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Abstract

Kriging-based metamodels are popular for approximating computationally ex-

pensive black-box simulations, but suffer from an exponential growth of required

training samples as the dimensionality of the problem increases. While a Gra-

dient Enhanced Kriging metamodel with less training samples is able to ap-

proximate more accurately than a Kriging-based metamodel, it is prohibitively

expensive to build for high dimensional problems. This limits the applicabil-

ity of Gradient Enhanced Kriging for high dimensional metamodelling. In this

work, this limitation is alleviated by coupling Gradient Enhanced Kriging with

High Dimensional Model Representation. The approach, known as Gradient En-

hanced Kriging based High Dimensional Model Representation, is accompanied

by a highly efficient sequential sampling scheme LOLA-Voronoi and is applied

to various high dimensional benchmark functions and one real-life simulation

problem of varying dimensionality (10D-100D). Test results show that the com-

bination of inexpensive gradient information and the high dimensional model

representation can break or at least loosen the limitations associated with high

dimensional Kriging metamodelling.
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1. Introduction

Usage of accurate high-fidelity physics-based computer simulations over con-

trolled real-life experiments has become increasingly common in the past decades.

However, the computational complexity of one single run of such computer sim-

ulations with multiple inputs and outputs can be very high. This computational

complexity can be reduced with metamodelling where the expensive computer

simulation code is replaced by a computationally cheap approximation model.

Metamodelling has gained much attention among researchers over the past two

decades. Researchers have proposed various strategies to provide accurate meta-

models with minimal computational cost spent on collecting the training data,

such as incorporating secondary information, employing data of varying fideli-

ties, intelligent sampling schemes etc. [1, 2, 3, 4, 5]

Metamodelling is successfully applied to model deterministic low dimen-

sional problems. An overview of various metamodelling approaches applied to

model low dimensional problems is given by Simpson et al. [6], Jin et al. [7]

and Wang et al. [8]. Kriging is popular for approximating deterministic data.

Kriging was popularised by Sacks et al. [9] and further explored by various

researchers [10, 11, 12, 13, 14]. Although Kriging is successfully applied over

the years to model low dimensional problems, modelling of high dimensional

parameter spaces is often limited by the exponentially growing number of train-

ing samples, known as the “curse of dimensionality”. One of the approaches to

alleviate a part of this issue is to exploit the gradient information. Direct gra-

dient incorporation in Kriging along with function data, later known as direct

Gradient Enhanced Kriging (GEK), was introduced by Morris et al. [10]. An

alternative formulation of GEK where the gradient data is used to augment the

function data was introduced by Chung et al. [11]. GEK is also subject to the

“curse of dimensionality” as the size of the “correlation” matrix grows and han-

dling of ill-conditioning of the GEK “correlation” matrix also becomes a major

challenge. Although this issue can be alleviated to some extent, by discarding
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sample points that contribute the least information to the GEK “correlation”

matrix, as demonstrated in [14], this problem still persists in high dimensions

limiting the potential usage of GEK for high dimensional metamodelling.

In general, solving high dimensional problems can be addressed with various

metamodelling techniques such as projection pursuit regression [15], multivari-

ate adaptive regression splines (MARS) [16], additive Kriging models [17], high

dimensional model representation (HDMR) [18, 19] etc. Various metamodelling

methodologies to tackle high dimensional problems are discussed in [20].

The HDMR decomposes a high dimensional function f(x) integrable in space

Dd (d is the number of input variables, or dimensionality) with a unique finite

hierarchical correlated function expansion in terms of f(x). HDMR was initially

introduced by [18] and has since been extensively explored by various researchers

[21, 22, 23, 24]. Two of the major variants of HDMR, ANOVA-HDMR and Cut-

HDMR, were introduced by Rabitz et al. [21, 22]. RS-HDMR was illustrated

by Wang et al. [23] and Li et al. [24]. ANOVA-HDMR is constructed by eval-

uating multidimensional integrals of the output which is usually achieved by

Monte Carlo simulations. Although Monte Carlo simulations are viable in high

dimensional problems, it calls for a significant number of evaluations to attain

a reasonable level of metamodel accuracy. In contrary, Cut-HDMR only calls

for simple arithmetic computations and provides least expensive metamodels

with similar accuracy level as other HDMR variations. Moreover, ANOVA-

HDMR is very helpful when it comes to estimating the contribution of variance

of each component function to the overall variance of the output. However,

Cut-HDMR is an exact representation of the function f(x) to be modelled in

slices (e.g., lines and hyper-planes) passing through a selected cut point in the

input space. Thus, the selection of particular HDMR variant is based on what

to be known about the function to be modelled while considering the sample

budget. In this work, the Cut-HDMR variant is chosen to model high dimen-

sional problems due to its arithmetic simplicity while providing accurate high
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dimensional metamodels with least sample budget [20, 25, 27]. A Cut-HDMR

variant using radial basis functions was recently introduced in [20] along with

an adaptive sampling and model construction algorithms with promising results.

The principal contribution of this work is the introduction of a novel and ef-

ficient approach to deal with Kriging metamodelling for high dimensional prob-

lems and reaping the advantage of exploiting gradient information. In this

context, the additional gradient data when available cheaply (in terms of com-

putational cost and computational resources) are incorporated in Kriging models

(termed as Gradient Enhanced Kriging based HDMR) along with function data.

Subsequently, the Kriging models with gradient data are compared with Kriging

models without gradient data (termed as Ordinary Kriging based HDMR) and

also with Radial basis function based models without gradient data (termed as

RBF-HDMR) from [27]. The principal motivation for the introduction of Gradi-

ent Enhanced Kriging based HDMR (GEK-HDMR) is to investigate how much

reduction in number of training sample points can be achieved while modelling

high dimensional problems by incorporating the cheaply available gradient data.

One of the other intentions of this paper is the introduction of an accompanying

modelling strategy which is used to reduce the overall number of training sam-

ple points by identifying/classifying the existing correlations within variables

of the high dimensional problem to be modelled and distributing the training

samples accordingly. It is achieved by inducting LOLA-Voronoi [26] sequential

sampling scheme into the accompanying modelling strategy. The feasibility of

the LOLA-Voronoi sequential sampling scheme is demonstrated by comparing it

with a “Maximin” space-filling criterion based sequential sampling scheme [44].

