36 research outputs found

    Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial

    Get PDF
    Background: In a phase 1b study, intravenous daratumumab plus pomalidomide and dexamethasone induced a very good partial response or better rate of 42% and was well tolerated in patients with heavily pretreated multiple myeloma. We aimed to evaluate whether daratumumab plus pomalidomide and dexamethasone would improve progression-free survival versus pomalidomide and dexamethasone alone in patients with previously treated multiple myeloma. Methods: In this ongoing, open-label, randomised, phase 3 trial (APOLLO) done at 48 academic centres and hospitals across 12 European countries, eligible patients were aged 18 years or older, had relapsed or refractory multiple myeloma with measurable disease, had an Eastern Cooperative Oncology Group performance status of 0–2, had at least one previous line of therapy, including lenalidomide and a proteasome inhibitor, had a partial response or better to one or more previous lines of antimyeloma therapy, and were refractory to lenalidomide if only one previous line of therapy was received. Patients were randomly assigned (1:1) by an interactive web-response system in a random block size of two or four to receive pomalidomide and dexamethasone alone or daratumumab plus pomalidomide and dexamethasone. Randomisation was stratified by number of previous lines of therapy and International Staging System disease stage. All patients received oral pomalidomide (4 mg, once daily on days 1–21) and oral dexamethasone (40 mg once daily on days 1, 8, 15, and 22; 20 mg for those aged 75 years or older) at each 28-day cycle. The daratumumab plus pomalidomide and dexamethasone group received daratumumab (1800 mg subcutaneously or 16 mg/kg intravenously) weekly during cycles 1 and 2, every 2 weeks during cycles 3–6, and every 4 weeks thereafter until disease progression or unacceptable toxicity. The primary endpoint was progression-free survival in the intention-to-treat population. Safety was analysed in all patients who received at least one dose of study medication. This trial is registered with ClinicalTrials.gov, NCT03180736. Findings: Between June 22, 2017, and June 13, 2019, 304 patients (median age 67 years [IQR 60–72]; 161 [53%] men and 143 [47%] women) were randomly assigned to the daratumumab plus pomalidomide and dexamethasone group (n=151) or the pomalidomide and dexamethasone group (n=153). At a median follow-up of 16·9 months (IQR 14·4–20·6), the daratumumab plus pomalidomide and dexamethasone group showed improved progression-free survival compared with the pomalidomide and dexamethasone group (median 12·4 months [95% CI 8·3–19·3] vs 6·9 months [5·5–9·3]; hazard ratio 0·63 [95% CI 0·47–0·85], two-sided p=0·0018). The most common grade 3 or 4 adverse events were neutropenia (101 [68%] of 149 patients in the daratumumab plus pomalidomide and dexamethasone group vs 76 [51%] of 150 patients in the pomalidomide and dexamethasone group), anaemia (25 [17%] vs 32 [21%]), and thrombocytopenia (26 [17%] vs 27 [18%]). Serious adverse events occurred in 75 (50%) of 149 patients in the daratumumab plus pomalidomide and dexamethasone group versus 59 (39%) of 150 patients in the pomalidomide and dexamethasone group; pneumonia (23 [15%] vs 12 [8%] patients) and lower respiratory tract infection (18 [12%] vs 14 [9%]) were most common. Treatment-emergent deaths were reported in 11 (7%) patients in the daratumumab plus pomalidomide and dexamethasone group versus 11 (7%) patients in the pomalidomide and dexamethasone group. Interpretation: Among patients with relapsed or refractory multiple myeloma, daratumumab plus pomalidomide and dexamethasone reduced the risk of disease progression or death versus pomalidomide and dexamethasone alone and could be considered a new treatment option in this setting. Funding: European Myeloma Network and Janssen Research and Development.European Myeloma Network and Janssen Research and Development

    Daratumumab, Bortezomib, and Dexamethasone Versus Bortezomib and Dexamethasone in Patients With Previously Treated Multiple Myeloma: Three-year Follow-up of CASTOR

