should be greater than at least 2⇥t
y

in order to choose
OK over GEK. It can be observed from Table 10 that in no case t

dy

is greater
than 2 ⇥ t

y

. Hence, it is more obvious to go for GEK over OK in this case.
This choice can be further validated with the accuracy of the resulting GEK
models. Table 10 shows that 97 function values can be calculated in the time
of calculating 60 function and 6⇥ 60 derivative data for the 6D FSI function.
When OK models of 97 function values are compared with the GEK models of
60 function and 6 ⇥ 60 derivative data, the GEK models outperform the OK
models (Figures 18 and 20). A similar behaviour is exhibited for the 10D FSI
function too. The extra computational cost associated with derivative estima-
tion is quite cheap in the current case, thus making these comparisons even
more tilted in favor of GEK.

However, for a fair comparison, the surrogate model fitting cost should
be taken into account as well. As the derivative information is incorporated
in GEK, the size of  ̇ grows substantially, and, hence, the surrogate model
fitting cost. Hence, the training data of the OK models should be scaled to
account for the additional derivative information incorporated in the GEK
models. This is carried out by evaluating more function values and adding
them to the correlation matrix of OK models so that the size of  equals the
size of  ̇. This leads to an equal surrogate model fitting cost for both OK and
GEK models. Investigations on FSI problems show that OK with scaled train-
ing data results in more accurate surrogate models than GEK (Figure 22).
This result goes along with the fact that a function value is more informative
than a gradient value. However, it should be noted that the computational
burden incurred by the additional function evaluations involved in OK models
is significantly higher than the computational cost of acquiring function and
derivative data for the GEK models with  ̇ being equal in size with  .

In addition, incorporating gradient information significantly improves the
accuracy of GEK models, particularly in functions having k � 8, whereas the
OK models show very small improvement in the accuracy as the number of
response observation increases (Tables 11 and 16 (Appendix C)). Further, it
can be seen in Tables 11 and 16 that a GEK model with n

s

= 20 is more
accurate than a OK model with n

s

= 100. This may due to the fact that
the hyper-parameter optimization of the OK models fails because of the small
sample size in such a large design space. Hence the accuracy of all the OK
models are almost the same. But, the gradients restrict the possible interpo-
lation through the response data and allows the GEK models to successfully
optimize its hyper-parameters [34]. This may actually be an advantage of GEK
although in theory a response is worth more than a derivative. This can illus-
trate the feasibility of employing gradient values directly irrespective of the
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complexities involved in solving the large correlation matrix. Tables 12 and
17 (Appendix C) give the CVE measure for the FSI functions against varying
dimensionality. Again, no single correlation function completely outperforms
its counterparts.

Table 9: Reduction in n
s

with GEK (NRMSE on validation data set)

FSI % of reduction in n

s

by GEK to reach the
Function same accuracy level of OK with n

s

= 100
Response Derivative
Prediction Prediction

6D > 70%± 8.9% > 80%± 8.83%
10D > 50%± 9.2% > 80%± 9.9%

Table 10: Computational cost (6D FSI Function)

n

s

(GEK) t

y

in s t

dy

in s n

s

(OK)
10 0.0010 0.0008 18
20 0.0018 0.0012 33
30 0.0027 0.0018 50
40 0.0037 0.0024 66
50 0.0042 0.0028 84
60 0.0055 0.0033 97

Table 11: E�ciency of GEK (10D FSI Function)

n

s

Response (Matérn 5
2 )

Prediction

OK GEK

NRMSE % of improvement NRMSE % of improvement

20 1.78e-01 – 9.1e-02 49% better
40 1.76e-01 0.8% better 6.6e-02 63% better
60 1.76e-01 0.9% better 5.4e-02 69% better
80 1.76e-01 1.0% better 4.5e-02 75% better
100 1.76e-01 1.0% better 4.1e-02 77% better
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Fig. 18: Evolution of the NRMSE (6D FSI Function)
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Fig. 19: Evolution of the NRMSE (10D FSI Function)
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Fig. 20: Evolution of the NRMSE (averaged over 50 independent runs) (6D
FSI Function)
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Table 12: Response Prediction

FSI CV Error [10 - fold] [n
s

= 100]
Function

Gaussian Matérn 3
2 Matérn 5

2

OK GEK OK GEK OK GEK
6D 1.51e-01 5.66e-02 1.29e-01 6.71e-02 1.31e-01 5.10e-02
7D 2.67e-01 9.45e-02 1.81e-01 9.18e-02 1.84e-01 6.84e-02
8D 3.10e-01 9.96e-02 1.49e-01 8.25e-02 1.59e-01 7.74e-02
9D 3.08e-01 8.75e-02 1.51e-01 1.01e-01 1.59e-01 8.91e-02
10D 3.07e-01 9.17e-02 1.46e-01 7.94e-02 1.54e-01 7.52e-02
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Fig. 21: Evolution of the NRMSE (averaged over 50 independent runs) (10D
FSI Function)
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Fig. 22: Evolution of the NRMSE when the surrogate model fitting cost is equal
for both OK and GEK. The size of the OK ‘correlation matrix’ is augmented
with additional function values to equal that of the GEK ‘correlation’ matrix.
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6 Conclusions