Further, the feasibility of the accompanying modelling strategy is demonstrated

by comparing it with a modelling strategy where the existing correlations within

variables of the high dimensional problem are not identified while the training

samples are distributed using Latin Hypercube Design (LHD) sampling scheme.

Various analytical benchmark functions and one real-life simulation problem of

varying dimensionality (10D-100D) are used as test problems.
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The remaining part of this paper is organised as follows. The mathematical

formulations of GEK-HDMR are elaborated in Section 2. Section 3 discusses

the LOLA-Voronoi sequential sampling methodology. Section 4 is dedicated to

the introduction of the LOLA-Voronoi sampling based GEK-HDMR modelling

algorithm. Section 5 lists the test problems and the error metrics used to assess

the metamodel accuracy. Test results are presented and discussed in Section 6

followed by the conclusions.

2. GEK-HDMR

2.1. Cut-HDMR

A HDMR expresses the mapping between the input variables x = (x1, x2, . . . , xd)

and the output f(x) as [25],

f(x) = f0 +

d∑
i=1

fi(xi) +
∑

1≤i<j≤d

fij(xi, xj) +
∑

1≤i<j<k≤d

fijk(xi, xj , xk)

+ . . .+ f12...d(x1, x2, . . . , xd).

(1)

Here f0 is a constant term representing the zero-order effect of f(x). The first-

order term fi(xi) represents the effect of variable xi acting independently, either

linearly or non-linearly, upon the output f(x). The second-order term fij(xi, xj)

represents the cooperative effect of variables xi and xj , either linearly or non-

linearly, upon the output f(x). The subsequent higher order terms represent

the interactive effects of input variables acting together upon the output f(x).

The last term f12...d(x1, x2, . . . , xd) gives any residual dependence of all the

input variables combined together to influence the output f(x). For most well-

defined high dimensional systems, the higher order interactions are expected to

be weak and a second-order HDMR,

f(x) = f0 +

d∑
i=1

fi(xi) +
∑

1≤i<j≤d

fij(xi, xj), (2)
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can often provide an accurate representation of f(x) [21]. In terms of compu-

tational cost and accuracy of HDMR modelling, a Cut-HDMR, which is used

in this work, is more attractive than other variants of HDMR [25]. In Cut-

HDMR, the component functions are estimated with respect to a cutting point

x0 = (x01, x
0
2, . . . x

0
d) and are expressed as,

f0 = f(x0), (3)

fi(xi) = f(xi,x
0
i )− f0, (4)

fij(xi, xj) = f(xi, xj ,x
0
ij)− f(xi)− f(xj)− f0, (5)

where x0
i and x0

ij are x0 without elements xi and xij , respectively; x0, (xi,x
0
i ) =

(x01, x
0
2, . . . , xi, . . . , x

0
d) and (xi, xj ,x

0
ij) = (x01, x

0
2, . . . , xi, . . . , xj , . . . , x

0
d) are zero-

order, first-order and second-order model training point(s), respectively, and

f(x0), f(xi,x
0
i ) and f(xi, xj ,x

0
ij) are the corresponding function values, respec-

tively. Modelling of first-order f(xi,x
0
i ) and second-order f(xi, xj ,x

0
ij) compo-

nent functions with Gradient Enhanced Kriging (GEK) leads to a second-order

GEK-HDMR which can be expressed as,

f(x) = f0 +

d∑
i=1

f̂i(xi) +
∑

1≤i<j≤d

f̂ij(xi, xj), (6)

where

f̂i(xi) = f̂(xi,x
0
i )− f0, (7)

f̂ij(xi, xj) = f̂(xi, xj ,x
0
ij)− f̂(xi)− f̂(xj)− f0, (8)

where f̂(xi,x
0
i ) and f̂(xi, xj ,x

0
ij) represent the GEK models of f(xi,x

0
i ) and

f(xi, xj ,x
0
ij), respectively.

2.2. Gradient Enhanced Kriging (GEK)

2.2.1. Mathematical Formulation

Since many publications on Kriging and Gradient Enhanced Kriging can be

found in the literature (see Refs. [1, 9, 14, 28, 29, 30, 31, 32, 33]), we present
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only the resultant, however self-contained, equations without their proofs. The

mathematical form of GEK is composed of two terms: The first part, ˆ̇µ, rep-

resents a trend function and the second part is a realisation of a stationary

Gaussian random process which captures the local deviations from the trend

function. The GEK predictor at a prediction point x∗ for an arbitrary function

f(x) can be expressed as,

f̂(x∗) = ˆ̇µ+ ψ̇
T
Ψ̇−1(ẏ − f ˆ̇µ), (9)

where

Ψ̇ =


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

, (10)

ψ̇ =

(
ψT ,

(
∂ψ

∂x1

)T
, ...,

(
∂ψ

∂xd

)T)T
, (11)

ẏ =

(
yT ,

(
∂y

∂x1

)T
, ...,

(
∂y

∂xd

)T)T
, (12)

f =
(
11, ...1ns , 0ns+1, ..., 0(d+1)ns

)T
, (13)

where ψ contains the correlation between the training sample data and a pre-

diction point x∗; y is the column vector of function values; Ψ is the correlation

matrix which contains the correlation between the training sample points; ns is

the number of training sample points; ψ̇ contains the correlation between the

training sample data and the prediction point x∗ and their derivatives; and ẏ

contains both the function values and gradients of the training sample data.
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2.2.2. Correlation Function

Correlation between any two sample points is expressed by the correlation

function of choice. Various correlation functions can be employed in Kriging to

capture the correlation between any two sample points [34, 35, 31, 36]. As corre-

lation functions must be differentiated twice in GEK to provide the correlation

between gradient observations, we limit ourselves to the Matérn 5
2 correlation

function. The Matérn 5
2 correlation function can be expressed as [37],

ψν= 5
2
(dν) = (1 +

√
5a+

5a2

3
)exp

(
−
√

5a
)
, (14)

where a =
√∑d

m=1 θm(dνm)2 and dν = |xim − xjm|. In order to express the

correlation between function and gradient data and correlation between gradient

data and themselves, the analytical gradient and Hessian of Equation 14 are

required in GEK. The analytical expressions for the gradient and the Hessian

of the Matérn 5
2 correlation function with respect to x can be expressed as,

∂Ψ(i,j)

∂x
(j)
u

=
5θdν(

√
5a+ 1)exp

(
−
√

5a
)

3
(15)

and

∂2Ψ(i,j)

∂x
(i)
u ∂x

(j)
v

=


−25θuθvdνud

ν
vexp(−

√
5a)

3 if u 6= v[
−25θ2(dν)2+5θ(

√
5a+1)

3

]
exp

(
−
√

5a
)

if u = v,

(16)

respectively. The notations ∂Ψ(i,j)

∂x
(j)
u

and ∂2Ψ(i,j)

∂x
(i)
u ∂x

(j)
v

denote the correlation between

function and uth dimension gradients and correlation between uth dimension

gradients and vth dimension gradients, respectively. The direction of differen-

tiation is denoted by i and j with x(i) and x(j) denoting two different samples.

