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The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of
the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic
algorithm (GA), simulated annealing (SA), and particle swarm optimization (PSO), are more widely employed to solve the
aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an
important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce
the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function
and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is
formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0 deg angle
of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution
among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA
which is considered to be more effective explorer.

1. Introduction

The computational resources and time required to solve a
given problem have always been a problem for engineers
for a long time though a sufficient amount of growth is
achieved in the computational power in the last thirty years.
This becomes more complicated to deal with when the
given problem is an optimization problem which requires
huge amount of computational simulations. These kinds of
problems have been one of the important problems to be
addressed in the context of design optimization for quite
some years. When the number of result(s) influencing vari-
ables are large in a given optimization problem, the required
computational time per simulation increases automatically.
This will severely influence the required computational
resources to solve the given design optimization problem.
Due to this reason, a need arises to describe a general geome-
try with minimum number of design variables. This leads to
a search activity of finding some of the best parameterization
methods. Nowadays, various parameterization methods are

employed: partial differential equation approach (time con-
suming and not suitable for multidisciplinary design opti-
mization), discrete points approach (the number of design
variables becomes large), and polynomial approach (the
number of design parameters depends on the degree of the
polynomial chosen and suitable for multidisciplinary design
optimization) are the three basic approaches to describe the
geometry of a general airfoil [1–3]. Previous research works
in design optimization suggest that the parameterization
schemes highly influence the final optimum design which is
obtained as a result of the optimization [4]. In this work,
the parametric section (PARSEC) parameterization scheme
is employed. The panel method is used to compute the flow
field around the airfoil geometry during the design optimiza-
tion process. Both SA and GA are employed to carry out
the design optimization problem. This is not the first time
that the mentioned optimization schemes (GA and SA) have
been applied for the airfoil shape optimization. Here, in the
current work, the capability of the strategies is investigated
while they are applied to the airfoil kind of surfaces. Three
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Figure 1: Control variables for PARSEC.

MATLAB codes are developed to implement PARSEC, panel,
and SA approaches. A freely available FORTRAN code is
picked for the GA. The results and issues faced during the
whole design process are discussed in the following sections.

2. PARSEC

In PARSEC parametrisation scheme, an unknown linear
combination of suitable base functions is used to describe
the airfoil geometry [5]. This approach is considered to be
more suitable for design optimization problems, since the
geometric constraints on the airfoil shape can be described
by some simple linear constraints. Twelve design variables are
chosen to have direct control over the shape of the airfoil. The
twelve design variables are upper leading edge radius (Rleu),
lower leading edge radius (Rlel), upper crest point (Yup),
lower crest point (Ylo), position of upper crest (Xup), position
of lower crest (Xlo), upper crest curvature (YXXup), lower
crest curvature (YXXlo), and trailing edge offset (Toff ), trail-
ing edge thickness (TTE), trailing edge direction angle (αTE),
and trailing edge wedge angle (βTE), as shown in Figure 1.
The leading edge radius parameters provide more control at
the leading edge of the airfoil geometry. The mathematical
relations for the PARSEC approach are given as follows:

yu =
6∑

i=1

aix
i−(1/2),

yl =
6∑

i=1

bix
i−(1/2),

(1)

where yu is the upper y coordinate, yl is the lower y
coordinate, and ai, bi are the unknown coefficients to be
solved from the specified values of the twelve design
variables. The previous polynomial equations are solved
using a set of geometrical conditions.

3. Panel Technique

The panel method is used to solve the potential equations
without being computationally expensive. It provides more
reasonably accurate results. These two properties make the
panel method to be more suitable for design optimization
problems where the number of simulations is incredibly
large. Since the current problem deals with the incompress-
ible subsonic flow region, this approach is employed in this
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Figure 2: Nodes and Panels.

work. The solution procedure for panel technique consists
of discretizing the surface of the airfoil into straight line
segments or panels and assuming the following conditions:
(a) the source strength is constant over each panel but has a
different value for each panel and (b) the vortex strength is
constant and equal over each panel [6, 7]. The compressibil-
ity and the viscosity of air in the flow field are neglected. But
it is required to satisfy the condition that the net viscosity of
the flow should be such that the flow leaving the trailing edge
is smooth. The curl of the velocity field is assumed to be zero.
Hence,

φ = φ∞ + φδ + φυ, (2)

where φ, which is expressed as a summation of the free
stream potential, source potential, and vortex potential, is the
total potential function. Except the free stream potential, the
other potentials have potentially locally varying strengths.
Figure 2 depicts the notations of the panel approach.