This paper investigates the e↵ects of gradient enhancement in Kriging-based
surrogate modelling. As expected, the gradient enhancement significantly re-
duces the number of training samples required to provide more accurate model
representations. Based on the results of the investigation, a rule-of-thumb is
proposed to make an appropriate choice among Ordinary Kriging and Gra-
dient Enhanced Kriging when the computational cost of acquiring derivative
data becomes dominant. Further, a tentative relationship between the values
of the hyper-parameters and the accuracy improvement of Gradient Enhanced
Kriging models with partial set of gradients is observed. Based on this tenta-
tive relationship, a guideline is developed to improve the conditioning of the
correlation matrix, as this feature enables Gradient Enhanced Kriging to re-
duce the size of the correlation matrix and, subsequently the surrogate model
fitting cost by discarding the least important gradients. In addition, a guide-
line is proposed for a good trade-o↵ between the Gradient Enhanced Kriging
model fitting cost and model accuracy. Furthermore, when the size of the cor-
relation matrix of Ordinary Kriging is scaled with more function values in
order to equal that of Gradient Enhanced Kriging (i.e., equal surrogate model
fitting cost), Ordinary Kriging outperforms Gradient Enhanced Kriging; but,
at a computational cost of estimating additional function values which is of-
ten higher than that of estimating derivatives for Gradient Enhanced Kriging.
Although the direct and indirect formulations of Gradient Enhanced Kriging
appear to be similar in performance, the direct formulation exhibits better
conditioning of the correlation matrix. The use of analytical expressions for
the likelihood gradients speeds up the overall hyper-parameters calculation
time by reducing the number of function evaluations.
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A Analytical expressions for likelihood gradients

A.1 Gaussian correlation function:
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A.2 Matérn 3
2 correlation function:

Derivative of correlation function with respect to ✓
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A.3 Matérn 5
2 correlation function:

Derivative of correlation function with respect to ✓
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B Problem description (Fluid structure interaction problem)

In 2008, the World Health Organization reported that cardiovascular diseases are the leading
cause of death in the world. Aortic sti↵ening has been linked to many (patho)physiological
mechanisms and conditions. In all of them, the sti↵ness and mechanical properties of the
aortic wall are altered. Consequently, non-invasive measurements of the arterial sti↵ness are
needed and assessing the arterial sti↵ness should be part of the routine clinical diagnosis
and follow-up procedures [19]. In this example, the sti↵ness distribution along the length of
an artery is identified using a simplified numerical model. Previously, unconstrained quasi-
Newton optimization with line search and a discrete adjoint solver for the calculation of the
gradient was applied for this purpose [5].

The numerical model is one-dimensional in an axisymmetric (r,�, z) coordinate system,
as depicted in Figure 23. It consists of k � 1 elastic segments, each with its own sti↵ness.
Inside the artery, there is an incompressible blood flow. Furthermore, the interaction between
this blood flow and the elastic wall is taken into account.
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Fig. 23: The one-dimensional and axisymmetric model for blood flow in an artery with

the prescribed velocity at the inlet (left) and the Windkessel model at the outlet (right).

The segments, radius r, wall thickness h and length ` are indicated.

The blood flow rate at a point can be measured as a function of time using non-invasive
techniques. So, the flow rate at the inlet is prescribed as a function of the time t with a
period corresponding to one heart beat t

b

. A Windkessel model relates this velocity with
the outlet pressure [35]. This Windkessel model (See Figure 23) represents the remainder
of the circulation, downstream from the artery. The capacitor C represents the compliance
of the arterial system, while the resistors R

p

and R

d

model the proximal and distal viscous
resistance, respectively.

The goal is to adjust the sti↵ness parameters of this fluid-structure interaction model
so that the displacement of the arterial wall as a function of time matches the displacement
data from a non-invasive measurement. The elasticity modulus E

i

of each segment i (i 2
{1, . . . , k � 1}) is modified by the corresponding parameter x

i

which varies from -1 to 1.

E

i

= E

o

✓
1 +

1

2
x

i

◆
(37)

As the Windkessel model also has a significant impact on the wall displacement, the
value of C is modified by the parameter x

k

which varies from -1 to 1.