For more elaborate information on deriving the analytical gradients and Hes-

sians of the correlation matrix ψ̇ for a correlation function of choice, the reader

is referred to [3, 14, 32, 38].

2.2.3. GEK Model Fitting
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The constant trend function ˆ̇µ for GEK is calculated by means of generalised

least squares,

ˆ̇µ = (fT Ψ̇−1f)−1fT Ψ̇−1ẏ. (17)

The symbol θ in correlation function (see Equation 14) represents the hyper-

parameters of the GEK model (θm,m = 1, ..., d) which show how far the influ-

ence of a sample point extends. Lower values of θm denote higher correlation

among the sample points while the higher values denote that function values

can change rapidly over a small region. The values of the hyper-parameters are

obtained by maximizing the concentrated likelihood function,

φ =
−(d+ 1)ns ln(σ̂2)− ln|Ψ̇|

2
, (18)

where σ̂2 is the estimated GEK variance which can be expressed as,

σ̂2 =

(
(ẏ − f ˆ̇µ)T Ψ̇−1(ẏ − f ˆ̇µ)

(d+ 1)ns

)
. (19)

For more information on how the values of θ can influence the overall metamodel

accuracy, the reader is referred to [1, 38]. A detailed analysis of the mathemati-

cal aspects (derivation and optimisation) of the concentrated likelihood function

is discussed in [14] and [33].

3. LOLA-Voronoi

Sequential sampling strategies are commonly used in metamodelling as it is

often difficult to know the appropriate size of the training data a priori. Vari-

ous sequential and adaptive sampling techniques are discussed in [39, 40, 41, 42].

A recent sampling technique, known as LOLA-Voronoi, is introduced in [26].

LOLA-Voronoi is a sequential sampling technique which strategically performs

trade-off between exploration and exploitation during the sampling process to

achieve globally accurate metamodels [26, 43]. Exploration denotes filling the

design space as uniformly as possible with sample points whereas exploitation,

in the case of LOLA-Voronoi, denotes more sample points concentrated in the

nonlinear regions of the design space. In the LOLA-Voronoi sampling technique,
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exploration is performed with a criterion using Monte Carlo Voronoi approxima-

tion whereas exploitation is performed with a criterion based on LOcal Linear

Approximations of the system (LOLA).

The LOLA-Voronoi sampling algorithm starts with an initial set of nl sample

points. It is best practice to include the corner points of the design space in the

initial set of sample points. Then, the hybrid score for a sample point xi ∈ Dd

is computed as [26],

H(xi) = V (xi) +
E(xi)∑nl
j=1E(xj)

, (20)

where E(xi) is the non-linearity measure which is calculated using LOLA and

V (xi) is the Voronoi cell size which is computed using the Monte Carlo Voronoi

approximation. The gradient of a function f at a given point xi ∈ Dd can

represent the best local linear approximation of the function around xi and is

expressed as,

∆f(xi) =

(
∂f

∂x1i
,
∂f

∂x2i
, . . . ,

∂f

∂xdi

)
. (21)

The gradient at a sample point is estimated by applying least-squares regression

to the neighbouring sample points. The measure of non-linearity E(xi) is then

estimated from how much the true output value at the neighbours differs from

the local linear approximation [26]:

E(xi) =

nnl∑
j=1

|f(xij)− (f(xi) + ∆f(xi)(xij − xi)) |, (22)

where nnl is the number of neighbouring sample points which are chosen to

represent the region around xi. In order to estimate Voronoi cell size V (xi), nr

random test points xr
j=1,...,nr

∈ Dd are generated. Among the test points, the

one which is closest to xi is identified and the (relative) size of the corresponding

Voronoi cell is estimated as [26],

V (xi) = V (xr
j←closest) +

1

nrnl
. (23)

Once the non-linearity measure and the Voronoi cell size are calculated, the

sample points are ranked according to the values of the hybrid score (i.e., accord-
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Figure 1: Contour plots of the Peaks function with two intermediate data sets generated by

the LOLA-Voronoi algorithm. A good trade-off between exploration of the design space and

exploitation of the dynamic regions can be observed.

ing to how undersampled the design space is and/or how nonlinear the function

behaviour is). Subsequently, new samples are generated around the highest

ranked sample points. The LOLA-Voronoi sampling technique is demonstrated

with a simple 2D example in Figure 1.

4. LOLA-Voronoi sampling based GEK-HDMR modelling

The steps involved in a second-order GEK-HDMR model construction are

described as follows:

Step I: First-order GEK-HDMR model

(1) Choose a cut point x0 = (x01, x
0
2, . . . x

0
d). In the absence of prior knowledge

about the function to be modelled, it is usually chosen in the vicinity of the

centre of the design space. Estimate f0 = f(x0).

(2) The LOLA-Voronoi algorithm is applied to each first-order component func-

tion separately, f(xi,x
0
i ) = (x01, x

0
2, . . . , xi, . . . , x

0
d). The algorithm starts

with two corner sample points of the design space. By estimating the

corresponding function and gradients of the function values at the cor-
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ner sample points, the first-order component functions can be modelled

as f̂i(xi) = f̂(xi,x
0
i )− f0 with GEK.

(3) The LOLA-Voronoi algorithm chooses a new sample point based on the

hybrid score as mentioned in the Section 3. If the GEK approximation is

able to accurately predict the function value at the chosen sample point,

then the sampling and the modelling are terminated for the current first-

order component function. Otherwise, the GEK model is updated with the

chosen sample point and a new sample point (or test point) is chosen by

the sequential sampling algorithm based on the hybrid score on the up-

dated dataset. If the GEK model achieves a sufficient accuracy level (for

example, the relative error is less than a value prescribed by the user), then

the sampling and the re-modelling are terminated for the current first-order

component function. Otherwise, the process is continued until convergence

or the number of sample points reaches the maximum number of sample

points. The same procedure is followed for modelling the remaining first-

order components, and finally, a first-order GEK-HDMR model is built.

