47 research outputs found

    Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b

    Get PDF
    It is well known that Methylosinus trichosporium OB3b has two forms of methane monooxygenase (MMO) responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase and a membrane-associated (particulate) methane monooxygenase, and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-type MeDH (Mxa-MeDH) and Xox-type MeDH (Xox-MeDH), and the expression of these two forms is regulated by the availability of the rare earth element (REE), cerium. Here, we extend these studies and show that lanthanum, praseodymium, neodymium and samarium also regulate expression of alternative forms of MeDH. The effect of these REEs on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b, where the Mxa-MeDH was knocked out, was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. Collectively, these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b, but that copper overrides the effect of other metals by an as yet unknown mechanism

    Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential:a mini-review

    Get PDF
    Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes

    Isoprene oxidation by the gram-negative model bacterium variovorax sp. WS11

    Get PDF
    Plant-produced isoprene (2-methyl-1,3-butadiene) represents a significant portion of global volatile organic compound production, equaled only by methane. A metabolic pathway for the degradation of isoprene was first described for the Gram-positive bacterium Rhodococcus sp. AD45, and an alternative model organism has yet to be characterised. Here, we report the characterisation of a novel Gram-negative isoprene-degrading bacterium, Variovorax sp. WS11. Isoprene metabolism in this bacterium involves a plasmid-encoded iso metabolic gene cluster which differs from that found in Rhodococcus sp. AD45 in terms of organisation and regulation. Expression of iso metabolic genes is significantly upregulated by both isoprene and epoxyisoprene. The enzyme responsible for the initial oxidation of isoprene, isoprene monooxygenase, oxidises a wide range of alkene substrates in a manner which is strongly influenced by the presence of alkyl side-chains and differs from other well-characterised soluble diiron monooxygenases according to its response to alkyne inhibitors. This study presents Variovorax sp. WS11 as both a comparative and contrasting model organism for the study of isoprene metabolism in bacteria, aiding our understanding of the conservation of this biochemical pathway across diverse ecological niches

    Facultative methanotrophs are abundant at terrestrial natural gas seeps

    Get PDF
    Background: Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. Results: Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. Conclusion: New biomolecular tools designed in this study have expanded our ability to detect, and our knowledge of the environmental distribution of Methylocella, a unique facultative methanotroph. This study has revealed that Methylocella are particularly abundant at natural gas seeps and may play a significant role in biogeochemical cycling of gaseous hydrocarbons

    Methylmercury uptake and degradation by methanotrophs

    Get PDF
    Methylmercury (CH3Hg+) is a potent neurotoxin produced by certain anaerobic microorganisms in natural environments. Although numerous studies have characterized the basis of mercury (Hg) methylation, no studies have examined CH3Hg+ degradation by methanotrophs, despite their ubiquitous presence in the environment. We report that some methanotrophs, such as Methylosinus trichosporium OB3b, can take up and degrade CH3Hg+ rapidly, whereas others, such as Methylococcus capsulatus Bath, can take up but not degrade CH3Hg+. Demethylation by M. trichosporium OB3b increases with increasing CH3Hg+ concentrations but was abolished in mutants deficient in the synthesis of methanobactin, a metal-binding compound used by some methanotrophs, such as M. trichosporium OB3b. Furthermore, addition of methanol (>5 mM) as a competing one-carbon (C1) substrate inhibits demethylation, suggesting that CH3Hg+ degradation by methanotrophs may involve an initial bonding of CH3Hg+ by methanobactin followed by cleavage of the C–Hg bond in CH3Hg+ by the methanol dehydrogenase. This new demethylation pathway by methanotrophs indicates possible broader involvement of C1-metabolizing aerobes in the degradation and cycling of toxic CH3Hg+ in the environment

    Correlated production and consumption of chloromethane in the Arabidopsis thaliana phyllosphere

    Get PDF
    Chloromethane (CH3Cl) is a toxic gas mainly produced naturally, in particular by plants, and its emissions contribute to ozone destruction in the stratosphere. Conversely, CH3Cl can be degraded and used as the sole carbon and energy source by specialised methylotrophic bacteria, isolated from a variety of environments including the phyllosphere, i.e. the aerial parts of vegetation. The potential role of phyllospheric CH3Cl-degrading bacteria as a filter for plant emissions of CH3Cl was investigated using variants of Arabidopsis thaliana with low, wild-type and high expression of HOL1 methyltransferase previously shown to be responsible for most of CH3Cl emissions by A. thaliana. Presence and expression of the bacterial chloromethane dehalogenase cmuA gene in the A. thaliana phyllosphere correlated with HOL1 genotype, as shown by qPCR and RT-qPCR. Production of CH3Cl by A. thaliana paralleled HOL1 expression, as assessed by a fluorescence-based bioreporter. The relation between plant production of CH3Cl and relative abundance of CH3Cl-degrading bacteria in the phyllosphere suggests that CH3Cl-degrading bacteria co-determine the extent of plant emissions of CH3Cl to the atmosphere