    Get PDF
    Background: In the phase III CASTOR study in relapsed or refractory multiple myeloma, daratumumab, bortezomib, and dexamethasone (D-Vd) demonstrated significant clinical benefit versus Vd alone. Outcomes after 40.0 months of median follow-up are discussed. Patients and Methods: Eligible patients had received ≄ 1 line of treatment and were administered bortezomib (1.3 mg/m2) and dexamethasone (20 mg) for 8 cycles with or without daratumumab (16 mg/kg) until disease progression. Results: Of 498 patients in the intent-to-treat (ITT) population (D-Vd, n = 251; Vd, n = 247), 47% had 1 prior line of treatment (1PL; D-Vd, n = 122; Vd, n = 113). Median progression-free survival (PFS) was significantly prolonged with D-Vd versus Vd in the ITT population (16.7 vs. 7.1 months; hazard ratio [HR], 0.31; 95% confidence interval [CI], 0.25-0.40; P < .0001) and the 1PL subgroup (27.0 vs. 7.9 months; HR, 0.22; 95% CI, 0.15-0.32; P < .0001). In lenalidomide-refractory patients, the median PFS was 7.8 versus 4.9 months (HR, 0.44; 95% CI, 0.28-0.68; P = .0002) for D-Vd (n = 60) versus Vd (n = 81). Minimal residual disease (MRD)–negativity rates (10−5) were greater with D-Vd versus Vd (ITT: 14% vs. 2%; 1PL: 20% vs. 3%; both P < .0001). PFS2 was significantly prolonged with D-Vd versus Vd (ITT: HR, 0.48; 95% CI, 0.38-0.61; 1PL: HR, 0.35; 95% CI, 0.24-0.51; P < .0001). No new safety concerns were observed. Conclusion: After 3 years, D-Vd maintained significant benefits in patients with relapsed or refractory multiple myeloma with a consistent safety profile. D-Vd provided the greatest benefit at first relapse and increased MRD-negativity rates.CASTOR showed the significant clinical benefit of daratumumab plus bortezomib and dexamethasone for patients with previously treated multiple myeloma. With ∌3 years median follow-up, this regimen continues to demonstrate significantly improved progression-free survival with higher minimal residual dis

    Daratumumab plus lenalidomide and dexamethasone in relapsed/ refractory multiple myeloma: extended follow-up of POLLUX, a randomized, open-label, phase 3 study

    Get PDF
    In POLLUX, daratumumab (D) plus lenalidomide/dexamethasone (Rd) reduced the risk of disease progression or death by 63% and increased the overall response rate (ORR) versus Rd in relapsed/refractory multiple myeloma (RRMM). Updated efficacy and safety after >3 years of follow-up are presented. Patients (N = 569) with ≄1 prior line received Rd (lenalidomide, 25 mg, on Days 1–21 of each 28-day cycle; dexamethasone, 40 mg, weekly) ± daratumumab at the approved dosing schedule. Minimal residual disease (MRD) was assessed by next-generation sequencing. After 44.3 months median follow-up, D-Rd prolonged progression-free survival (PFS) in the intent-to-treat population (median 44.5 vs 17.5 months; HR, 0.44; 95% CI, 0.35–0.55; P < 0.0001) and in patient subgroups. D-Rd demonstrated higher ORR (92.9 vs 76.4%; P < 0.0001) and deeper responses, including complete response or better (56.6 vs 23.2%; P < 0.0001) and MRD negativity (10–5; 30.4 vs 5.3%; P < 0.0001). Median time to next therapy was prolonged with D-Rd (50.6 vs 23.1 months; HR, 0.39; 95% CI, 0.31–0.50; P < 0.0001). Median PFS on subsequent line of therapy (PFS2) was not reached with D-Rd versus 31.7 months with Rd (HR, 0.53; 95% CI, 0.42–0.68; P < 0.0001). No new safety concerns were reported. These data support using D-Rd in patients with RRMM after first relapse

    Early M-Protein Dynamics Predicts Progression-Free Survival in Patients With Relapsed/Refractory Multiple Myeloma

    Get PDF
    This study aimed to predict long-term progression-free survival (PFS) using early M-protein dynamic measurements in patients with relapsed/refractory multiple myeloma (MM). The PFS was modeled based on dynamic M-protein data from two phase III studies, POLLUX and CASTOR, which included 569 and 498 patients with relapsed/refractory MM, respectively. Both studies compared active controls (lenalidomide and dexamethasone, and bortezomib and dexamethasone, respectively) alone vs. in combination with daratumumab. Three M-protein dynamic features from the longitudinal M-protein data were evaluated up to different time cutoffs (1, 2, 3, and 6 months). The abilities of early M-protein dynamic measurements to predict the PFS were evaluated using Cox proportional hazards survival models. Both univariate and multivariable analyses suggest that maximum reduction of M-protein (i.e., depth of response) was the most predictive of PFS. Despite the statistical significance, the baseline covariates provided very limited predictive value regarding the treatment effect of daratumumab. However, M-protein dynamic features obtained within the first 2 months reasonably predicted PFS and the associated treatment effect of daratumumab. Specifically, the areas under the time-varying receiver operating characteristic curves for the model with the first 2 months of M-protein dynamic data were ~ 0.8 and 0.85 for POLLUX and CASTOR, respectively. Early M-protein data within the first 2 months can provide a prospective and reasonable prediction of future long-term clinical benefit for patients with MM

    Daratumumab, lenalidomide, and dexamethasone in relapsed/refractory myeloma: a cytogenetic subgroup analysis of POLLUX