Unlike the current case where the sampling and the modelling of each first-

order component function are carried out sequentially, these activities (sam-

pling and modelling/re-modelling) can also be performed in parallel for each

first-order component function. Although the final results will be ideal in

both the cases (sequential and parallel) for a chosen accuracy level (for ex-

ample, the relative error is less than a value prescribed by the user), the

parallelisation process can certainly result in significant time efficiency when

the function evaluation is computationally expensive. Moreover, the par-

allelisation process enables one to come up with a first-order GEK-HDMR

which is as accurate as possible at any given time when the other stopping

conditions (convergence of accuracy to the chosen accuracy level and/or

sample budget) are not yet met. Modelling of second-order component

functions can also be performed in parallel. However, it becomes important

to identify the second-order component functions to be modelled before the
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parallelisation by classifying the existing two-variable correlation between

variables of the problem to be modelled.

Step II: Second order GEK-HDMR model

(4) A new dataset (xi, xj ,x
0
ij) = (x01, x

0
2, . . . , xi, . . . , xj , . . . , x

0
d) with (d(d−1))/2

two-variable combinations is formed by combining the thus-far obtained

first-order training sample points (xi,x
0
i ) and (xj ,x

0
j ). Subsequently, func-

tion values are predicted for the new dataset with the first-order GEK-

HDMR model built and are compared with the true function values at ran-

domly chosen points. If the accuracy of the first-order GEK-HDMR model

on this new dataset is good enough (for example, the relative error is less

than a value prescribed by the user), then no higher order terms are mod-

elled as the second-order correlation is observed to be weak. Otherwise, the

following step is executed.

(5) All the two-variable combinations in the new dataset are ranked according

to the accuracy of the first-order GEK-HDMR model on each two-variable

combination. The highest ranked combination corresponds to the largest

value of the error criterion (i.e., the error is larger than the user defined

value). This indicates that these combinations exhibit second-order correla-

tion, and hence, the corresponding second-order component functions need

to be modelled in the following step. This step allows discarding nonexistent

or insignificant correlations completely.

(6) The LOLA-Voronoi algorithm is applied to each second-order component

function f(xi, xj ,x
0
ij) separately with the similar procedure as mentioned

in the steps (2) and (3). The only difference is the generation of two dimen-

sional samples, and GEK models the second-order component functions as

f̂(xi, xj) = f̂(xi, xj ,x
0
ij)− f̂(xi)− f̂(xj)− f0.

(7) Finally, a second-order GEK-HDMR model is built with all the first-order

component functions and the selected second-order component functions.
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Figure 2: Flowchart of LOLA-Voronoi sampling based GEK-HDMR modelling

Figure 2 shows a simplified work-flow of the LOLA-Voronoi sequential sam-

pling based GEK-HDMR modelling process. The proposed approach is illus-

trated on a simple three-dimensional (d = 3) example function,

f(x) = x1 + x22 + x1x3 − 4, 0 ≤ xi ≤ 1. (24)

1. The GEK-HDMR modelling process starts with choosing a cut point, in

this case, x0 = (0.5, 0.5, 0.5) and estimating the zero-th order effect, f0 =

−3.0.

2. The LOLA-Voronoi algorithm starts with the two corner points 0 and 1.

After estimating the function and gradient values of the corner points, the

initial first-order GEK models f̂(xi,x
0
i ) are built.

3. A test point, 0.5, is chosen by the LOLA-Voronoi algorithm to assess the

accuracy of f̂(xi,x
0
i ). It can be seen from Figure 3 that the function be-

haviour is linear in the first and third directions. Hence, the sampling and

the modelling processes terminate for f(x1,x
0
1) and f(x3,x

0
3) as the GEK
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models are already accurate. Whereas f̂(x2,x
0
2) is not accurate enough

as the function behaviour is non-linear in the second direction. Hence,

the chosen test point is used as an additional sample point and f(x2,x
0
2)

is re-modelled with the new dataset (0,1,0.4951). Then the accuracy of

the updated f̂(x2,x
0
2) is now assessed with a new test point chosen by the

LOLA-Voronoi algorithm. As f̂(x2,x
0
2) now reaches the user defined accu-

racy level, absolute error < 0.01, the re-modelling is terminated. Finally,

a first-order GEK-HDMR is built as f̂(x) = f0 +
∑d
i=1(f̂(xi,x

0
i ) − f0)

using 11 sample points.

4. By performing steps (4) and (5) (an absolute error of 0.01 is used in

both steps), it was identified (with 3 test points) that the second-order

correlation exist only between variables x1 and x3. Hence, the other two-

variable correlations are neglected and only f(x1, x3,x
0
13) is modelled with

4 sample points (see Figure 3d). Finally, the complete second-order GEK-

HDMR model is built, in this case, as f̂(x) = f0 +
∑d
i=1(f̂(xi,x

0
i )−f0) +

(f̂(x1, x3,x
0
13)− f̂(x1)− f̂(x3)− f0).

Although the LOLA-Voronoi sequential sampling scheme is inducted into

the accompanying sampling strategy, in this paper, to generate new sample

point(s) or test point(s) in steps (3) - (6), any other sequential sampling scheme

can also be used in the place of LOLA-Voronoi sequential sampling scheme. The

reason behind employing LOLA-Voronoi sampling scheme, in this paper, is the

fact that it can generate the new sample point(s)/ or test point(s) mentioned

in steps (3) - (6) with respect to the behaviour of the function to be modelled

by achieving a trade-off between exploration and exploitation as mentioned in

Section 3. This can be an added advantage at times over the usage of other

existing sequential sampling schemes although it needs not be true at all times

[26]. In order to gain more insight from this fact, a “Maximin” space-filling

criterion based sequential sampling scheme [44] (termed as Maximin sampling

scheme in the rest of this paper) is employed while constructing GEK-HDMR

models and the results are discussed in Section 6.
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The Maximin sampling scheme is a sequential sampling scheme where the

sample points are generated based on the Maximin space-filling criterion (or

intersite distance) by maximizing the smallest (Euclidean) distance between

any two sets of sample points in the design space:

minxi,xj∈Dd

√√√√ d∑
k=1

(
|xki − xkj |2

)
. (25)

The Maximin sampling scheme has an advantage of generating samples se-

quentially by bringing a trade-off between exploration (based on Maximin crite-

rion) and exploitation (based on projected distance criterion), thus significantly

reducing the overall training sample points as compared to LHD. However, in

contrary to LOLA-Voronoi sampling scheme, the trade-off in Maximin sampling

scheme is not bound by the behaviour of the function to be modelled. The Max-

imin sampling scheme starts with initial sample points (usually contains the

corner points of the design space) and intervals are created in each dimension

by sorting the values of the sample points in each dimension, and subtracting

subsequent values. The middle point of the hypercube (has the best projected

distance score) which is defined by the largest interval in each dimension is now

considered as the best potential sample point. The second best potential sample

point is the one created by replacing the one interval by the next largest, and

so on. Once sufficient sample points are generated this way, a pattern search

optimisation is performed in the 50 largest hypercubes, optimising towards the

Maximin criterion. The optimisation is bound by a threshold parameter set by

the user which controls the trade-off between exploration and exploitation.