    Methanethiol and dimethylsulfide cycling in Stiffkey saltmarsh

    Get PDF
    Methanethiol (MeSH) and dimethylsulfide (DMS) are volatile organic sulfur compounds (VOSCs) with important roles in sulfur cycling, signaling and atmospheric chemistry. DMS can be produced from MeSH through a reaction mediated by the methyltransferase MddA. The mddA gene is present in terrestrial and marine metagenomes, being most abundant in soil environments. The substrate for MddA, MeSH, can also be oxidized by bacteria with the MeSH oxidase (MTO) enzyme, encoded by the mtoX gene, found in marine, freshwater and soil metagenomes. Methanethiol-dependent DMS production (Mdd) pathways have been shown to function in soil and marine sediments, but have not been characterized in detail in the latter environments. In addition, few molecular studies have been conducted on MeSH consumption in the environment. Here, we performed process measurements to confirm that Mdd-dependent and Mdd-independent MeSH consumption pathways are active in tested surface saltmarsh sediment when MeSH is available. We noted that appreciable natural Mdd-independent MeSH and DMS consumption processes masked Mdd activity. 16S rRNA gene amplicon sequencing and metagenomics data showed that Methylophaga, a bacterial genus known to catabolise DMS and MeSH, was enriched by the presence of MeSH. Moreover, some MeSH and/or DMS-degrading bacteria isolated from this marine environment lacked known DMS and/or MeSH cycling genes and can be used as model organisms to potentially identify novel genes in these pathways. Thus, we are likely vastly underestimating the abundance of MeSH and DMS degraders in these marine sediment environments. The future discovery and characterization of novel enzymes involved in MeSH and/or DMS cycling is essential to better assess the role and contribution of microbes to global organosulfur cycling

    Identification of active gaseous-alkane degraders at natural gas seeps

    Get PDF
    Natural gas seeps release significant amounts of methane and other gases including ethane and propane contributing to global climate change. In this study, bacterial actively consuming short-chain alkanes were identified by cultivation, whole-genome sequencing, and stable-isotope probing (SIP)-metagenomics using 13C-propane and 13C-ethane from two different natural gas seeps, Pipe Creek and Andreiasu Everlasting Fire. Nearly 100 metagenome-assembled genomes (MAGs) (completeness 70–99%) were recovered from both sites. Among these, 16 MAGs had genes encoding the soluble di-iron monooxygenase (SDIMO). The MAGs were affiliated to Actinobacteria (two MAGs), Alphaproteobacteria (ten MAGs), and Gammaproteobacteria (four MAGs). Additionally, three gaseous-alkane degraders were isolated in pure culture, all of which could grow on ethane, propane, and butane and possessed SDIMO-related genes. Two Rhodoblastus strains (PC2 and PC3) were from Pipe Creek and a Mycolicibacterium strain (ANDR5) from Andreiasu. Strains PC2 and PC3 encoded putative butane monooxygenases (MOs) and strain ANDR5 contained a propane MO. Mycolicibacterium strain ANDR5 and MAG19a, highly abundant in incubations with 13C-ethane, share an amino acid identity (AAI) of 99.3%. We show using a combination of enrichment and isolation, and cultivation-independent techniques, that these natural gas seeps contain a diverse community of active bacteria oxidising gaseous-alkanes, which play an important role in biogeochemical cycling of natural gas

    A unique bacteriohopanetetrol stereoisomer of marine anammox

    Get PDF
    Anaerobic ammonium oxidation (anammox) is a major process of bioavailable nitrogen removal from marine systems. Previously, a bacteriohopanetetrol (BHT) isomer, with unknown stereochemistry, eluting later than BHT using high performance liquid chromatography (HPLC), was detected in ‘Ca. Scalindua profunda’ and proposed as a biomarker for anammox in marine paleo-environments. However, the utility of this BHT isomer as an anammox biomarker is hindered by the fact that four other, non-anammox bacteria are also known to produce a late-eluting BHT stereoisomer. The stereochemistry in Acetobacter pasteurianus, Komagataeibacter xylinus and Frankia sp. was known to be 17β, 21β(H), 22R, 32R, 33R, 34R (BHT-34R). The stereochemistry of the late-eluting BHT in Methylocella palustris was unknown. To determine if marine anammox bacteria produce a unique BHT isomer, we studied the BHT distributions and stereochemistry of known BHT isomer producers and of previously unscreened marine (‘Ca. Scalindua brodeae’) and freshwater (‘Ca. Brocadia sp.’) anammox bacteria using HPLC and gas chromatographic (GC) analysis of acetylated BHTs and ultra high performance liquid chromatography (UHPLC)-high resolution mass spectrometry (HRMS) analysis of non-acetylated BHTs. The 34R stereochemistry was confirmed for the BHT isomers in Ca. Brocadia sp. and Methylocella palustris. However, ‘Ca. Scalindua sp.’ synthesise a stereochemically distinct BHT isomer, with still unconfirmed stereochemistry (BHT-x). Only GC analysis of acetylated BHT and UHPLC analysis of non-acetylated BHT distinguished between late-eluting BHT isomers. Acetylated BHT-x and BHT-34R co-elute by HPLC. As BHT-x is currently only known to be produced by ‘Ca. Scalindua spp.’, it may be a biomarker for marine anammox

    Comparative Analysis of Production Processes and Quality Parameters of Two Different Semi-Combed Yarns

    Get PDF
    Semi-combed yarn represents a type of ring-spun yarn produced by modifying the typical carded and combed yarn manufacturing process. Carded yarn is inferior in quality, while combed yarns are not cost efficient. The semi-combed yarn has therefore emerged as an alternative to fully combed yarn to facilitate a reasonable quality-cost compromise. This paper reports two manufacturing techniques and associated features of the cotton ring-spun semi-combed yarn of the same count. One process involves sliver mixing in draw frame, and the other by reducing the noil extraction percentage in comber. The aim of this study is to run a comparative analysis of both the end products against themselves and their carded and combed counterparts to establish their acceptance in the industrial scale. Important quality parameters such as unevenness (U%), coefficient of variation (CVm%), thick place(+50%)/km, thin place(−50%)/km, neps(+200%)/km, hairiness (H), strength, elongation, CSP, and cost have been evaluated, analyzed, and compared among these products. In several cases, the quality of semi-combed yarn was comparable to fully combed yarns and better than carded yarns. This offers a cost-effective and sustainable alternative to combed yarn. Comparison shows that the noil extraction process offers less hairiness, and more sustainability and involves no extra operation to develop the yarn
    corecore