C = C

o

✓
1 +

1

2
x

k

◆�1

(38)

The parameter x
k

will be identified, together with the parameters x
i

(i 2 {1, . . . , k�1}).
All fixed parameters are listed in Table 13.

Table 13: The parameters of the fluid-structure interaction model and the Windkessel

model [35].

r

o

3·10�3 m E

o

4·105 Pa
h 3·10�4 m C

o

6.35·10�10 m3/Pa
` 0.126m R

d

1.768·109 Pa·s/m3

t

b

1 s R

p

2.834·108 Pa·s/m3

The governing flow equations and the structural equations, which are formulated, dis-
cretized and linearized in reference [5], are solved separately. Consequently, coupling iter-
ations using the IQN-ILS algorithm [4] need to be performed between the flow equations
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and the structural equations to obtain the solution of the coupled problem. A cost function
y(x) is defined as the sum over all time steps and all segments of the squared di↵erence be-
tween the radius in the simulation and in the measurement. This measurement, which would
normally be obtained from a non-invasive medical imaging technique such as ultrasound,
is mimicked by a simulation with the same model. It is then assumed that the parameter
values in this “measurement simulation” have been forgotten and their values are calculated
using the parameter identification. The vector x contains the k parameters which are defined
in 37 and 38. The state vector s contains the radius in all segments and all time steps. The
parameter identification can thus be reformulated as a minimization problem

min
x,s

y(x, s) (39)

subject to the governing equations as constraints. As the state vector s depends on the
parameters x, the total derivative of the cost function y(x, s) = y(x, s(x)) with respect to
the parameters is obtained with the chain rule.

dy

dx
=
@y

@x

+
@y

@s

ds

dx
(40)

To avoid the direct calculation of ds/dx, the adjoint equations of this unsteady fluid-
structure interaction problem are derived and solved, which involves backward time steps. In
each of these steps, the adjoint flow equations and adjoint structural equations are coupled
using the IQN-ILS algorithm [4], similarly to the forward equations.

The sti↵ness o↵ each segment is identified by constructing a surrogate model for y(x),
followed by a search for its minimum and the corresponding values of x.

C Surrogate model accuracy

Table 14: Prediction of Derivatives

Benchmark CV Error [10 - fold] [n
s

= 100 140(20D)]
Function

Gaussian Matérn 3
2 Matérn 5

2

OK GEK OK GEK OK GEK
Ackley-3D 5.52e-01 3.18e-01 5.23e-01 3.83e-01 5.45e-01 3.53e-01
Hartmann-6D 2.88e-01 1.52e-01 2.93e-01 1.98e-01 2.93e-01 1.74e-01
Rosenbrock-8D 8.13e-01 4.64e-02 4.38e-01 2.08e-01 4.24e-01 1.31e-01
Rosenbrock-20D 1.63e+00 3.72e-01 1.63e+00 3.67e-01 1.63e+00 3.17e-01
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Table 15: E�ciency of GEK and Matérn class of correlation functions (Pre-
diction of Derivatives)

Benchmark % of [10 - fold] [n
s

= 100/ 140(20D)]
Function Improvement

Gaussian Matérn 3
2 Matérn 5

2

OK GEK OK GEK OK GEK
Ackley-3D - 42% 5% 31% 1% 36%
Hartmann-6D - 47% -2% 31% -2% 39%
Rosenbrock-8D - 94% 46% 74% 48% 84%
Rosenbrock-20D - 77% 0% 78% 0% 81%

Table 16: E�ciency of GEK (10D FSI Function)

n

s

Derivative (Matérn 5
2 )

Prediction

OK GEK

NRMSE % of improvement NRMSE % of improvement

20 5.46e-01 – 1.98e-01 64% better
40 5.46e-01 -7.3e-03% better 1.82e-01 67% better
60 5.46e-01 -5.0e-03% better 1.41e-01 74% better
80 5.46e-01 2.9e-03% better 1.31e-01 76% better
100 5.46e-01 1.0e-03% better 1.27e-01 78% better

Table 17: Prediction of Derivatives (FSI Functions)

FSI CV Error [10 - fold] [n
s

= 100]
Function

Gaussian Matérn 3
2 Matérn 5

2

OK GEK OK GEK OK GEK
6D 3.67e-01 1.10e-01 3.97e-01 1.91e-01 3.75e-01 1.12e-01
7D 6.53e-01 1.72e-01 4.20e-01 2.47e-01 4.15e-01 1.65e-01
8D 9.37e-01 2.07e-01 5.48e-01 2.72e-01 5.30e-01 1.83e-01
9D 1.01e+00 2.31e-01 5.52e-01 3.00e-01 5.35e-01 2.13e-01
10D 1.06e+00 2.34e-01 5.59e-01 3.01e-01 5.36e-01 2.15e-01