5. Problem Formulation

5.1. Analytical Examples: Benchmark Test Problems

Five analytical benchmark functions, which are listed below, are used as test

functions. The gradient values of the benchmark functions with respect to the

design variables are analytically calculated.
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Figure 3: GEK-HDMR modelling process. First-order and correlated second-order component

functions and their corresponding GEK models for the 3D example function.
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• Function1 [27]

f(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+ 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

− 10 ≤ xi ≤ 10, i = 1, . . . , 10

(26)

• Function2 [27]

f(x) =

16∑
i=1

16∑
j=1

aij(x
2
i + xi + 1)(x2j + xj + 1)

0 ≤ xi, xj ≤ 5, i, j = 1, . . . , 16

(27)

where,

aij =



1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


• Function3 (Rosenbrock function) [45]

f(x) =

15∑
i=0

[
100(xi+1 − x2i )2 + (xi − 1)2

]
−2 ≤ xi ≤ 2, i = 1, . . . , 15

(28)

• Function4 (Rosenbrock function) [45]

f(x) =

30∑
i=0

[
100(xi+1 − x2i )2 + (xi − 1)2

]
−2 ≤ xi ≤ 2, i = 1, . . . , 30

(29)

• Function5 (Sphere function) [45]

f(x) =

10∑
i=1

x2i − 1 ≤ xi ≤ 1, i = 1, . . . , 10 (30)
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5.2. Simulation Example: Fluid Structure Interaction Problem

A numerical simulator [46] that determines the difference between a given

wall displacement and a calculated wall displacement for a given stiffness dis-

tribution along the length of an artery is used as the simulation example. The

numerical simulator uses a simplified fluid-structure interaction (FSI) model to

identify the stiffness distribution along the length of an artery. The FSI model is

one-dimensional in an axisymmetric coordinate system, as depicted in Figure 4.

It consists of various elastic segments, each with its own stiffness.

The cost function of the problem is the sum over all time steps and all elastic

segments of the squared difference between the given radius (r which is shown

in Figure 4) and the radius obtained during the simulation. The input variables

to the solver are the unique parameters (si) which define the elasticity modulus

(Ei) for each elastic segment as,

Ei = Eo

(
1 +

1

2
si

)
, i = 1, . . . , d (31)

and vary from -1 to 1. Hence, the number of input variables is equal to the num-

ber of elastic segments present in the artery. The number of input variables can

be increased by increasing the number of elastic segments present in the artery,

which in turn increases the accuracy of the estimation of wall displacement. Eo

in Equation 31 is a constant term whose value is provided to the solver. Inside

the artery, there is an incompressible blood flow. Furthermore, the interaction

between the blood flow and the elastic wall is taken into account. The governing

flow equations and the structural equations, which are formulated, discretised

and linearised in [46], are solved separately and the IQN-ILS algorithm [47] is

used to perform the coupling iterations to obtain the solution of the coupled

problem.

The gradients of the cost function are obtained by solving adjoint flow equa-

tions and adjoint structural equations and coupling them using IQN-ILS algo-
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rithm [47]. In adjoint formulation, the computational cost of estimating gradi-

ents is irrespective of the dimensionality of the problem and is solely based on

the implementation of the adjoint equations. In this problem, the computational

cost of estimating additional gradients at a given sample point is negligible as

compared to the computational cost of estimating the function value. For more

information on this problem, the readers are referred to [46].

Figure 4: The one-dimensional and axisymmetric model for blood flow in an artery with the

prescribed velocity at the inlet (left) and the Windkessel model at the outlet (right). The

segments, radius r, wall thickness h and length ` are indicated

Problems with different number of input variables are defined by varying the

number of elastic segments in the FSI model. Four such problems are defined

with 10, 20, 50 and 100 elastic segments which correspond to “Function6”,

“Function7”, “Function8” and “Function9’, respectively, in Tables 2-10. The

influence and interaction of each elastic segment with unique parameter si on

cost function makes these problems high dimensional in nature. Moreover, the

problems with dimensionality (d) larger than ten are usually considered as high

dimensional problems in the context of engineering [27].

5.3. Metamodel Assessment

As Kriging based metamodels are statistically unbiased at training sample

points, a validation data set which contains np number of untried uniformly

distributed pseudorandom test points is generated, in order to estimate the

accuracy of the metamodels. The validation data set contains np = 10000 and
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np = 500 uniformly distributed pseudorandom test points for the analytical

and the real-life test problems respectively. Once the validation data set is

generated, the metamodel accuracy is assessed on the test points with four

different error metrics: R Squared Error (R2), Relative Average Absolute Error

(RAAE), Relative Maximum Absolute Error (RMAE) and Normalised Root

Mean Square Error (NRMSE), which can be expressed, respectively, as,

R2 = 1−
∑np
i=1

(
yit − ŷi

)2∑np
i=1

(
yit − yit

)2 , (32)

RAAE =

∑np
i=1

(
yit − ŷi

)2
std(yt)np

, (33)

RMAE =
max(|y1t − ŷ1|, |y2t − ŷ2|, . . . , |y

np
t − ŷnp |)

std(yt)
, (34)

NRMSE =

√∑np
i=1(yit−ŷi)

2

np

max(yt)−min(yt)
, (35)

where yt is the vector of actual function values, ŷ is the vector of estimated

function values from the metamodel and y is the mean of the actual function

values on np test points. R2, RAAE and NRMSE show the overall metamod-

elling accuracy whereas RMAE is a local error metric. The values of RAAE,

RMAE and NRMSE approach zero as the overall metamodel accuracy increases

whereas high values are preferred for R2.