As the number of panels increases, the accuracy of
the solution increases. Indeed, the computational time will
increase as the number of panels increases. N + 1 node
points define N panels. The tangential velocity (Vti) at the
centre of each panel is estimated by imposing a flow tangency
condition at each panel. The coefficient of pressure (Cp) at
each panel is calculated using the following relation:

Cp
(
xi, yi

) = 1−
[
V 2

ti

V 2∞

]
. (3)

4. Simulated Annealing

Simulated Annealing [8, 9] is one kind of non-traditional
based optimization algorithm for searching global optimum.
It is a point-by-point method. It resembles the cooling pro-
cess of molten metals through annealing, and the formation
of the crystal depends upon the cooling rate. The process of
slow cooling is called as annealing. The cooling phenomenon
is simulated by controlling a temperature-like parameter, and
it can be done by introducing the concept of Boltzmann
probability distribution. In addition to that, Metropolis
suggested one idea to implement the Boltzmann probability
function in simulated systems for better optimization.

The main steps of simulated annealing are given as
follows.

(a) Choose an initial point and a high temperature T .

(b) A second point is created at random in the vicinity of
the initial point.
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(c) The difference between these two points is calculated.

(d) If the second point has a larger function value, the
point is accepted.

(e) In the next generation, another point is created at
random in the neighbourhood of the current point
and the Metropolis algorithm [10, 11] is used to
accept or reject the point.

(f) The algorithm is terminated when an optimized value
is obtained.

The initial value (lower bound values) and the number of
iterations (1 × 105) are the two important parameters of
the simulated annealing. So, we have to choose these two
parameters according to our optimization problem to be
solved. The temperature is a controlling parameter which
is used to find out the functional value (coefficient of lift)
from the given points (lower and upper bound values), and
this process will be continued until the optimized value
(maximum vertical aerodynamic force) is obtained.

5. Genetic Algorithm

Genetic algorithms (GA), in contrast to gradient optimiza-
tion approaches, offer an alternative approach with several
attractive features. The basic idea associated with the GA is
to search for optimal solutions using an analogy to the theory
of evolution. During solution advance (or “evolution” using
GA terminology), each chromosome is ranked according to
its fitness vector—one fitness value for each objective. The
higher ranking chromosomes are selected to continue to the
next generation while the probability of the selection of lower
ranking chromosomes is less. In every generation, a new set
of artificial creatures (strings) is created using bits and pieces
of the fittest of the old; an occasional new part is tried for
good measure. While randomized, genetic algorithms are
not simple random walk. They efficiently exploit historical
information to speculate on new search points with expected
improved performance. The newly selected chromosomes
in the next generation are manipulated using various
operators (combination, crossover, or mutation) to create
the final set of chromosomes for the new generation. These
chromosomes are then evaluated for fitness, and the process
continues iterating from generation to generation—until a
suitable level of convergence is obtained or until a specified
number of generations have been completed. GA optimiza-
tion requires no gradients; it does not need the sensitivity of
derivatives. It theoretically works well in nonsmooth design
spaces containing several or perhaps many local extrema.
It is also an attractive method for multiobjective design
optimization applications offering the ability to compute the
so-called “pareto-optimal sets” instead of the limited single
design point traditionally provided by other methods. The
basic genetic algorithm comprises four important steps. They
are initialisation, selection, crossover, and mutation [12, 13].

In GA the PARSEC parameterization scheme variables
act as the optimization parameters (design variables) which
will influence the coefficient of lift (objective function). A
pool of optimization parameters will be generated by the

Table 1: Optimization objectives and constraints.

Angle of attack 5.0 deg

Flow constraint Subsonic and incompressible

Geometric constraint
Max thickness must be less than 10%
chord length

TTE and Toff the airfoil is zero

Aerodynamic constraint Lift not less than the original one

Objective Maximize coefficient of lift

GA within the defined range of values of the optimization
parameters to start the optimization process. Then, based on
two GA operators, crossover and mutation, the best opti-
mization parameters at each generation which will increase
the coefficient of lift will be selected. This process will be con-
tinued until the whole design space is completely explored.

6. Optimization of NACA 0012 Airfoil

The aerodynamic shape optimization process is carried out
with an intention of increasing the vertical aerodynamic
force subject to aerodynamic and structural constraints. The
structural constraints are implemented by fixing the values
of trailing edge thickness and trailing edge offset parameters
during the optimization in both of the optimization schemes.
These constraints are placed in order to avoid the optimizer
to get converged at inefficient locations and to avoid getting
unrealistic aerodynamic shapes. Since the panel method is
only applicable for low speed flows, a flow constraint is
placed to keep the assumptions valid throughout the whole
optimization process. The flow constraint is implemented
by fixing the angle of attack at 5.0 deg. For each design
parameter, lower and upper bound values are defined.
Each generation produced by the SA and genetic algo-
rithms has the best set of twelve PARSEC parameters. The
corresponding airfoil profile is generated using PARSEC
parametrisation. Then, the panel method is used to compute
the flow around the airfoil at 5.0 deg angle of attack. From the
pressure distribution, the lift coefficient is calculated using
the trapezoidal rule. This new coefficient of lift is compared
to the original one. The SA and genetic algorithms in the end
will lead to the best set of PARSEC parameters which will
maximise the objective function within the search space. The
design conditions, optimization objectives and constraints,
which are used during the optimization process using SA and
GA, are tabulated in Table 1.