    Get PDF
    High cytogenetic risk abnormalities confer poor outcomes in multiple myeloma patients. In POLLUX, daratumumab/lenalidomide/dexamethasone (D-Rd) demonstrated significant clinical benefit versus lenalidomide/dexamethasone (Rd) in relapsed/refractory multiple myeloma (RRMM) patients. We report an updated subgroup analysis of POLLUX based on cytogenetic risk. The cytogenetic risk was determined using fluorescence in situ hybridization/karyotyping; patients with high cytogenetic risk had t(4;14), t(14;16), or del17p abnormalities. Minimal residual disease (MRD; 10–5) was assessed via the clonoSEQ¼ assay V2.0. 569 patients were randomized (D-Rd, n = 286; Rd, n = 283); 35 (12%) patients per group had high cytogenetic risk. After a median follow-up of 44.3 months, D-Rd prolonged progression-free survival (PFS) versus Rd in standard cytogenetic risk (median: not estimable vs 18.6 months; hazard ratio [HR], 0.43; P < 0.0001) and high cytogenetic risk (median: 26.8 vs 8.3 months; HR, 0.34; P = 0.0035) patients. Responses with D-Rd were deep, including higher MRD negativity and sustained MRD-negativity rates versus Rd, regardless of cytogenetic risk. PFS on subsequent line of therapy was improved with D-Rd versus Rd in both cytogenetic risk subgroups. The safety profile of D-Rd by cytogenetic risk was consistent with the overall population. These findings demonstrate the improved efficacy of daratumumab plus standard of care versus standard of care in RRMM, regardless of cytogenetic risk

    International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM)

    Get PDF
    Smoldering multiple myeloma (SMM) is an asymptomatic precursor state of multiple myeloma (MM). Recently, MM was redefined to include biomarkers predicting a high risk of progression from SMM, thus necessitating a redefinition of SMM and its risk stratification. We assembled a large cohort of SMM patients meeting the revised IMWG criteria to develop a new risk stratification system. We included 1996 patients, and using stepwise selection and multivariable analysis, we identified three independent factors predicting progression risk at 2 years: serum M-protein >2 g/dL (HR: 2.1), involved to uninvolved free light-chain ratio >20 (HR: 2.7), and marrow plasma cell infiltration >20% (HR: 2.4). This translates into 3 categories with increasing 2-year progression risk: 6% for low risk (38%; no risk factors, HR: 1); 18% for intermediate risk (33%; 1 factor; HR: 3.0), and 44% for high risk (29%; 2–3 factors). Addition of cytogenetic abnormalities (t(4;14), t(14;16), +1q, and/or del13q) allowed separation into 4 groups (low risk with 0, low intermediate risk with 1, intermediate risk with 2, and high risk with ≄3 risk factors) with 6, 23, 46, and 63% risk of progression in 2 years, respectively. The 2/20/20 risk stratification model can be easily implemented to identify high-risk SMM for clinical research and routine practice and will be widely applicable

    Fluid shear stress-induced reorganization of adherens junctions in human endothelial cells

    No full text
    Flow-induced changes in confluent human umbilical vein endothelial cell (HUVEC) monolayers were studied using a parallel-plate flow system. Static-cultured endothelial cells, in monolayers, are polygonal in shape. When exposed to shear stress, HUVEC aligned and elongated parallel to the direction of flow. We postulated that the interendothelial cell junctions would remodel in response to continuous fluid shear stress. Shear stress-induced morphological reorganization of the F-actin cytoskeleton is synchronized with the remodeling of the adherens junctions. These junctions are comprised of VE-cadherin and associated [special characters omitted]-catenin, [special characters omitted]-catenin, [special characters omitted]-catenin and p120-catenin. Under static conditions, the junctional VE-cadherin complexes in HUVEC form intricate, three-dimensional lattice-like structures. Over a time course of exposure to shear stress these intricate structures are remodeled into compact, uniform cell-cell junctions that outline cell contours. Immunoblot analyses of differential detergent extracts prepared from HUVEC monolayers were used to determine whether the expression and cytoskeletal association of the VE-cadherin complex proteins changed in response to shear stress. The quantities of VE-cadherin and [special characters omitted]-catenin increased in the cytoskeletal fractions from sheared HUVEC, suggesting that there was increased cell-cell junctional stability in endothelial cells exposed to continuous fluid shear stress. Shear stress stimulated increased tyrosine phosphorylation of VE-cadherin-associated [special characters omitted]-catenin, [special characters omitted]-catenin and p120-catenin, possibly dynamically modulating the disassembly and re-assembly of cadherin complexes during junctional remodeling. Such changes in tyrosine phosphorylation are regulated by the integrated actions of protein tyrosine kinases and phosphatases. In static-cultured HUVEC, SHP2, an intracellular protein tyrosine phosphatase, co-precipitated with VE-cadherin-associated [special characters omitted]-catenin. The association between SHP2 and VE-cadherin complexes was greatly diminished in extracts from cells exposed to fluid shear stress. Shear-induced increases of tyrosine phosphorylation in the VE-cadherin complex correlated with the loss of SHP2 from the adherens junctions. This implicates SHP2 as part of the kinase/phosphatase mechanism that regulates the remodeling of the adherens junctions during endothelial cell adaptation to fluid shear stress. The shear-mediated dissociation of SHP2 from VE-cadherin complexes also correlated with an increased association of SHP2 with PECAM-1. Thus, in endothelial cells fluid shear stress appears to regulate SHP2 association with its junctional protein partners as HUVEC dramatically remodeled their cell-cell junctions
    corecore