During the metamodel(s) construction as explained in Section 4, an absolute

error value of 0.1 is used to assess the accuracy of all first-order and second-

order (including during correlation identification) function models in all the

benchmark functions. In the case of real-life problems, an absolute error value

of 0.01 is used to assess the accuracy of all first-order function models. The

values for the absolute error are selected based on the ability of Kriging based

metamodels in modelling the benchmark and the real-life problems. In general,

a lower value of absolute error (paves the way for more accurate metamodels)
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leads to significant increase in the number of overall training sample points.

Thus, more care should be taken by considering the available sample budget

and the required level of metamodel(s) accuracy while selecting an appropriate

value for the absolute error. Absolute error measure, which is employed in this

paper, can be replaced with any other feasible error measures such as relative

error measure. A relative error measure is useful, especially, when the magnitude

of the function values of the problem are not known a priori.

6. Results and Discussion

Tables 1-10 show the results of the benchmark functions and the real-life

problems. The results of the benchmark functions represent the mean of 10

independent runs whereas the results of the real-life problems are limited to a

single run due to the computational cost of actual function and gradient esti-

mation.

In general, both LOLA-Voronoi and Maximin sampling based GEK-HDMR

significantly reduce the number of training sample points required to provide

accurate metamodels as compared to the LOLA-Voronoi and Maximin sampling

based OK-HDMR. This is clearly the effect of incorporating additional gradient

information at the training sample points. A training sample point for OK con-

tains a function value only whereas a training sample point for GEK contains the

function value and the gradient values in all the dimensions. GEK-HDMR ben-

efits from the additional gradient information in two different ways: (i) gradient

data provides secondary information about the function to be approximated.

Hence, it serves as additional training data which can be advantageous. (ii)

GEK is constrained by the fact that it must also interpolate the gradient data

in addition to the function data. This leads to a more well-defined likelihood

surface and thus easier estimation of the hyper-parameters, which in turn al-

lows the correlation function to capture the underlying function as realistically

as possible to the actual function to be approximated [37].
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Moreover, the advantage of incorporating additional gradient data is signif-

icantly visible from the comparison with the RBF-HDMR in [27] (see “Func-

tion1” and “Function2” results in Tables 1, 3, 5 and 9) where both LOLA-

Voronoi and Maximin sampling based GEK-HDMR are observed to provide

equivalent or more accurate surrogate models with less training sample points

than the RBF-HDMR in all the cases except the second-order model of “Func-

tion2”. This exception indicates a certain degree of model overfitting and is

essentially caused by two reasons: (i) errors introduced during the measure of

correlation and non-linearity. Although in theory the incorporation of second-

order correlation should result in more accurate surrogate models than incor-

porating the first-order correlation alone, the errors in the correlation identifi-

cation and modelling may surpass the advantage of incorporating the second-

order correlation. This occurs in problems “Function1” and “Function2”. This

also occurs in all the LHD sampling based OK-HDMR models of “Function1”-

“Function4”. However, in this case, the additional contribution to surpass the

advantage of incorporating second-order correlation comes from the infeasible

sample generation which is completely ignorant of the function behaviour and

the non-linearity of the component functions. (ii) second and further higher or-

der correlations may not exist in the function to be approximated. For example,

in problems “Function5” - “Function9”, incorporating the second-order effects

in the HDMR modelling is observed to deteriorate the HDMR model accuracy

(thus the second-order component functions are not modelled). Whereas in

problems “Function3” and “Function4”, incorporation of second-order correla-

tion resulted in more accurate HDMR models than incorporating the first-order

correlation alone.

However, it is important to note that among the OK-HDMR cases where

the additional gradient data are not incorporated, the RBF-HDMR outperforms

both the LOLA-Voronoi and the Maximin sampling based OK-HDMR. Addi-

tionally, it is observed that both the LOLA-Voronoi and the Maximin sequential
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sampling schemes are fairly equal in performance. This fact allows us to persist

the earlier intuition of inducting any other sequential sampling scheme (in the

place of the proposed LOLA-Voronoi sampling scheme) into the accompanying

modelling strategy can lead to metamodels of fair accuracy.

Further, to illustrate the advantages of the proposed modelling strategy,

the overall cost of both the LOLA-Voronoi and the Maximin sampling based

OK-HDMR/GEK-HDMR, in terms of ns, is compared with that of the Latin

Hypercube Design (LHD) sampling based OK-HDMR/GEK-HDMR in Tables

9 and 10. The overall cost (C) of a full first-order and second-order expansion

of a standard Cut-HDMR are

CHDMR
1 = 1 + (d)ns (36)

and

CHDMR
2 = 1 + (d)ns +

d(d− 1)ns

2
(37)

respectively. This is the overall cost incurred by the LHD sampling based OK-

HDMR/GEK-HDMR modelling. Here the non-linearity of the first-order and

the second-order component functions is not known a priori, thus an equal ns is

used for modelling all the first-order and the second-order component functions.

However, ns for the first-order component functions can be different (usually

less) from ns for the second-order component functions. Whereas the overall cost

of a full first-order and second-order expansion of LOLA-Voronoi (or Maximin)

sampling based OK-HDMR/GEK-HDMR are

C
GEK−HDMR(LOLA)
1 = 1 +

d∑
i=1

nsi (38)

and

C
GEK−HDMR(LOLA)
2 = 1 +

d∑
i=1

nsi +

N∑
i=1

nsi (39)

respectively, where N << (d(d− 1))/2) represents the number of second-order

correlations that exist in a given function of d dimensions. Here the non-linearity

of the first-order and the second-order component functions is observed during
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the modelling, thus each and every first-order and the second-order components

functions are modelled with different ns based on the non-linearity. By observ-

ing the results in Tables 9 and 10, one can see the reduction in ns achieved

by the LOLA-Voronoi sampling based OK-HDMR/GEK-HDMR over the LHD

sampling based OK-HDMR/GEK-HDMR. This sample reduction is essentially

achieved by the well controlled sample generation with LOLA-Voronoi algorithm

in which the samples are generated based on the function behaviour. Thus, a

highly nonlinear region is likely to have more sample points whereas samples

are highly limited in linear regions of the design space. This is contrary to the