7. Result and Analysis

The initial PARSEC parameters have been given approxi-
mately by specifying their lower and upper bound values.
There is no need for specifying this accurately. The geometry
of the airfoil is expressed by the best twelve PARSEC param-
eters resulting from the SA algorithm which exhibits a
considerable increase in the coefficient of lift as compared to
the best solution found by the genetic algorithm. There is a
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Figure 3: Original NACA 0012 airfoil versus optimized airfoil using
SA.
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Figure 4: Comparison of pressure distribution over the surface of
original NACA 0012 airfoil and optimized airfoil using SA.

history for the SA to be good for problems involving highly
nonlinear functions where the function has large number of
peaks and valleys. It is again witnessed from the obtained
results that the SA has not got stuck with the local optima
or extrema. The comparison between the original NACA
0012 airfoil geometry and the optimized airfoil geometry
using SA is indicated in Figure 3. The comparison of pressure
distribution over the surface of the original NACA 0012
airfoil and the optimized airfoil using SA is shown in
Figure 4. It can be seen from these figures that the actual
airfoil geometry is modified in such a way that the airflow
is highly accelerated in the upper surface of the optimized
airfoil as compared to the actual airfoil. From this, it can be
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Figure 5: Comparison of original NACA 0012 airfoil and optimized
airfoil using GA.
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Figure 6: Comparison of pressure distribution over the surface of
original NACA 0012 airfoil and optimized airfoil using GA.

clearly understood that the increase in the lift coefficient is
caused by the pressure variation in the upper surface of the
optimized airfoil. Figure 5 shows the comparison between
the original NACA 0012 airfoil geometry and the optimized
airfoil geometry found by GA. The comparison of pressure
distribution over the surface of the original NACA 0012
airfoil and the optimized airfoil found by GA is given in
Figure 6.

The comparison of geometry and its corresponding
pressure distribution between the optimum designs which
are found by both SA and GA is depicted in Figures 7 and
8 respectively. It can be clearly seen that the variation of the
geometry found by the GA is quite less compared to the SA,
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Table 2: Optimized PARSEC parameters.

Parameter Original value Optimized value using SA Optimized value using GA

(Rleu) upper leading edge radius 0.0155 0.0140 0.0145

(Rlel) lower leading edge radius 0.0155 0.0152 0.0160

(Xup) position of upper crest 0.296632 0.2500 0.2900

(Yup) upper crest point 0.060015 0.0605 0.0610

(YXXup) upper crest curvature −0.4515 −0.4600 −0.4480

(Xlo) position of lower crest 0.296632 0.2900 0.3100

(Ylo) lower crest point −0.06055 −0.0590 −0.0590

(YXXlo) lower crest curvature 0.453 0.4588 0.4599

(TTE) trailing edge thickness 0 0 0

(Toff ) trailing edge offset 0.001260 0.0011 0.0012

(αTE) trailing edge direction angle 0 0 0

(βTE) trailing edge wedge angle 7.36 7.300 7.2484
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Figure 7: Comparison of optimized airfoil using both GA and SA.

though the same design space is given to them to be explored.
It can also be noticed that the geometry found by SA has
more negative pressure at the upper surface which is one of
most important requirements for an efficient aerodynamic
design. The optimized values of PARSEC parameters which
are found by both GA and SA and their corresponding
coefficient of lift values are tabulated and compared with the
actual values in Tables 2 and 3, respectively. It can be clearly
seen that airfoil geometry which is found by SA has more
coefficient of lift as compared to the airfoil geometry which
is found by GA.

8. Conclusion

A problem of optimizing the actual NACA 0012 airfoil geom-
etry for the previously discussed flow and geometrical
conditions are formulated and solved using two optimization
schemes, simulated annealing and genetic algorithm. The
optimized airfoil geometries have an improved coefficient of
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Figure 8: Comparison of pressure distribution over the surface of
optimized airfoil using both GA and SA.

Table 3: Original versus optimized coefficient of lift.

Angle of attack Cloriginal Cloptimized using SA Cloptimized using GA

5.0 0.55 0.69429 0.62571

lift of 0.6942 (SA) and 0.6257 (GA) as compared to the actual
NACA0012 airfoil geometry which has 0.55 at 5.0 deg angle
of attack. The PARSEC parametrisation scheme is used to
express the shape of the airfoil. The result shows that the
PARSEC parameters show proper control over the aerody-
namic performance of the airfoil by effectively controlling
the aerodynamic shape of the airfoil. The PARSEC approach
eases the way of understanding the impact of individual
geometrical parameters on the aerodynamic properties of the
airfoil. It is once again witnessed that the panel method gives
reasonably accurate results without being computationally
expensive. It is concluded from the results that the SA
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algorithm is so effective in finding the best solution among
many possible solutions within a search space as compared
to the GA optimization scheme in the current formulated
problem. During the optimization process, plenty of airfoil
data is obtained. It can be effectively used for the airfoil
design by making use of these data for constructing mathe-
matical models. The constructed mathematical models can
be suitably applied to new design studies of innovative
configurations.
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