LHD sampling based OK-HDMR/GEK-HDMR where the sample generation

is completely ignorant of the function behaviour. However, when all the com-

ponent functions exhibit a similar linearity/non-linearity, the LOLA-Voronoi

algorithm based sampling may become less advantageous than its counterpart

(see the results which correspond to “Function5”). It is important to note that

the extra computational cost spent of acquiring gradient data is neglected while

estimating the overall cost in Tables 9 and 10. This is due to the reason that the

computational cost of estimating gradient data at a given sample point for all

the problems employed in this paper is significantly less than the computational

cost of estimating the function data. The gradient data for the benchmark

problems are analytically calculated whereas the adjoint formulation is used to

estimate the gradient data for the real-life problems. In adjoint formulation,

the computational cost of estimating gradient data with respect to all the input

variables at a given sample point is completely irrespective of the number of

dimensions of the problem [48].
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Table 1: Comparison of R Squared Error (R2) on the validation data set. The values inside

the parenthesis correspond to the first-order HDMR models. The corresponding overall cost

of the first-order and the second-order HDMR models, in terms of number of training samples

(ns), can be obtained from Table 9 in one-to-one correspondence. Bold values correspond to

the technique with the best overall performance.

Test OK-HDMR OK-HDMR OK-HDMR RBF-
Functions (LHD) (LOLA) (Maximin) HDMR[27]

Function1 (0.47) (0.75)0.74 (0.75)0.75 (0.98)0.98
Function2 (0.96) (0.96)0.97 (0.96)0.97 (0.96)0.99
Function3 (0.62) (0.62)0.77 (0.62)0.78 -
Function4 (0.62) (0.62)0.70 (0.62)0.70 -
Function5 (1) (1) (1) -
Function6 (0.64) (0.64) (0.64) -
Function7 (0.59) (0.59) (0.59) -
Function8 (0.65) (0.65) (0.65) -
Function9 (0.81) (0.82) (0.82) -

Table 2: Comparison of R Squared Error (R2) on the validation data set. The values inside

the parenthesis correspond to the first-order HDMR models. The corresponding overall cost

of the first-order and the second-order HDMR models, in terms of number of training samples

(ns), can be obtained from Table 10 in one-to-one correspondence. Bold values correspond to

the technique with the best overall performance.

Test GEK-HDMR GEK-HDMR GEK-HDMR
Functions (LHD) (LOLA) (Maximin)

Function1 (0.99)0.98 (0.99)0.99 (0.99)0.99
Function2 (0.96)0.92 (0.96)0.84 (0.96)0.96
Function3 (0.62)0.67 (0.62)0.79 (0.62)0.78
Function4 (0.62)0.94 (0.63)0.70 (0.63)0.70
Function5 (1) (1) (1)
Function6 (0.64) (0.65) (0.41)
Function7 (0.59) (0.59) (0.59)
Function8 (0.65) (0.65) (0.65)
Function9 (0.82) (0.82) (0.82)
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Table 3: Comparison of Relative Average Absolute Error (RAAE) on the validation data

set. The values inside the parenthesis correspond to the first-order HDMR models. The

corresponding overall cost of the first-order and the second-order HDMR models, in terms of

number of training samples (ns), can be obtained from Table 9 in one-to-one correspondence.

Bold values correspond to the technique with the best overall performance.

Test OK-HDMR OK-HDMR OK-HDMR RBF-
Functions (LHD) (LOLA) (Maximin) HDMR[27]

Function1 (0.5916) (0.398)0.402 (0.425)0.423 (0.110)0.107
Function2 (0.1430) (0.143)0.126 (0.143)0.127 (0.150)0.088
Function3 (0.4746) (0.474)0.364 (0.474)0.353 -
Function4 (0.4799) (0.479)0.430 (0.480)0.430 -
Function5 (0.0013) (0.0013) (0.0008) -
Function6 (0.4246) (0.4248) (0.4254) -
Function7 (0.4843) (0.4837) (0.4833) -
Function8 (0.4568) (0.4556) (0.4563) -
Function9 (0.3113) (0.3119) (0.3129) -

Table 4: Comparison of Relative Average Absolute Error (RAAE) on the validation data

set. The values inside the parenthesis correspond to the first-order HDMR models. The

corresponding overall cost of the first-order and the second-order HDMR models, in terms of

number of training samples (ns), can be obtained from Table 10 in one-to-one correspondence.

Bold values correspond to the technique with the best overall performance.

Test GEK-HDMR GEK-HDMR GEK-HDMR
Functions (LHD) (LOLA) (Maximin)

Function1 (0.027)0.056 (0.040)0.040 (0.036)0.038
Function2 (0.143)0.262 (0.146)0.312 (0.144)0.128
Function3 (0.474)0.471 (0.47)0.35 (0.474)0.352
Function4 (0.479)0.195 (0.48)0.43 (0.48)0.43
Function5 (0.0012) (0.0013) (0.0012)
Function6 (0.4235) (0.4279) (0.6390)
Function7 (0.4847) (0.4845) (0.4855)
Function8 (0.4563) (0.4569) (0.4568)
Function9 (0.3107) (0.3105) (0.3106)
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Table 5: Comparison of Relative Maximum Absolute Error (RMAE) on the validation data

set. The values inside the parenthesis correspond to the first-order HDMR models. The

corresponding overall cost of the first-order and the second-order HDMR models, in terms of

number of training samples (ns), can be obtained from Table 9 in one-to-one correspondence.

Bold values correspond to the technique with the best overall performance.

Test OK-HDMR OK-HDMR OK-HDMR RBF-
Functions (LHD) (LOLA) (Maximin) HDMR[27]

Function1 (2.407) (1.25)1.22 (1.17)1.16 (0.33)0.28
Function2 (1.35) (1.35)1.26 (1.356)1.363 (0.91)0.25
Function3 (3.73) (3.73)2.43 (3.74)2.82 -
Function4 (2.56) (2.56)2.47 (2.56)2.59 -
Function5 (0.006) (0.006) (0.004) -
Function6 (2.486) (2.469) (2.511) -
Function7 (2.042) (2.019) (2.047) -
Function8 (2.605) (2.540) (2.610) -
Function9 (2.152) (2.136) (2.125) -

Table 6: Comparison of Relative Maximum Absolute Error (RMAE) on the validation data

set. The values inside the parenthesis correspond to the first-order HDMR models. The

corresponding overall cost of the first-order and the second-order HDMR models, in terms of

number of training samples (ns), can be obtained from Table 10 in one-to-one correspondence.

Bold values correspond to the technique with the best overall performance.

Test GEK-HDMR GEK-HDMR GEK-HDMR
Functions (LHD) (LOLA) (Maximin)

Function1 (0.109)1.568 (0.19)0.20 (0.16)0.19
Function2 (1.361)0.804 (1.38)2.23 (1.36)1.36
Function3 (3.74)2.84 (3.73)2.54 (3.74)2.81
Function4 (2.57)0.99 (2.56)2.52 (2.56)2.57
Function5 (0.003) (0.003) (0.003)
Function6 (2.438) (2.421) (2.515)
Function7 (2.040) (2.069) (2.082)
Function8 (2.610) (2.613) (2.616)
Function9 (2.154) (2.160) (2.157)
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Table 7: Comparison of Normalised Root Mean Square Error (NRMSE) on the validation

data set. The values inside the parenthesis correspond to the first-order HDMR models. The

corresponding overall cost of the first-order and the second-order HDMR models, in terms of

number of training samples (ns), can be obtained from Table 9 in one-to-one correspondence.

Bold values correspond to the technique with the best overall performance.

Test OK-HDMR OK-HDMR OK-HDMR RBF-
Functions (LHD) (LOLA) (Maximin) HDMR[27]

Function1 (0.1401) (0.0912)0.0913 (0.0948)0.0950 not
Function2 (0.0273) (0.0273)0.0240 (0.0273)0.0244 available
Function3 (0.0661) (0.0661)0.0510 (0.0661)0.0503 -
Function4 (0.0727) (0.0727)0.0653 (0.0727)0.0650 -
Function5 (0.0002) (0.0002) (0.0001) -
Function6 (0.1209) (0.1205) (0.1211) -
Function7 (0.1157) (0.1156) (0.1156) -
Function8 (0.1119) (0.1116) (0.1118) -
Function9 (0.0810) (0.0808) (0.0806) -

Table 8: Comparison of Normalised Root Mean Square Error (NRMSE) on the validation

data set. The values inside the parenthesis correspond to the first-order HDMR models. The

corresponding overall cost of the first-order and the second-order HDMR models, in terms of

number of training samples (ns), can be obtained from Table 10 in one-to-one correspondence.

Bold values correspond to the technique with the best overall performance.

Test GEK-HDMR GEK-HDMR GEK-HDMR
Functions (LHD) (LOLA) (Maximin)

Function1 (0.0070)0.0218 (0.01)0.0099 (0.0088)0.0093
Function2 (0.0274)0.0376 (0.0281)0.0547 (0.0275)0.0245
Function3 (0.0660)0.0611 (0.0661)0.05 (0.0660)0.0502
Function4 (0.0727)0.0272 (0.0727)0.0653 (0.0727)0.0649
Function5 (0.0002) (0.0002) (0.0002)
Function6 (0.1198) (0.1191) (0.1554)
Function7 (0.1157) (0.1157) (0.1159)
Function8 (0.1118) (0.1119) (0.1119)
Function9 (0.0809) (0.0811) (0.0809)
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Table 9: Comparison of overall cost of the metamodels in terms of number of training samples

(ns). The values inside the parenthesis denote the overall cost of the first-order HDMR models.

The overall cost of the second-order HDMR models (values outside the parenthesis) includes

that of the first-order HDMR models. Bold values correspond to the technique with the best

overall performance.

Test OK-HDMR OK-HDMR OK-HDMR RBF-
Functions (LHD) (LOLA) (Maximin) HDMR[27]

Function1 (110) (63)107 (61)78 (34)40
Function2 (192) (175)422 (152)392 (59)297
Function3 (270) (250)427 (276)516 -
Function4 (540) (514)703 (561)801 -
Function5 (80) (78) (90) -
Function6 (90) (73) (69) -
Function7 (180) (167) (159) -
Function8 (450) (343) (356) -
Function9 (900) (523) (519) -

Table 10: Comparison of overall cost of the metamodels in terms of number of training samples

(ns). The values inside the parenthesis denote the overall cost of the first-order HDMR models.

The overall cost of the second-order HDMR models (values outside the parenthesis) includes

that of the first-order HDMR models. Bold values correspond to the technique with the best

overall performance.

Test GEK-HDMR GEK-HDMR GEK-HDMR
Functions (LHD) (LOLA) (Maximin)

Function1 (60)960 (25)38 (26)35
Function2 (96)816 (56)242 (80)200
Function3 (120)2010 (152)275 (146)259
Function4 (240)12420 (316)438 (296)409
Function5 (50) (50) (50)
Function6 (60) (44) (32)
Function7 (120) (101) (86)
Function8 (300) (241) (202)
Function9 (600) (355) (394)
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Conclusions

The authors have detailed the implementation of a LOLA-Voronoi sequential

sampling based Gradient Enhanced Kriging (GEK) metamodelling algorithm for

high dimensional problems. Numerical results demonstrate that the combina-

tion of inexpensive gradient information and high dimensional model represen-

tation (HDMR) can be sufficient to break or at least attenuate the “curse of

dimensionality”. The HDMR already shifts the challenge from reducing the

modelling cost of GEK (and also handling ill-conditioning of the GEK “correla-

tion” matrix) to reducing the overall number of training samples of GEK-HDMR

metamodelling by decomposing a high dimensional function into a combination

of various first-order and second-order (or higher order if required) component

functions. Moreover, the accompanying metamodelling strategy identifies and

filters out the insignificant second-order component functions of the HDMR and,

together with the LOLA-Voronoi algorithm, it effectively reduces the required

overall training samples. The LOLA-Voronoi algorithm plays a significant role

in keeping the overall cost of the GEK-HDMR metamodelling less by explor-

ing the non-linearity of the function in single and/or higher dimensions and

controlling the sample distribution accordingly. However, inducting any other

sequential sampling scheme (in the place of the LOLA-Voronoi algorithm) into

the accompanying metamodelling strategy can lead to metamodels of fair level

of accuracy. This fact is persisted by the results of comparing LOLA-Voronoi

sequential sampling based OK/GEK-HDMR models with Maximin sequential

sampling based OK/GEK-HDMR models. Further, additional gradient incor-

poration at the training sample points can significantly help the GEK-HDMR to

provide accurate metamodels with fewer training sample points than Ordinary

Kriging based HDMR. GEK-HDMR essentially benefits from the additional

gradient information in terms of improved hyper-parameters estimation and ac-

curate interpolation of function data as the interpolation in GEK is constrained

by both function and gradient data.
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